Sums and products of commuting spectral operators ${ }^{1}$

By S. R. Foguel

1. Introduction

Given two spectral operators T_{1} and T_{2}, on a complex Banach space \mathcal{X}, it is interesting to know if $T_{1}+T_{2}$ and $T_{1} T_{2}$ are spectral operators too. This problem is treated in [3] and [4]. It is proved there that if the space \mathfrak{X} is weakly complete, and the operators T_{1} and T_{2} commute and the Boolean algebra of projections generated by the resolutions of the identity of T_{1} and T_{2} is bounded, then both $T_{1}+T_{2}$ and $T_{1} T_{2}$ are spectral operators. Moreover, if $T_{1}=S_{1}+N_{1}, T_{2}=S_{2}+N_{2}$, where S_{1} and S_{2} are scalar operators and N_{1}, N_{2} are generalized nilpotents and $S_{1}, N_{1}, S_{2}, N_{2}$ commute, then $S_{1}+S_{2}$ and $S_{1} S_{2}$ are scalar operators and $N_{1}+N_{2}, S_{1} N_{2}+S_{2} N_{1}+N_{1} N_{2}$ are generalized nilpotents. The main problem in this paper will be to determine the resolutions of the identity of $T_{1}+T_{2}$ and $T_{1} T_{2}$. By the above remark it is enough to consider the case where T_{1} and T_{2} are scalar operators. A second problem treated here is to find the poles of the resolvents of $T_{1}+T_{2}$ and $T_{1} T_{2}$. In this part we do not assume that T_{1} and T_{2} are spectral operators.

2. Notation

We use here the notation and definitions of [3]. Let \mathfrak{X} be a complex Banach space. A spectral measure is a set function $E(\cdot)$ defined on Borel sets in the complex plane whose values are projections on \mathfrak{X} which satisfy:

1. For any two Borel sets σ and $\delta, E(\sigma) E(\delta)=E(\sigma \cap \delta)$.
2. Let ϕ be the void set and P the complex plane, then

$$
E(\phi)=0 \quad \text { and } \quad E(P)=I
$$

3. There exists a constant M such that $|E(\sigma)| \leq M$, for every Borel set σ.
4. The vector valued set function $E(\cdot) x$ is countably additive for each $x \in \mathfrak{X}$.
T is a spectral operator whose resolution of the identity is the spectral measure $E(\cdot)$ if
[^0]
[^0]: ${ }^{1}$ This paper is a part of a dissertation presented for the degree of Doctor of Philosophy in Yale University. The author wishes to express his thanks to Professor N. Dunford for his guidance and kind encouragement.

