Lower bounds for pseudo-differential operators

ANDERS MELIN

Institut Mittag-Leffler, Djursholm, Sweden

0. Introduction

Let A be a classical scalar pseudo-differential operator of order m (cf. Kohn – Nirenberg [7]) in an open subset Ω of \mathbb{R}^n . We are interested in estimates of A from below of the form

$$\operatorname{Re}\left(Au, u\right) \geq C|u|_{(s)}^{2}, \quad u \in C_{0}^{\infty}(K)$$

$$(0.1)$$

where K is a compact subset of Ω and $|u|_{(s)}$ is the norm of u in the space $H_{(s)}$ of functions with derivatives of order s in L^2 and $(v, u) = \int v\bar{u} \, dx$. If $s \geq m/2$ the estimate is always true for some C since (Au, u) is continuous in $H_{(m/2)}$. On the other hand, if s < m/2 it is easy to see that (0.1) implies

$$\operatorname{Re} a_m(x,\xi) \ge 0 \tag{0.2}$$

where a_m is the principal symbol of A. In the opposite direction Gårding [3] proved that if (0.2) is valid, then we can for every $\varepsilon > 0$ and every s find a constant $C = C(K, \varepsilon, s)$ such that

$$\operatorname{Re}\left(Au, u\right) + \varepsilon |u|_{(u)}^{2} \geq C |u|_{(\mathfrak{s})}^{2}, \quad u \in C_{\mathfrak{g}}^{\infty}(K)$$

$$(0.3)$$

if $\mu = m/2$. A simple modification of the proof gives the same result for any $\mu > (m-1)/2$. In fact if A satisfies (0.2) and $m/2 \ge \mu > (m-1)/2$ then we can write

$$(A+A^*)/2 + arepsilon(1+|D|^2)^\mu = P^*P + Q$$

where P and Q are pseudo-differential operators in Ω and the order of Q does not exceed m-1.

However the situation becomes more complex when $\mu = (m-1)/2$. It was proved by Hörmander [5] that (0.2) does imply that (0.3) is valid for some $\varepsilon > 0$, but to have (0.3) for every $\varepsilon > 0$ we must clearly in addition to (0.2) place a restriction on the terms in A of order m-1. In this paper we shall study necessary and sufficient conditions on A for (0.3) to be valid for every $\varepsilon > 0$ when