Duality of space curves and their tangent surfaces in characteristic $p>0$

Masaaki Homma

0. Introduction

Let X be a nondegenerate complete irreducible curve in projective N-space \mathbf{P}^{N} over an algebraically closed field k of characteristic p. Let $\pi: \tilde{X} \rightarrow X$ be the normalization of X and \mathfrak{G} the linear system on \tilde{X} corresponding to the subspace $V_{\mathfrak{5}}=$ Image $\left[H^{0}\left(\mathbf{P}^{N}, \mathcal{O}(1)\right) \rightarrow H^{0}\left(\tilde{X}, \pi^{*} \mathcal{O}_{X}(1)\right)\right]$. Let \tilde{P} be a point on \tilde{X}. Since X is nondegenerate, there are $N+1$ integers $\mu_{0}(\widetilde{P})<\ldots<\mu_{N}(\widetilde{P})$ such that there are $D_{0}, \ldots, D_{N} \in \mathscr{F}$ with $v_{\tilde{P}}\left(D_{i}\right)=\mu_{i}(\tilde{P})(i=0, \ldots, N)$, where $v_{\tilde{P}}\left(D_{i}\right)$ is the multiplicity of D_{i} at \widetilde{P}. When $p=0$, the sequence $\mu_{0}(\widetilde{P}), \ldots, \mu_{N}(\tilde{P})$ coincides with $0,1, \ldots, N$ except for finitely many points. On the contrary, this is not always valid in positive characteristic. However, F. K. Schmidt [12] (when \mathfrak{G} is the canonical linear system) and other authors [8], [9], [10], [13] (for any linear systems) showed that there are $N+1$ integers $b_{0}<\ldots<b_{N}$ such that $\mu_{0}(\tilde{P}), \ldots, \mu_{N}(\widetilde{P})$ coincides with b_{0}, \ldots, b_{N} except for finitely many points.

From now on, we denote by $B(6)$ the set of integers $\left\{b_{0}, \ldots, b_{N}\right\}$. Since we take an interest in the invariant $B(\mathbb{G})$, we always assume that $p>0$.

What geometric phenomena does the invariant $B(5)$ reflect? Roughly speaking, this invariant reflects the duality of osculating developables of X. Let Y be a closed subvariety of \mathbf{P}^{N}. We define the conormal variety $C(Y)$ of Y by the Zariski closure of

$$
\left\{\left(y, H^{*}\right) \in Y \times \check{\mathbf{P}}^{N} \mid y \text { is smooth, } T_{y}(Y) \subset H\right\}
$$

where $\breve{\mathbf{P}}^{N}$ is the dual N-space of \mathbf{P}^{N} and $T_{y}(Y)$ is the (embedded) tangent space at y to Y. The image of the second projection $C(Y) \rightarrow \breve{\mathbf{P}}^{\lambda}$ is denoted Y^{*}, which is called the dual variety of Y. The original variety Y is said to be reflexive if $C(Y) \rightarrow$ Y^{*} is generically smooth (The Monge-Segre-Wallace criterion; see [6, page 169]). In the previous paper [5], we proved the following theorem.

