On John and Nirenberg's theorem

Ingemar Wik

Introduction

A well-known theorem by John and Nirenberg states that for a function f in $BMO(\mathbb{R}^n)$ with $||f||_{BMO} = K$ we have for every cube Q with sides parallel to the axes:

(1)
$$|\{x \in Q; |f(x) - a_{\varrho}| > \sigma\}| \leq c_1 e^{-c_2 \sigma K^{-1}} |\varrho|.$$

The constant c_2 which is obtained normally is of the form 2^{-cn} . In the paper [2] John and Nirenberg claim that the constant c_2 can be improved to be of the order $\log n/n$. (c_1 is an absolute constant e.g. 2.)

In this paper we introduce the more general notion of a false cube and an associated *BMO*-norm, $||f||'_{BMO}$. We will show that (1) is true with this norm for all false cubes Q with a constant c_2 which then is *independent of* n (Theorem 1). We also will show (Theorem 2) that the quotient of $||f||'_{BMO}$ and $||f||_{BMO}$ is at most of the order \sqrt{n} , which means that we can improve c_2 in (1) to the order of $n^{-1/2}$ and at the same time allow Q to be any false cube.

Definitions and notations

A cube will always mean a cube in **R**ⁿ with sides parallel to the axes.

A false cube is an *n*-dimensional rectangle in \mathbb{R}^n whose sides are parallel to the axes and for some *s* have side lengths either *s* or 2*s*, i.e. its proportions are $2 \times 2 \times ... \times 2 \times 1 \times 1 \times ... \times 1$.

The Lebesgue measure of a set E is denoted by |E|. If f is a real-valued function in L_{loc}^1 we define the sharp function, f^{\ddagger} , by

(2)
$$f^{*}(t) = \sup_{Q \ni t} \frac{1}{|Q|^{2}} \int_{Q} \int_{Q} |f(x) - f(y)| \, dx \, dy,$$

where the supremum is taken over all cubes Q containing t.