ÜBER REDUCTIBLE BINOME

VON

K. TH. VAHLEN

Abel beweist in § II der Démonstration de l'impossibilité de la résolution des équations générales qui passent le quatrième degré den Satz:

Wenn n eine Primzahl ist, so kann eine n^{te} Wurzel einer rationalen Funktion beliebig vieler unabhängiger Variablen x', x'', \ldots keiner Gleichung niederen als n^{ten} Grades genügen, deren Coëfficienten rationale Funktionen von x', x'', \ldots sind.

Wir stellen uns allgemeiner die Aufgabe:

Wann kann eine n^{te} Wurzel einer dem natürlichen Rationalitätsbereich (x', x'', \ldots) entstammenden rationalen Grösse einer Gleichung niederen als n^{ten} Grades genügen, deren Coëfficienten demselben Bereich angehören?

Der Rationalitätsbereich sei zunächst der der rationalen Zahlen. Ist c eine rationale Zahl und genügt $z = \sqrt[n]{c}$ einer Gleichung niedrigeren als n^{ten} Grades, welche mit der Gleichung $z^n - c = 0$ den irreductibeln Faktor $a + a_1 z + a_2 z^2 + \ldots + a_{m-1} z^{m-1} + z^m$ gemein hat, so zerfällt das Binom: $z^n - c$ in das Produkt:

$$(a + a_1z + \ldots + z^m)(b + b_1z + \ldots + z^{n-m}).$$

Durch Multiplikation des Binoms mit einem geeigneten Faktor und Einführung einer anderen Variablen z können wir bewirken, dass c eine ganze Zahl wird. Alsdann sind, nach einem bekannten Satze von Gauss, auch die Coëfficienten a, a_1 , ..., b, b_1 , ... ganze Zahlen.

¹ Disquisitiones arithmeticae, art. 42.

Acta mathematica. 19. Imprimé le 21 mars 1895.