Approximation of plurisubharmonic functions

John Erik Fornæss* and Jan Wiegerinck**

Introduction

Let PSH(X), C(X), $C^{\infty}(X)$ denote respectively the plurisubharmonic functions, the continuous functions and the smooth functions defined on a neighborhood of a set $X \subset \mathbb{C}^n$. Let Ω be a domain in \mathbb{C}^n . How are $PSH(\Omega)$, $PSH(\Omega) \cap C(\Omega)$, $PSH(\Omega) \cap C(\overline{\Omega})$ and $PSH(\overline{\Omega}) \cap C(\overline{\Omega})$ related? What if we replace $C(\Omega)$ or $C(\overline{\Omega})$ by $C^{\infty}(\Omega)$, $C^{\infty}(\overline{\Omega})$. More specifically, is it possible to approximate elements of one of these classes with elements of a smaller one.

Richberg [4] showed that for every strictly plurisubharmonic $f \in C(\Omega)$ and every $\varepsilon(z) \in C(\Omega)$, $\varepsilon(z) > 0$, there exists a strictly plurisubharmonic $\Phi \in C^{\infty}(\Omega)$ such that $0 < \Phi(z) - f(z) < \varepsilon(z)$. The first author, [2], exhibited a smooth Hartogs domain D in \mathbb{C}^2 and a plurisubharmonic function f on it, so that f cannot be approximated from above with functions in $PSH(D) \cap C(D)$. Sibony [5] showed that if Ω is a pseudoconvex domain with C^{∞} -boundary, then $f \in PSH(\Omega) \cap C(\overline{\Omega})$ can be approximated uniformly on $\overline{\Omega}$ with $\Phi \in PSH(\overline{\Omega}) \cap C^{\infty}(\overline{\Omega})$. He asked if this were true for pseudoconvex domains with C^1 boundary also.

Section 1 deals with Sibony's question. In Theorem 1 it is answered positively for arbitrary bounded domains with C^1 -boundary. Our proof is entirely different from Sibony's. Assuming in addition that Ω is pseudoconvex, we also show that every $f \in PSH(\Omega) \cap C(\Omega)$ can be approximated uniformly on compact sets with $\Phi \in PSH(\overline{\Omega}) \cap C^{\infty}(\overline{\Omega})$, Theorem 2. Section 2 contains an example that Theorem 2 without the pseudoconvexity assumption is false. In Section 3 and 4 we show that if Ω is a Reinhardt or a tube domain in \mathbb{C}^n , then $f \in PSH(\Omega)$ is pointwise the limit of a monotonically decreasing sequence $\Phi_i \in PSH(\Omega) \cap C^{\infty}(\Omega)$.

^{*} Supported by NSF grant DMS 8401273.

^{**} Supported by a fellowship of the Royal Netherlands' Academy of Arts and Sciences and by an NSF grant.