Notre Dame Journal of Formal Logic

Maximal Three-Valued Clones with the Gupta-Belnap Fixed-Point Property

José Martínez Fernández

Abstract

This paper gives a propositional reformulation of the fixed-point problem posed by Gupta and Belnap, using the stipulation logic of Visser. After presenting a solution for clones of three-valued operators that include the constant functions, I determine the maximal three-valued clones with constants that have the fixed-point property, giving different characterizations of them.

Article information

Source
Notre Dame J. Formal Logic, Volume 48, Number 4 (2007), 449-472.

Dates
First available in Project Euclid: 29 October 2007

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1193667704

Digital Object Identifier
doi:10.1305/ndjfl/1193667704

Mathematical Reviews number (MathSciNet)
MR2357521

Zentralblatt MATH identifier
1147.03011

Subjects
Primary: 03B50: Many-valued logic

Keywords
three-valued propositional logic clone fixed-point property

Citation

Martínez Fernández, José. Maximal Three-Valued Clones with the Gupta-Belnap Fixed-Point Property. Notre Dame J. Formal Logic 48 (2007), no. 4, 449--472. doi:10.1305/ndjfl/1193667704. https://projecteuclid.org/euclid.ndjfl/1193667704


Export citation

References

  • [1] Blamey, S., "Partial Logic", pp. 1--70 in Handbook of Philosophical Logic III, edited by D. Gabbay and F. Guenthner, Reidel, Dordrecht, 1984.
  • [2] Gupta, A., and N. Belnap, The Revision Theory of Truth, The MIT Press, Cambridge, 1993.
  • [3] Kripke, S., "Outline of a theory of truth", Journal of Philosophy, vol. 72 (1975), pp. 690--716. Reprinted in Recent Essays on Truth and the Liar Paradox, edited by R. Martin, The Clarendon Press, Oxford, 1984, pp. 53--81.
  • [4] Lau, D., "Submaximale Klassen von $P\sb3$", Elektronische Informationsverarbeitung und Kybernetik, vol. 18 (1982), pp. 227--43.
  • [5] Martin, R. L., and P. W. Woodruff, "On Representing `true-in-L' in L", Philosophia, vol. 5 (1975), pp. 213--17. Reprinted in Recent Essays on Truth and the Liar Paradox, edited by R. Martin, The Clarendon Press, Oxford, 1984, pp. 47--51.
  • [6] Martínez Fernández, J., "The Gupta-Belnap fixed-point problem and the theory of clones of functions", pp. 175--84 in Foundations of the Formal Sciences II. Applications of Mathematical Logic in Philosophy and Linguistics (Bonn 2000), edited by B. Löwe, W. Malzkom, and T. Räsch, vol. 17 of Trends in Logic Studia Logica Library, Kluwer Academic Publishers, Dordrecht, 2003.
  • [7] Pöschel, R., and L. A. Kalužnin, Funktionen- und Relationenalgebren. Ein Kapitel der diskreten Mathematik, vol. 15 of Mathematische Monographien, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.
  • [8] Post, E. L., The Two-Valued Iterative Systems of Mathematical Logic, vol. 5 of Annals of Mathematics Studies, Princeton University Press, Princeton, 1941.
  • [9] Roddy, M. S., "Fixed points and products", Order, vol. 11 (1994), pp. 11--14.
  • [10] Rosenberg, I., "Über die funktionale Vollständigkeit in den mehrwertigen Logiken. Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen", Rozpravy Československé Akademie V\v ed \v Rada Matematických a Pří rodní ch V\v ed, vol. 80 (1970), p. 93.
  • [11] Rosenberg, I., "Completeness properties of multiple-valued logic algebras", pp. 150--92 in Computer Science and Multiple-Valued Logic. Theory and Applications, edited by D. C. Rine, North-Holland Publishing Co., Amsterdam, 2d edition, 1984.
  • [12] Rosenberg, I., "Clones of Boolean functions: A survey", S.-Afr. Tydskr. Wysb., vol. 7 (1988), pp. 90--99.
  • [13] Szendrei, Á., Clones in Universal Algebra, vol. 99 of Séminaire de Mathématiques Supérieures, Presses de l'Université de Montréal, Montreal, 1986.
  • [14] Visser, A., "Semantics and the Liar Paradox", pp. 617--706 in Handbook of Philosophical Logic IV, edited by D. Gabbay and F. Guenthner, Reidel, Dordrecht, 1984.