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STABILITY OF TWO TYPES OF CUBIC
FUNCTIONAL EQUATIONS IN
NON-ARCHIMEDEAN SPACES

Abstract

We prove the generalized stability of the cubic type functional equa-
tion

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x)

and another functional equation

f(ax + y) + f(x + ay) = (a + 1)(a− 1)2[f(x) + f(y)] + a(a + 1)f(x + y),

where a is an integer with a 6= 0,±1 in the framework of non-Archimedean
normed spaces.

1 Introduction and Preliminaries.

A classical question in the theory of functional equations is the following:
“When is it true that a function which approximately satisfies a functional
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equation E must be close to an exact solution of E?” If there exists an af-
firmative answer we say that the equation E is stable [3]. During the last
decades several stability problems for various functional equations have been
investigated by numerous mathematicians. We refer the reader to the survey
articles [3, 5, 11] and monographs [2, 6, 9, 12] and references therein.

The functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) (1.1)

is called a cubic type functional equation, since the function f(x) = cx3 is a
solution of this functional equation. In particular, every solution of a cubic
type functional equation is said to be a cubic type mapping. The stability
problem for a cubic type functional equation was proved by K.W. Jun and
H.M. Kim [7] for mappings f : X → Y , where X is a real normed space and
Y is a Banach space.

The functional equation

f(ax+ y) + f(x+ ay) = (a+ 1)(a− 1)2[f(x) + f(y)] + a(a+ 1)f(x+ y)
(1.2)

is another cubic type functional equation. The stability problem for this func-
tional equation for integer a with a 6= 0,±1 and in the framework of quasi-
Banach spaces was proved by K.W. Jun and H.M. Kim [8].

By a non-Archimedean field we mean a field K equipped with a function
(valuation) | · | from K into [0,∞) such that |r| = 0 if and only if r = 0,
|rs| = |r| |s|, and |r+s| ≤ max{|r|, |s|} for all r, s ∈ K. Clearly |1| = |−1| = 1
and |n| ≤ 1 for all n ∈ N. By the trivial valuation we mean the mapping
| · | taking everything but 0 into 1 and |0| = 0. Let X be a vector space
over a field K with a non-Archimedean non-trivial valuation | · |. A function
‖ ·‖ : X → [0,∞) is called a non-Archimedean norm if it satisfies the following
conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii)

‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X);

(iii) the strong triangle inequality (ultrametric); namely,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact
that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n− 1} (n > m)
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a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in
a non-Archimedean normed space. By a complete non-Archimedean normed
space we mean one in which every Cauchy sequence is convergent.

In 1897, Hensel [4] discovered the p-adic numbers as a number theoretical
analogue of power series in complex analysis. Fix a prime number p. For any
nonzero rational number x, there exists a unique integer nx ∈ Z such that
x = a

b p
nx , where a and b are integers not divisible by p. Then |x|p := p−nx

defines a non-Archimedean norm on Q. The completion of Q with respect
to the metric d(x, y) = |x − y|p is denoted by Qp, which is called the p-adic
number field.

In [1], the authors investigated stability of approximate additive mappings
f : Qp → R. In [10], the stability of Cauchy and quadratic functional equations
were investigated in the context of non-Archimedean normed spaces. In this
paper, by following some ideas from [7, 8, 10], we establish the stability of cubic
type functional equations (1.1) and (1.2) in the setting of non-Archimedean
normed spaces.

Throughout the paper, we assume that G is an abelian (additive) group
and X is a complete non-Archimedean normed space.

2 Stability of the Functional Equation (1.1).

In this section, we prove the stability of functional equation (1.1).

Theorem 2.1. Let ϕ : G×G→ [0,∞) be a function such that

lim
n→∞

ϕ(2nx, 2ny)
|8|n

= 0 (x, y ∈ G) (2.1)

and set

ϕ̃(x) := sup
{
ϕ(2jx, 0)
|8|j

: j ∈ N
}

(x ∈ G). (2.2)

Suppose that f : G→ X is a mapping satisfying

‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖ ≤ ϕ(x, y) (2.3)

for all x, y ∈ G. Then there exists a unique mapping T : G → X satisfying
(1.1) such that

‖f(x)− T (x)‖ ≤ 1
|16|

ϕ̃(x) (x ∈ G). (2.4)
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Proof. Set y = 0 in (2.3) to get

‖f(2x)− 8f(x)‖ ≤ 1
|2|
ϕ(x, 0) (x ∈ G). (2.5)

Let x ∈ G. Replacing x by 2nx in (2.5) we obtain∥∥∥∥f(2n+1x)
8n+1

− f(2nx)
8n

∥∥∥∥ ≤ ϕ(2nx, 0)
|2| . |8|n+1

(x ∈ G). (2.6)

It follows from (2.6) and (2.1) that the sequence
{

f(2nx)
8n

}
is Cauchy. SinceX is

complete, we conclude that
{

f(2nx)
8n

}
is convergent. Set T (x) := lim

n→∞

f(2nx)
8n

.

Using induction one can show that∥∥∥∥f(2nx)
8n

− f(x)
∥∥∥∥ ≤ 1

|16|
max

{
ϕ(2kx, 0)
|8|k

: 0 ≤ k < n

}
(2.7)

for all n ∈ N and all x ∈ G. By taking n to approach infinity in (2.7) and
using the fact that

lim
n→∞

max
{
ϕ(2jx, 0)
|8|j

: 0 ≤ j < n

}
= sup

{
ϕ(2jx, 0)
|8|j

: j ∈ N
}

one obtains

‖f(x)− T (x)‖ ≤ 1
|16|

ϕ̃(x) (x ∈ G). (2.8)

Replacing x and y by 2nx and 2ny, respectively, in (2.3) we get∥∥∥f(2n(2x+ y))
8n

+
f(2n(2x− y))

8n
− 2

f(2n(x+ y))
8n

−2
f(2n(x− y))

8n
− 12

f(2nx)
8n

∥∥∥
≤ ϕ(2nx, 2ny)

|8|n
(x, y ∈ G).

Taking the limit as n→∞ and using (2.1) we obtain

T (2x+ y) + T (2x− y) = 2T (x+ y) + 2T (x− y) + 12T (x) (x, y ∈ G).
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If T ′ is another cubic type mapping satisfying (2.4), then

‖T (x)− T ′(x)‖ = lim
k→∞

|8|−k‖T (2kx)− T ′(2kx)‖

≤ lim
k→∞

|8|−k max
{
‖T (2kx)− f(2kx)‖, ‖f(2kx)− T ′(2kx)‖

}
≤ 1
|16|

lim
k→∞

lim
n→∞

max
{
ϕ(2jx, 0)
|8|j

: k ≤ j < n+ k

}
= 0 (x ∈ G),

since, by (2.1),

lim
k→∞

lim
n→∞

max
{
ϕ(2jx, 0)
|8|j

: k ≤ j < n+ k

}
= lim

k→∞
sup

{
ϕ(2jx, 0)
|8|j

: k ≤ j <∞
}

= 0.

Therefore T = T ′. This completes the proof of the uniqueness of T .

Corollary 2.2. Let |2| < 1, and let ρ : [0,∞)→ [0,∞) be defined by

ρ(t) =
{ |8|n

n+1 t = |2|nr, n ∈ N ∪ {0}, r > 0
t otherwise

Suppose that δ > 0, G is a normed space and f : G→ X fulfills the inequality

‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖
≤ δ (ρ(‖x‖) + ρ(‖y‖)) (x, y ∈ G).

Then there exists a unique mapping T : G→ X satisfying (1.1) such that

‖f(x)− T (x)‖ ≤ 1
|16|

δρ(‖x‖) (x ∈ G). (2.9)

Proof. By defining ϕ : G×G→ [0,∞) by ϕ(x, y) := δ (ρ(‖x‖) + ρ(‖y‖)) we
have

lim
n→∞

ϕ(2nx, 2ny)
|8|n

= lim
n→∞

δ

|8|n
(ρ(‖2nx‖) + ρ(‖2ny‖)) = 0 (x, y ∈ G)

ϕ̃(x) = sup
{
ϕ(2jx, 0)
|8|j

: j ∈ N
}

= ϕ(x, 0).

By applying Theorem 2.1 we conclude the required result.
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Remark 2.3. The hypotheses in Corollary 2.2 gives us an example for which
the crucial assumption

∑∞
n=1

ϕ(2nx,0)
|8|n < ∞ in the main theorem of [7] does

not hold on balls of X of the radius r0 > 0. (An analogous statement is true
for the situation described in Section 3). Hence our results in the setting of
non-Archimedean normed spaces differs from those of [7, 8].

3 Stability of the Functional Equation (1.2).

In this section, we establish the stability of functional equation (1.2).

Theorem 3.1. Let a be an integer with a 6= 0,±1, let ψ : G×G→ [0,∞) be
a function such that

lim
n→∞

ψ(anx, any)
|a|3n

= 0 (x, y ∈ G)

and set

ψ̃(x) = sup
{
ψ(ajx, 0)
|a|3j

: j ∈ N
}

(x ∈ G).

Suppose that f : G→ X is a mapping satisfying

‖f(ax+ y) + f(x+ ay)− (a+ 1)(a− 1)2[f(x) + f(y)]− a(a+ 1)f(x+ y)‖
≤ ψ(x, y) (x, y ∈ G). (3.1)

Then there exists a unique mapping Q : G→ X satisfying (1.2) such that∥∥∥∥f(x) +
(a2 − 1)
a2 + a+ 1

f(0)−Q(x)
∥∥∥∥ ≤ 1

|a|3
ψ̃(x) (x ∈ G). (3.2)

Proof. Set y = 0 in (3.1) and divide by |a|3 to get∥∥∥∥f(ax)
a3

− f(x)− (a+ 1)(a− 1)2

a3
f(0)

∥∥∥∥ ≤ 1
|a|3

ψ(x, 0) (x ∈ G). (3.3)

Hence

‖F (x)− F (ax)
a3
‖ ≤ 1
|a|3

ψ(x, 0) (x ∈ G),
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where F (x) = f(x) + (a2−1)
a2+a+1f(0). Replace x by anx in (3.3) and divide by

|a|3n to obtain∥∥∥∥F (anx)
a3n

− F (an+1x)
a3(n+1)

∥∥∥∥ ≤ 1
|a|3

ψ(anx, 0)
|a|3n

(x ∈ G).

Hence the sequence
{

F (anx)
a3n

}
is Cauchy. We can therefore define a mapping

Q : G→ X by

Q(x) := lim
n→∞

F (anx)
a3n

= lim
n→∞

f(anx)
a3n

(x ∈ G).

Using the same method as in the proof of Theorem 2.1 we conclude that Q(x)
is the unique cubic type mapping satisfying (3.2).

Corollary 3.2. Let a > 1 be a constant natural number and let τ : [0,∞)→
[0,∞) be a function satisfying

τ(|a|t) ≤ τ(|a|)τ(t) (t ≥ 0),

τ(|a|) < |a|3

τ(0) = 0.

Suppose that δ is a nonnegative real number, G is a normed space and f : G→
X fulfills the inequality

‖f(ax+ y)− f(x+ ay)− (a+ 1)(a− 1)2[f(x) + f(y)]− a(a+ 1)f(x+ y)‖
≤ δ (τ(‖x‖) + τ(‖y‖)) (x, y ∈ G).

Then there exists a unique mapping Q : G→ X satisfying (1.2) such that

‖f(x)−Q(x)‖ ≤ 1
|a|3

δτ(‖x‖) (x ∈ G).

Proof. Defining ψ : G × G → [0,∞) by ψ(x, y) := δ
(
τ(‖x‖) + τ(‖y‖)

)
we

have

lim
n→∞

ψ(anx, any)
|a|3n

≤ lim
n→∞

(
τ(|a|)
|a|3

)n

ψ(x, y) = 0 (x, y ∈ G)

ψ̃(x) = lim
n→∞

max
{
ψ(ajx, 0)
|a|3j

: 0 ≤ j < n

}
= ψ(x, 0).

Clearly f(0) = 0. Applying Theorem 3.1 we conclude the required result.
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Remark 3.3. The classical example of the function τ is the mapping τ(t) =
tp, t ∈ [0,∞), where p > 3 and |a| 6= 1.

Remark 3.4. We can formulate similar statements to Theorem 2.1 and The-
orem 3.1 in which we deal with the Hyers type sequences

{
8nf( x

2n )
}

and{
a3nf( x

an )
}

respectively, under suitable conditions on the functions ϕ and ψ.
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