On the spectral synthesis problem for (n-1)-dimensional subsets of \mathbb{R}^n , $n \ge 2$

YNGVE DOMAR

University of Uppsala, Sweden

1. Introduction

Let E be a closed subset of \mathbb{R}^n and K(E) the space of all functions in $\mathfrak{D}(\mathbb{R}^n)$, vanishing in some neighborhood of E. $\mathcal{F}L^1(\mathbb{R}^n)$ is the Banach space of Fourier transforms of functions in $L^1(\mathbb{R}^n)$. $\mathfrak{D}(\mathbb{R}^n) \subset \mathcal{F}L^1(\mathbb{R}^n)$, and we denote by $\overline{K(E)}$ the closure of K(E) in $\mathcal{F}L^1(\mathbb{R}^n)$. The well-known concept of sets of spectral synthesis can be defined as follows: E is a set of spectral synthesis if $\overline{K(E)}$ contains every element in $\mathcal{F}L^1(\mathbb{R}^n)$ that vanishes on E.

C. Herz [3] has proved that $S^1 \subset \mathbb{R}^2$ is a set of spectral synthesis. His proof can unfortunately not be extended to obtain the corresponding result for more general curves. It is however possible to use a different approach to get the desired extension of the result of Herz (cf. [2]). We shall here apply basically the same method to investigate a still more general problem.

As was discovered by L. Schwartz [9], the sphere $S^{n-1} \subset \mathbb{R}^n$ is not of spectral synthesis, if $n \geq 3$. N. Th. Varopoulos [10] has investigated this question in more detail, using methods related to the Herz method for n = 2. Let us denote, for any closed set E and any positive integer m, by $J_m(E)$ the space of functions in $\mathfrak{D}(\mathbb{R}^n)$, $n \geq 2$, vanishing on E together with all their partial derivatives of order $\leq m-1$. Taking closures in $\mathcal{P}L^1(\mathbb{R}^n)$, we have then

$$\overline{J_1(S^{n-1})} \supset \overline{J_2(S^{n-1})} \supset \ldots \supset \overline{J_{\lfloor (n+1)/2 \rfloor}(S^{n-1})} = \overline{K(S^{n-1})}, \qquad (1.1)$$

where all inclusions are strict. It is very easy to understand from this why there is a fundamental difference between the case n = 2 and the case $n \ge 3$ in this context.

The cited paper of Varopoulos does however contain a considerably more precise description of the situation than the one given above. Let us by $B_m(S^{n-1})$, $m \ge 1$, denote the linear space spanned by all measures on S^{n-1} with infinitely differentiable