On the projective classification of smooth *n*-folds with *n* even

M. L. Fania and A. J. Sommese

Let $Y \subset \mathbf{P}_{\mathbf{C}}$ be an irreducible, *n* dimensional, projective variety with a smooth normalization $\alpha: M \to Y$ and let $\mathscr{L} = \alpha^* O_{\mathbf{P}}(1)_Y$. Recent results of [5], [6], [16] imply that either (M, \mathscr{L}) is one of a list of specific, well understood polarized varieties or there is a projective manifold X and an ample line bundle L on X such that:

- a) M is the blowup $\pi: M \rightarrow X$ of X at a finite set F,
- b) $K_M \otimes \mathscr{L}^{n-1} = \pi^*(K_X \otimes L^{n-1})$ where $K_X \otimes L^{n-1}$ is ample and spanned by global sections,
- c) $L=[\pi(S)]$ for a smooth $S\in |\mathcal{L}|$, or equivalently $\mathcal{L}=\pi^*(L)\otimes [\pi^{-1}(F)]^{-1}$,
- d) $K_X \otimes L^{n-2}$ is semi-ample and big, i.e. some positive power $(K_X \otimes L^{n-2})^t$ is spanned by global sections and the map $\alpha: X \to \mathbf{P}_{\mathbf{C}}$ associated to $\Gamma((K_X \otimes L^{n-2})^t)$ has an *n* dimensional image.

The pair (X, L) is called the first reduction of (M, \mathcal{L}) and is very well behaved, see [12], [14] and [17]. It is easy to convert information between (X, L) and (M, \mathcal{L}) .

Let $\Phi \circ s = \alpha$ be the Remmert—Stein factorization of the map α (in d) above) where $\Phi: X \to X'$ has connected fibres for a normal projective X', and $s: X' \to \mathbf{P}_{\mathbf{C}}$ is finite to one. There is an ample line bundle \mathscr{H} on X' such that $\Phi^*\mathscr{H} = K_X \otimes L^{n-2}$. The pair (X', \mathscr{H}) is known as the 2nd reduction and the map Φ is called the second adjunction map. Such pairs have been studied by the authors [4], [15]. X' has only isolated singularities, is 2-factorial and Gorenstein in even dimensions. Thus for *n* even, $n \ge 4$, $\mathscr{H} = K_{X'} \otimes L'^{n-2}$ where for a smooth $A \in |L|$, $2\Phi(A)$ is Cartier, i.e. $[2\Phi(A)]$ is invertible and L' is 2-Cartier. This pleasant circumstance makes the 2nd reduction almost as easy to use as the first reduction when *n* is even, and allows us to use the results of Fujita [5] in this case. Combining this with a recent result [2] we can push the known classification a good deal further. To state our main result it is useful to recall the notion of the spectral value of a pair.