Open Access
September 2012 Determinant Line Bundles on Moduli Spaces of Pure Sheaves on Rational Surfaces and Strange Duality
Yao Yuan
Asian J. Math. 16(3): 451-478 (September 2012).

Abstract

Let $M^H_X (u)$ be the moduli space of semi-stable pure sheaves of class $u$ on a smooth complex projective surface $X$. We specify $u = (0, L, \xi(u) = 0)$, i.e. sheaves in $u$ are of dimension 1. There is a natural morphism $\pi$ from the moduli space $M^H_X (u)$ to the linear system $|L|$. We study a series of determinant line bundles $\lambda_{c_n^r}$ on $M^H_X (u)$ via $\pi$. Denote $g_L$ the arithmetic genus of curves in $|L|$. For any $X$ and $g_L \le 0$, we compute the generating function $Z^r(t) = \sum_n h^0(M^H_X (u), \lambda_{c_n^r})t^n$. For $X$ being $\mathbb{P}^2$ or $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1} (−e))$ with $e = 0, 1$, we compute $Z^1(t)$ for $g_L \gt 0$ and $Z^r(t)$ for all $r$ and $g_L = 1, 2$. Our results provide a numerical check to Strange Duality in these specified situations, together with Göttsche’s computation. And in addition, we get an interesting corollary (Corollary 4.2.13) in the theory of compactified Jacobian of integral curves.

Citation

Download Citation

Yao Yuan. "Determinant Line Bundles on Moduli Spaces of Pure Sheaves on Rational Surfaces and Strange Duality." Asian J. Math. 16 (3) 451 - 478, September 2012.

Information

Published: September 2012
First available in Project Euclid: 23 November 2012

zbMATH: 1262.14013
MathSciNet: MR2989230

Subjects:
Primary: 14D22 , 14J26

Keywords: line bundle , moduli spaces of semistable sheaves , strange duality conjecture

Rights: Copyright © 2012 International Press of Boston

Vol.16 • No. 3 • September 2012
Back to Top