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COMPUTING THE TOPOLOGICAL DEGREES
VIA SEMI-CONCAVE FUNCTIONALS

Dongdong Sun — Guowei Zhang

Abstract. We construct two retracts in Banach spaces and compute the

topological degree for completely continuous operator by means of semi-
concave functional. The results extend and complement the previous con-

clusions.

1. Introduction

Computation for topological degrees plays a very important role in the fixed
point theory, see the references [1]–[9], [11]–[17], [19]–[22] listed in this paper and
others. In [14] there are the following results.

Theorem 1.1. Let Ω be a bounded open set in a real Banach space E, θ ∈ Ω
and A: Ω → E be completely continuous. Suppose that

‖Ax‖ ≤ ‖x‖, Ax 6= x, for all x ∈ ∂Ω,

then the topological degree deg(I −A,Ω, θ) = 1.

Theorem 1.2. Let Ω be a bounded open set in infinite dimensional real
Banach space E, θ 6∈ ∂Ω and A: Ω → E be completely continuous. Suppose that

‖Ax‖ ≥ ‖x‖, Ax 6= x, for all x ∈ ∂Ω,
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then the topological degree deg(I −A,Ω, θ) = 0.

Through these computations for topological degrees the fixed point theorem
of domain expansion and compression was deduced. By replacing the norm with
uniformly continuous convex even functional in [22], the above two theorems
about the computation for topological degrees and the fixed point theorem of
domain expansion and compression were extended. Some other interesting re-
sults of this kind can be found in [1], [5], [6], [8], [11], [13]. What about the
concave functional case? It is the purpose to answer the question in this paper.
In particular, the computations for topological degrees, together with the previ-
ous ones, will make it flexible to use the topological degrees in a wider variety
of situations.

In order to compute the topological degrees, we construct two retracts by
the semi-concave functional. The retracts formed by the convex functional are
showed in [21], [22].

Let E be a real Banach space with the zero element denoted by θ. For the
theory and properties of the topological degree in Banach spaces we refer to [9],
[12], [14], [20].

α:E → R is said to be a semi-concave functional on E, if for all x ∈ E,
λ ∈ [0, 1] and M > 0,

α(λx + (1− λ)Mx) ≥ λα(x) + (1− λ)α(Mx).

α is bounded if its range of bounded set in E is bounded. Throughout this paper
we denote the open ball centered at θ with the radius R > 0 by BR = {x ∈ E |
‖x‖ < R} and [x] stands for x/‖x‖ for x ∈ E \ {θ}. We make the following two
assumptions:

(H1) α(θ) = 0 and α(x) > 0 for x 6= θ;
(H2) α(x) →∞ as ‖x‖ → ∞.

A subset X ⊂ E is called a retract of E if there exists a continuous mapping
r:E → X, a retraction, satisfying r(x) = x, x ∈ X. By a theorem due to
J. Dugundji [10], every nonempty closed convex subset of E is a retract of E.

2. Main results

Lemma 2.1. Let α:E → [0,∞) be a bounded continuous semi-concave func-
tional satisfying (H1) and (H2), then ‖x‖ → 0 as α(x) → 0.

Proof. If the assertion is false, then there exist δ0 and {xn} ⊂ E such that
α(xn) < 1/n and ‖xn‖ ≥ δ0. Since ‖nxn‖ ≥ nδ0 →∞ as n →∞, we have from
(H2) that α(nxn) →∞ as n →∞ and α(nxn) ≥ 1 for sufficiently large n.
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It follows from the semi-concavity and (H1) that

α(xn) = α

(
1
n

nxn

)
≥ 1

n
α(nxn),

thus α(xn) ≥ 1/n for sufficiently large n, which is a contradiction. �

Lemma 2.2. Let E be an infinite dimensional normed linear space. If α:E →
[0,∞) is a uniformly continuous, even, semi-concave functional satisfying (H1)
and (H2), then DR = {x ∈ E | α(x) ≥ R} is a retract of E for all R > 0.

Proof. We divide the proof into the following parts:
(i) Since E is an infinite dimensional normed linear space, there exists an

unbounded linear functional f on E and the kernel of f , E0 & E is a dense
subspace. Hence D

(0)
R = DR ∩ E0 is dense in DR.

It follows from (H2) that D′
R = {x ∈ E | α(x) ≤ R} is bounded and thus

there exists R∗ > 0 such that D′
R ⊂ BR∗ = {x ∈ E | ‖x‖ < R∗}. Since

conv B′
R∗ = conv {x ∈ E | ‖x‖ ≥ R∗} = E and B′

R∗ ⊂ DR, we have conv DR = E

and from Theorem 2 in [18] that I|DR
has a continuous extension

(2.1) F :E → DR ∪ conv D
(0)
R ⊂ DR ∪ (convDR ∩ E0) = DR ∪ E0.

(ii) Since α is uniformly continuous and α(θ) = 0, there exists δ > 0 such
that if ‖y‖ ≤ δ,

(2.2) α(y) ≤ R/3

and for any x ∈ E,

(2.3) |α(x− y)− α(x)| ≤ R/3.

By Lemma 2.1 for 0 < m < δ, there exists 0 < R1 < R/3 such that

(2.4) ‖x‖ < m if α(x) ≤ R1,

and thus

(2.5) α(x) > R1 if ‖x‖ = m.

Moreover, by (2.2)

(2.6) α(x) ≤ R/3 if ‖x‖ = m.

(iii) Again by the uniform continuity of α and α(θ) = 0, there exists 0 <

δ1 < δ such that if ‖y‖ ≤ δ1,

(2.7) α(y) < R1/8

and for any x ∈ E,

(2.8) |α(x− y)− α(x)| ≤ R1/8.
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One can take x0 satisfying

(2.9) 0 < ‖x0‖ ≤ δ1

and, in particular, x0 6∈ F (E). If otherwise, by (2.1)

(2.10) {x ∈ E | 0 < ‖x‖ ≤ δ1} ⊂ F (E) ⊂ DR ∪ E0.

Then for all x ∈ E \ {θ}, let y = δ1x/‖x‖. Thus ‖y‖ = δ1 and y ∈ F (E). It is
easy to see from (2.7) and (2.10) that y 6∈ DR and y ∈ E0. Therefore, f(y) = 0
and f(x) = 0 which implies f ≡ θ, a contradiction.

(iv) Now we show that α(y(x)) 6= 0 for x ∈ {x ∈ E | 0 < α(x− x0) ≤ R1/2},
where

y(x) =
(

1− 2α(x− x0)
R1

)
(x0 + m[x− x0]) +

2α(x− x0)
R1

x.

If it is false, y(x) = θ and

−x0 =
2α(x− x0)

R1
(x− x0) +

(
1− 2α(x− x0)

R1

)
(m[x− x0]).

By the semi-concavity, we have

(2.11) α(x0) = α(−x0) ≥
2α(x− x0)

R1
α(x−x0)+

(
1−2α(x− x0)

R1

)
α(m[x−x0]).

If 0 < α(x− x0) ≤ R1/4, it follows from (2.5) and (2.11) that

(2.12) α(x0) ≥
(

1− 2α(x− x0)
R1

)
α(m[x− x0]) ≥

R1

2
;

If R1/4 < α(x− x0) ≤ R1/2, it follows from (2.11) that

(2.13) α(x0) ≥
2α(x− x0)

R1
α(x− x0) ≥

R1

8
.

Thus α(x0) ≥ R1/8 which contradicts to (2.9) and (2.7).
(v) x 6∈ DR for x ∈ {x ∈ E | 0 < α(x− x0) ≤ R1/2}. In fact, from (2.3) and

(2.9) we have α(x) ≤ R/3 + α(x− x0) < R.
(vi) α(x) 6= 0 if α(x−x0) ≥ R1/2}. In fact, α(x) = 0 implies that x = θ and

α(x0) = α(θ − x0) ≥ R1/2 which contradicts to (2.9) and (2.7).
(vii) We prove α(y(x)) ≤ R for x ∈ {x ∈ E | 0 < α(x− x0) ≤ R1/2}, where

y(x) is as in (iv).
Since α(x) ≤ α(x− x0) + R1/8 < R1 by (2.9) and (2.8), it follows from (2.4)

that ‖x‖ < m < δ. Then by (2.3) we have

(2.14) α(y(x)) ≤ α

((
1− 2α(x− x0)

R1

)
(x0 + m[x− x0])

)
+

R

3
.

Since ∥∥∥∥(
1− 2α(x− x0)

R1

)
x0

∥∥∥∥ ≤ ‖x0‖ ≤ δ1 < δ
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by (2.9) and ∥∥∥∥(
1− 2α(x− x0)

R1

)
m[x− x0]

∥∥∥∥ ≤ m < δ,

it follows from (2.3) and (2.2) that

(2.15) α

((
1− 2α(x− x0)

R1

)
(x0 + m[x− x0])

)
≤ R

3
+

R

3
=

2R

3
.

We have from (2.14) and (2.15) that α(y(x)) ≤ R.
(viii) By (H2) there exists M > 0 such that α(x) > R + 1 if ‖x‖ = M .
(ix) Denote WR1 = {x ∈ E | α(x− x0) ≥ R1/2} \DR and define

G(x) =
α(M [y(x)])−R

α(M [y(x)])− α(y(x))
y(x) +

R− α(y(x))
α(M [y(x)])− α(y(x))

M [y(x)],

for 0 < α(x− x0) ≤ R1
2 , where y(x) is as in (iv);

G(x) =
α(M [x])−R

α(M [x])− α(x)
x +

R− α(x)
α(M [x])− α(x)

M [x],

for x ∈ WR1 ; and
G(x) = x, for x ∈ DR.

It is easy to see from (iv)–(viii) that G:E \ {x0} → E is well defined.
Obviously, if α(x− x0) = R1/2, y(x) = x; and if α(x) = R,

α(M [x])−R

α(M [x])− α(x)
x +

R− α(x)
α(M [x])− α(x)

M [x] = x.

Therefore G is continuous. Now we show G(E \ {x0}) ⊂ DR. In fact, we have
from the semi-concavity of α that if x ∈ WR1 ,

α(G(x)) ≥ α(M [x])−R

α(M [x])− α(x)
α(x) +

R− α(x)
α(M [x])− α(x)

α(M [x]) = R

and if 0 < α(x− x0) ≤ R1/2,

α(G(x)) ≥ α(M [y(x)])−R

α(M [y(x)])− α(y(x))
α(y(x))

+
R− α(y(x))

α(M [y(x)])− α(y(x))
α(M [y(x)]) = R.

Let r = GF :E → DR. Obviously, r is continuous and r(x) = x, for all
x ∈ DR, i.e. DR is a retract of E. �

Theorem 2.1. Let Ω be a bounded open set in infinite dimensional Banach
space E with θ ∈ Ω. Suppose that A: Ω → E is completely continuous and
α:E → [0,∞) is a bounded, even, uniformly continuous semi-concave functional
satisfying (H1) and (H2). If

(2.16) α(Ax) ≥ α(x), Ax 6= x, for all x ∈ ∂Ω,
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then the topological degree deg(I −A,Ω, θ) = 0.

Proof. First we assert infx∈∂Ω α(x) > 0. If otherwise, there exists {xn} ⊂
∂Ω such that α(xn) → 0, then by Lemma 2.1 we have ‖xn‖ → 0 which contradicts
θ ∈ Ω.

Let R = infx∈∂Ω α(x) and DR = {x ∈ E | α(x) ≥ R}. It follows from θ 6∈ DR

that

(2.17) d , inf
x∈DR

‖x‖ > 0.

It follows from the boundedness of α that there exists R1 > 0 such that

(2.18) α(x) < R1 for x ∈ Ω

and by (H2) there exists M1 > 0 such that

(2.19) α(x) > R1 if ‖x‖ > M1.

From (2.17) there exists a constant M > 1 sufficiently large such that Md >

supx∈Ω ‖x‖ and Md > M1. Hence

(2.20) (MDR) ∩ Ω = ∅,

where MDR = {Mx | x ∈ DR}. In fact, if there is x ∈ DR such that Mx ∈ Ω,
thus ‖Mx‖ < Md and ‖x‖ < d, a contradiction to (2.17).

Let H(t, x) = (1 − t)Ax + tMAx, for all (t, x) ∈ [0, 1] × Ω. Obviously,
H: [0, 1] × Ω → E is completely continuous. Suppose that there exist x0 ∈ ∂Ω
and t0 ∈ [0, 1] such that (1− t0)Ax0 + t0MAx0 = x0. Obviously t0 6= 0 and we
have from α(Ax0) ≥ α(x0) ≥ R that Ax0 ∈ DR. Hence ‖Ax0‖ ≥ d by (2.17)
and ‖MAx0‖ ≥ Md > M1. Consequently, it follows from (2.18) and (2.19) that

(2.21) α(MAx0) > α(x0).

From the semi-concavity of α, (2.16) and (2.21) we have

α(Ax0) =α((1− t0)Ax0 + t0MAx0)

≥ (1− t0)α(Ax0) + t0α(MAx0) > (1− t0)α(x0) + t0α(x0) = α(x0),

a contradiction. Then by the homotopy invariance property of topological degree,
we have

(2.22) deg(I −MA, Ω, θ) = deg(I −A,Ω, θ).

Since DR is a retract of E by Lemma 2.2, there exists a retraction r:E → DR

satisfying r(x) = x, x ∈ DR. Let Ã = rA. It is clear that Ã: Ω → DR is
completely continuous. From α(Ax) ≥ α(x) ≥ R for x ∈ ∂Ω, it follows that
A(∂Ω) ⊂ DR. Therefore, Ãx = Ax for x ∈ ∂Ω and hence

(2.23) deg(I −MÃ,Ω, θ) = deg(I −MA, Ω, θ).
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If deg(I−A,Ω, θ) 6= 0, by (2.22) and (2.23) we have that deg(I−MÃ,Ω, θ) 6=
0 which implies that MÃ has a fixed point x∗ in Ω. Thus x∗ = MÃx∗ ∈ MDR

which contradicts (2.20). �

Lemma 2.3. Let α : E → [0,∞) be a bounded continuous semi-concave
functional satisfying (H1) and (H2), then DR = {x ∈ E | α(x) ≤ R} is a retract
of E for all R > 0.

Proof. We divide the proof into the following steps:
(i) It follows from (H2) that DR is bounded and D′

R = {x ∈ E | α(x) ≥ R}
is nonempty. Taking R1 > 0 such that DR ⊂ {x ∈ E | ‖x‖ ≤ R1} , BR1 and
D′

R ∩BR1 6= ∅.
Because BR1 is a closed convex set, there exists a retraction g1:E → BR1 .
(ii) Since α(x) is bounded, there exists a constant M > R such that α(x) ≤ M

for x ∈ D′
R ∩BR1 . From the boundedness of DM+1 = {x ∈ E | α(x) ≤ M + 1},

there is R2 > R1 such that α(x) > M + 1 for x ∈ ∂BR2 . Since θ 6∈ D′
R, define

g2(x) =
α(R2[x])−R

α(R2[x])− α(x)
(x−R2[x]), for all x ∈ D′

R ∩BR1 .

Obviously, g2 is continuous.
(iii) For x ∈ D′

R ∩ BR1 define g3(x) = g2(x) + R2[x] for ‖g2(x)‖ ≤ R2 and
g3(x) = θ for ‖g2(x)‖ > R2.

Now we show that g3:D′
R∩BR1 → E is continuous. In fact, if ‖g2(x)‖ ≤ R2,

i.e.

‖g2(x)‖ =
∥∥∥∥ α(R2[x])−R

α(R2[x])− α(x)
(x−R2[x])

∥∥∥∥(2.24)

=
α(R2[x])−R

α(R2[x])− α(x)
(R2 − ‖x‖) ≤ R2,

then

g3(x) =
(

α(R2[x])−R

α(R2[x])− α(x)
(‖x‖ −R2) + R2

)
[x].

These imply g3(x) = θ when ‖g2(x)‖ = R2 and hence g3 is continuous.
(iv) Define g4(x) = g3(x) for x ∈ D′

R ∩BR1 and g4(x) = x for x ∈ DR.
For x ∈ {x ∈ E | α(x) = R}, g2(x) = x−R2[x] and ‖g2(x)‖ = R2−‖x‖ < R2,

and then g3(x) = x. Therefore, g4:BR1 → E is well defined and continuous.
(v) In the following we prove that α(g3(x)) ≤ R for x ∈ D′

R ∩ BR1 , i.e.
g4:BR1 → DR.

Actually, when ‖g2(x)‖ ≥ R2, α(g3(x)) = 0 ≤ R; when ‖g2(x)‖ < R2, it
follows from α(x) ≥ R that

α(R2[x])−R

α(R2[x])− α(x)
≥ 1
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and hence

g3(x) =
α(R2[x])−R

α(R2[x])− α(x)
(x−R2[x]) + R2[x]

=
(

α(R2[x])−R

α(R2[x])− α(x)

(
‖x‖
R2

− 1
)

+ 1
)

R2[x],

x =
α(R2[x])− α(x)
α(R2[x])−R

g3(x) +
(

1− α(R2[x])− α(x)
α(R2[x])−R

)
R2[x].

From the semi-concavity of α and g3(x) = MR2[x] where

M =
α(R2[x])−R

α(R2[x])− α(x)

(
‖x‖
R2

− 1
)

+ 1 > 0

by (2.24), we have

α(x) ≥ α(R2[x])− α(x)
α(R2[x])−R

α(g3(x)) +
(

1− α(R2[x])− α(x)
α(R2[x])−R

)
α(R2[x]),

α(g3(x)) ≤ α(R2[x])−R

α(R2[x])− α(x)
α(x)−

(
α(R2[x])−R

α(R2[x])− α(x)
− 1

)
α(R2[x]) = R.

(vi) Let g(x) = g4(g1(x)), for all x ∈ E, then g:E → DR is a retraction. �

Theorem 2.2. Let α : E → [0,∞) be a bounded continuous semi-concave
functional satisfying (H1) and (H2). Suppose that Ω is a bounded open set in E

with θ ∈ Ω and A: Ω → E is completely continuous. If

(2.25) α(Ax) ≤ α(x), Ax 6= x, for all x ∈ ∂Ω,

then the topological degree deg(I −A,Ω, θ) = 1.

Proof. The operator A can be extended, yet denoted by A, such that
A:E → E is completely continuous. We divide the proof into the following
steps:

(a) Let R = supx∈Ω α(x), and hence R < ∞ since α is a bounded functional.
Obviously,

(2.26) Ω ⊂ DR = {x ∈ E | α(x) ≤ R}.

By Lemma 2.3, DR is a retract of E. Take a retraction g:E → DR and define
the completely continuous operator A1 = gA:E → DR. It follows from (2.25)
that α(Ax) ≤ α(x) ≤ R, i.e. Ax ∈ DR for x ∈ ∂Ω, therefore, A1x = Ax, for all
x ∈ ∂Ω and

(2.27) deg(I −A,Ω, θ) = deg(I −A1,Ω, θ).

(b) By the boundedness of DR there exists R1 > 0 such that

(2.28) DR ⊂ BR1 = {x ∈ E | ‖x‖ < R1}.



Computing the Topological Degrees 115

For x ∈ {x ∈ E | ‖x‖ = R1}, we have from A1x ∈ DR that ‖A1x‖ < R1 = ‖x‖,
and thus by Theorem 1.1,

(2.29) deg(I −A1, BR1 , θ) = 1.

(c) Let Ω′ = BR1 \ Ω, then Ω′ is a bounded open set and Ω′ 6= ∅ by (2.26)
and (2.28). Moreover, ∂Ω′ = ∂BR1 ∪ ∂Ω.

Let r = infx∈Ω′ ‖x‖, then r > 0 since θ 6∈ Ω′. Take 0 < m < 1 such that
mR1 < r. If x ∈ ∂Ω, then x ∈ Ω′, and hence ‖x‖ ≥ r; if x ∈ ∂BR1 , then
‖x‖ = R1 ≥ r. Therefore, we have from A1(E) ⊂ DR and (2.28) that for
x ∈ ∂Ω′, ‖mA1x‖ < mR1 < r ≤ ‖x‖, i.e. mA1x 6= x, for all x ∈ ∂Ω′. Now we
will show

(2.30) deg(I −mA1,Ω′, θ) = 0.

If otherwise, there exists x1 ∈ Ω′ such that mA1x1 = x1 which leads to a
contradiction, that is, ‖mA1x1‖ < mR1 < r = infx∈Ω′ ‖x‖ ≤ ‖x1‖.

(d) Consider the completely continuous homotopy

H(t, x) = (1− t)A1x + tmA1x, (t, x) ∈ [0, 1]× Ω′

and suppose that there exist t0 ∈ [0, 1] and x0 ∈ ∂Ω′ such that x0 = H(t0, x0).
If x0 ∈ ∂BR1 , we have form A1x0 ∈ DR and (2.28) that ‖A1x0‖ < R1 and

‖mA1x0‖ < R1, then ‖x0‖ ≤ (1−t0)‖A1x0‖+t0‖mA1x0‖ < R1, a contradiction.
If x0 ∈ ∂Ω, it is easy to see that t0 6= 0, 1. Let t1 = (1 − t0 + mt0)−1,

then t1 > 1 and A1x0 = t1x0. By (H2) there is t2 > t1 such that x2 = t2x0

satisfying α(x2) > R. Denote t′ = (t2 − t1)/(t2 − 1), thus 0 < t′ < 1 and
A1x0 = t′x0 + (1− t′)x2. By (2.25) and the semi-concavity of α we have

α(x0) ≥ α(A1x0) ≥ t′α(x0) + (1− t′)α(x2),

so α(x0) ≥ α(x2) > R which contradicts (2.26).
By the homotopy invariance property of the topological degree, we have

(2.31) deg(I −A1,Ω′, θ) = deg(I −mA1,Ω′, θ).

(e) Since BR1 \ (Ω′ ∪ Ω) = ∂Ω, A1 has no fixed points in BR1 \ (Ω′ ∪ Ω).
Therefore,

(2.32) deg(I −A1, BR1 , θ) = deg(I −A1,Ω′, θ) + deg(I −A1,Ω, θ).

Finally, by (2.27), (2.29)–(2.32) we conclude deg(I −A,Ω, θ) = 1. �
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3. An example

In this section a semi-concave functional is given that satisfies the conditions.
Let Banach space E be C1[a, b] with the norm

‖x‖ = max
a≤t≤b

|x(t)|+ max
a≤t≤b

|x′(t)| , ‖x‖C + ‖x′‖C

for x ∈ C1[a, b] and define α:E → [0,∞) as follows:

α(x) = ‖x‖C + ‖x′‖ν
C , 0 < ν < 1, x ∈ E.

(a) α is a semi-concave functional. For all x ∈ E, λ ∈ [0, 1] and M > 0,

α(λx + (1− λ)Mx) = (λ + (1− λ)M)‖x‖C + (λ + (1− λ)M)ν‖x′‖ν
C .

Since f(t) = tν(0 < ν < 1) is concave on [0,∞),

(λ + (1− λ)M)ν = f(λ + (1− λ)M) ≥ λ + (1− λ)Mν ,

and thus

α(λx + (1− λ)Mx) ≥ (λ + (1− λ)M)‖x‖C + (λ + (1− λ)Mν)‖x′‖ν
C

= λ(‖x‖C + ‖x′‖ν
C) + (1− λ)(‖Mx‖C + ‖Mx′‖ν

C) = λα(x) + (1− λ)α(Mx).

(b) α is uniformly continuous and bounded since α(x) ≤ ‖x‖ + ‖x‖ν for
x ∈ E. Obviously, α(−x) = α(x), α(θ) = 0 and α(x) > 0 for x 6= θ.

(c) For any K > 1, if ‖x‖ > 2K1/ν , then either ‖x‖C > K1/ν or ‖x′‖C >

K1/ν . Therefore, α(x) ≥ max{‖x‖C , ‖x′‖ν
C} > K, i.e. α(x) →∞ as ‖x‖ → ∞.

Acknowledgements. The authors express their gratitude to the referees
for their valuable comments and suggestions.

References

[1] D.R. Anderson and R.I. Avery, Fixed point theorem of cone expansion and compres-
sion of functional type, J. Differ. Equations Appl. 8 (2002), 1073–1083.

[2] R.P. Agarwal, R.I. Avery, J. Henderson and D. O’Regan, The five functionals

fixed point theorem generalized to multivalued maps, J. Nonlinear Convex Anal. 4 (2003),
455–462.

[3] R.I. Avery and J. Henderson, Two positive fixed points of nonlinear operators on
ordered Banach spaces, Comm. Appl. Nonlinear Anal. 8 (2001), 27–36.

[4] , An extension of the five functionals fixed point theorem, J. Differ. Equations
Appl. 1 (2000), 275–290.

[5] R.I. Avery, J. Henderson and D. O’Regan, Functional compression-expansion fixed

point theorem, Electron, J. Differential Equations 22 (2008), 1–12.

[6] , A dual of the compression-expansion fixed point theorems, Fixed Point Theory

Appl. (2007), Article ID 90715, 11 pages.

[7] R.P. Agarwal and D. O’Regan, A generalization of the Petryshyn–Leggett–Williams

fixed point theorem with applications to integral inclusions, Appl. Math. Comput. 123
(2001), 263–274.



Computing the Topological Degrees 117

[8] Y. Cui, F. Wang and Y. Zou, Computation for the fixed point index and its applica-

tions, Nonlinear Anal. 71 (2009), 219–226.

[9] K. Deimling, Nonlinear Functional Analysis, Springer–Verlag, Berlin, 1985.

[10] J. Dugundji, An extension of Tietze theorem, Pacific J. Math. 1 (1951), 353–367.

[11] M. Feng, X. Zhang and W. Ge, Positive fixed point of strict set contraction operators

on ordered banach spaces and applications, Abstr. Appl. Anal. (2010), Article ID 439137,
13 pages.

[12] A. Granas and J. Dugundji, Fixed Point Theory, Springer–Verlag, New York, 2003.

[13] Y. Guo and W. Ge, Positive solutions for three-point boundary value problems with

dependence on the first order derivative, J. Math. Anal. Appl. 290 (2004), 638–654.

[14] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic

Press, San Diego, 1988.

[15] F. Li and G. Han, Generalization for Amann’s and Leggett-Williams’ three-solution

theorems and applications, J. Math. Anal. Appl. 298 (2004), 638–654.

[16] R.W. Leggett and L.R. Williams, Multiple positive fixed points of nonlinear opera-

tors on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673–688.

[17] D. O’Regan and R. Precup, Compression-expansion fixed point theorem in two norms
and applications, J. Math. Anal. Appl. 309 (2005), 383–391.

[18] H. Steinlein, On two results of J. Dugundji about extensions of maps and retractions,
Proc. Amer. Math. Soc. 77 (1979), 289–290.

[19] D. Sun, G. Zhang and T. Zhang, Fixed point theorem about cone expansion and
compression of concave functional type, Acta Math. Sinica 53 (2010), 847–852. (Chinese)

[20] E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-Point Theo-
rems, Springer–Verlag, New York, 1986.

[21] G. Zhang and J. Sun, A generalization of cone expansion and compression fixed point

theorem and applications, Nonlinear Anal. 67 (2007), 579–586.

[22] G. Zhang, J. Sun and T. Zhang, Fixed point theorem of domain compression and

expansion of convex functional type, Acta Math. Sinica 51 (2008), 517–522. (Chinese)

Manuscript received October 10, 2010

Dongdong Sun and Guowei Zhang
Department of Mathematics

Northeastern University

Shenyang 110819, P.R. China

E-mail address: gwzhangneum@sina.com

TMNA : Volume 39 – 2012 – No 1


