Duality of space curves and their tangent surfaces in characteristic p>0

Masaaki Homma

0. Introduction

Let X be a nondegenerate complete irreducible curve in projective N-space \mathbf{P}^N over an algebraically closed field k of characteristic p. Let $\pi: \tilde{X} \to X$ be the normalization of X and \mathfrak{G} the linear system on \tilde{X} corresponding to the subspace $V_{\mathfrak{G}}=$ Image $[H^0(\mathbf{P}^N, \mathcal{O}(1)) \to H^0(\tilde{X}, \pi^* \mathcal{O}_X(1))]$. Let \tilde{P} be a point on \tilde{X} . Since X is nondegenerate, there are N+1 integers $\mu_0(\tilde{P}) < \ldots < \mu_N(\tilde{P})$ such that there are $D_0, \ldots, D_N \in \mathfrak{G}$ with $v_{\tilde{P}}(D_i) = \mu_i(\tilde{P})$ ($i=0, \ldots, N$), where $v_{\tilde{P}}(D_i)$ is the multiplicity of D_i at \tilde{P} . When p=0, the sequence $\mu_0(\tilde{P}), \ldots, \mu_N(\tilde{P})$ coincides with $0, 1, \ldots, N$ except for finitely many points. On the contrary, this is not always valid in positive characteristic. However, F. K. Schmidt [12] (when \mathfrak{G} is the canonical linear system) and other authors [8], [9], [10], [13] (for any linear systems) showed that there are N+1 integers $b_0 < \ldots < b_N$ such that $\mu_0(\tilde{P}), \ldots, \mu_N(\tilde{P})$ coincides with b_0, \ldots, b_N except for finitely many points.

From now on, we denote by $B(\mathfrak{G})$ the set of integers $\{b_0, ..., b_N\}$. Since we take an interest in the invariant $B(\mathfrak{G})$, we always assume that p>0.

What geometric phenomena does the invariant $B(\mathfrak{G})$ reflect? Roughly speaking, this invariant reflects the duality of osculating developables of X. Let Y be a closed subvariety of \mathbf{P}^N . We define the conormal variety C(Y) of Y by the Zariski closure of

 $\{(y, H^*) \in Y \times \check{\mathbf{P}}^N | y \text{ is smooth}, T_y(Y) \subset H\},\$

where $\check{\mathbf{P}}^N$ is the dual N-space of \mathbf{P}^N and $T_y(Y)$ is the (embedded) tangent space at y to Y. The image of the second projection $C(Y) \rightarrow \check{\mathbf{P}}^N$ is denoted Y^* , which is called the dual variety of Y. The original variety Y is said to be reflexive if $C(Y) \rightarrow$ Y^* is generically smooth (The Monge—Segre—Wallace criterion; see [6, page 169]). In the previous paper [5], we proved the following theorem.