A Blaschke-type product and random zero sets for Bergman spaces

Gregory Bomash

0. Introduction

Let $L^{p}(\mathbf{D})$ $(p \ge 1)$ be the Banach space of all measurable functions f on the open unit disk $\mathbf{D} = \{z \in \mathbb{C} : |z| < 1\}$ such that

(0.1)
$$||f||_{p} = \left\{ \int_{\mathbf{D}} |f(z)|^{p} dA(z) \right\}^{1/p} < \infty,$$

where dA is the normalized Lebesgue area measure. Let A^p be the subspace of $L^p(\mathbf{D})$ consisting of analytic functions. The A^p are usually called the Bergman spaces.

Definition. We say that a subset Λ of the disk **D** is a zero-set for the space A^p if there exists a nonzero function $f \in A^p$ such that $f|_A = 0$.

The purpose of this paper twofold. First we introduce a Blaschke type product whose factors have an extremal property in A^2 similar to the extremal property enjoyed by the classical Blaschke factors for the Hardy spaces H^p . It will be shown that our Blaschke type products converge for all A^p -zero sets, and they are contractive divisors of zeros for A^2 . In the second part of the paper we apply these Blaschke type products (or rather their modification) to obtain a result concerning probabilistic characterization of A^p -zero sets. The probabilistic approach to the study of A^p -zero sets was apparently initiated by Emile LeBlanc [B] who obtained the following result:

Theorem ([B]). Let $\{r_n\}_{n=1}^{\infty}$ be a sequence in (0, 1) that satisfies the condition:

(0.2)
$$\limsup_{\varepsilon \to 0} \frac{\sum (1-r_n)^{1+\varepsilon}}{\log 1/\varepsilon} < \frac{1}{2p}$$

Then for almost all independent choices of $\{\theta_n\}_{n=1}^{\infty}$ the set $\{r_n e^{i\theta_n}\}_{n=1}^{\infty}$ is an A^p -zero set.