Communicated 8 May 1957 by EINAR HILLE and OTTO FROSTMAN

Sums and products of commuting spectral operators¹

By S. R. FOGUEL

1. Introduction

Given two spectral operators T_1 and T_2 , on a complex Banach space \mathfrak{X} , it is interesting to know if $T_1 + T_2$ and T_1T_2 are spectral operators too. This problem is treated in [3] and [4]. It is proved there that if the space \mathfrak{X} is weakly complete, and the operators T_1 and T_2 commute and the Boolean algebra of projections generated by the resolutions of the identity of T_1 and T_2 is bounded, then both $T_1 + T_2$ and T_1T_2 are spectral operators. Moreover, if $T_1 = S_1 + N_1$, $T_2 = S_2 + N_2$, where S_1 and S_2 are scalar operators and N_1 , N_2 are generalized nilpotents and S_1 , N_1 , S_2 , N_2 commute, then $S_1 + S_2$ and S_1S_2 are scalar operators and $N_1 + N_2$, $S_1N_2 + S_2N_1 + N_1N_2$ are generalized nilpotents. The main problem in this paper will be to determine the resolutions of the identity of $T_1 + T_2$ and T_1T_2 . By the above remark it is enough to consider the case where T_1 and T_2 are scalar operators. A second problem treated here is to find the poles of the resolvents of $T_1 + T_2$ and T_1T_2 . In this part we do not assume that T_1 and T_2 are spectral operators.

2. Notation

We use here the notation and definitions of [3]. Let \mathfrak{X} be a complex Banach space. A spectral measure is a set function $E(\cdot)$ defined on Borel sets in the complex plane whose values are projections on \mathfrak{X} which satisfy:

- 1. For any two Borel sets σ and δ , $E(\sigma) E(\delta) = E(\sigma \cap \delta)$.
- 2. Let ϕ be the void set and P the complex plane, then

$$E(\phi) = 0$$
 and $E(P) = I$.

- 3. There exists a constant M such that $|E(\sigma)| \leq M$, for every Borel set σ .
- 4. The vector valued set function $E(\cdot)x$ is countably additive for each $x \in \mathcal{X}$.

T is a spectral operator whose resolution of the identity is the spectral measure $E(\cdot)$ if

¹ This paper is a part of a dissertation presented for the degree of Doctor of Philosophy in Yale University. The author wishes to express his thanks to Professor N. Dunford for his guidance and kind encouragement.