On local integrability of fundamental solutions

Lars Hörmander

1. Introduction

Let P(D), $D = -i\partial/\partial x$, be a partial differential operator in \mathbb{R}^n with constant coefficients. In my thesis [1] I proved that P(D) is hypoelliptic if and only if one of the following equivalent conditions is fulfilled:

(i) Im $\zeta \to \infty$ if $\mathbf{C}^n \ni \zeta \to \infty$ and $P(\zeta) = 0$;

(ii) $P(\xi) \neq 0$ for large $\xi \in \mathbb{R}^n$, and $P^{(\alpha)}(\xi)/P(\xi) \to 0$ when $\mathbb{R}^n \ni \xi \to \infty$, if $\alpha \neq 0$. The sufficiency was proved by constructing a fundamental solution, that is, a *distribution* E with $P(D)E=\delta$, and verifying that (ii) implies that $E \in C^{\infty}$ in $\mathbb{R}^n \setminus \{0\}$. In a conversation with Marcel Riesz, who had been my mentor but was then retired, he reproached me for relying on the notion of distribution and told me that I ought to prove that E is in fact a locally integrable function. This reaction was quite typical of the reluctance of the mathematical community to accept the notion of distributions as far as I could.

Although it is quite irrelevant for the purposes of [1], I have never quite been able to dismiss the question whether the fundamental solutions of a hypoelliptic operator in \mathbb{R}^n are always locally integrable. In Section 2 we shall prove that the answer is positive when n=2, but in Section 4 we shall give an example proving that the answer is negative for every $n\geq 14$. At last this settles the question except for dimensions $3, \ldots, 13$, and proves that distributions are essential and not only convenient in this context.

If P(D) is an elliptic differential operator then $P^{(\alpha)}(D)E$ is essentially the inverse Fourier transform of $P^{(\alpha)}(\xi)/P(\xi)$, which behaves at infinity as a function which is homogeneous of degree $-|\alpha|$. When $|\alpha|=1$ it follows that $P^{(\alpha)}(D)E$ is singular at the origin as a homogeneous function of degree 1-n, which gives that $P^{(\alpha)}(D) \in L^p_{\text{loc}}$ if and only if p < n/(n-1). For arbitrary $\alpha \neq 0$ we have $P^{(\alpha)}(D)E \in L^p_{\text{loc}}$ if $1/p > 1 - |\alpha|/n$. More generally, if P(D) is semielliptic in the sense of [2, Chapter XI, p. 67] of orders $m_1 \ge m_2 \ge ... \ge m_n$, then it is easy to see that $P^{(\alpha)}(D)E \in L^p_{\text{loc}}$