Sharp estimates of uniform harmonic majorants in the plane

Matts Essén

1. Introduction

If f is an analytic function in the unit disk U, the Dirichlet integral D(f) is defined by

$$D(f) = \left(\int_{U} |f'(z)|^2 \, dx \, dy/\pi\right)^{1/2}, \quad z = x + iy.$$

The following result is due to A. Chang and D. Marshall (cf. [4], [7]). It is inspired by work of A. Beurling and J. Moser (cf. [3], [8]).

Theorem A. There is a constant $C < \infty$ such that if f is analytic in U, f(0)=0 and $D(f) \leq 1$, then

$$\int_0^{2\pi} \exp\left(|f(e^{i\theta})|^2\right) d\theta \leq C.$$

If f is univalent, $\pi D(f)^2$ is the area |f(U)| of the range f(U) of f. What can be said about functions f which are not necessarily univalent if the assumption on f is replaced by $|f(U)| \leq \pi$? Can this condition on the area of f(U) be generalized?

Let D be an open, connected subset in the plane and let $\theta(r) = |\{\theta: re^{i\theta} \in D\}|$. Let F be the class of locally bounded functions $\Psi: (0, \infty) \to (0, \infty)$ which have the following properties:

- i) near the origin, we have $\Psi(r) = cr^2$, c constant,
- ii) for each a>0, we have $\inf_{r\geq a} \Psi(r)>0$,
- iii) there exists R>0 such that Ψ is increasing on (R, ∞) ; in the interval (0, R), Ψ is continuous except possibly at finitely many points.

Let $p(r) = \int_0^r (\Psi(t))^{1/2} dt/t$ and let $\Phi(r) = \exp(p(r)^2)$. The function $\Phi(|z|)$ is subharmonic in $\{|z| > R\}$: this is clear since $r\Phi'(r)$ is increasing for r > R and $\Delta \Phi = r^{-1}(d/dr)(r\Phi'(r))$. Natural examples of functions satisfying these conditions are given in Corollaries 2 and 3.