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INVARIANT MEANS AND THE STONE-CECH
COMPACTIF1CATION

CARBOLL WILDE AΉΌ KLAUS WITZ

In the first part of this paper the Arens multiplication
on a space of bounded functions is used to simplify and extend
results by Day and Frey on amenability of subsemigroupa and
ideals of a semigroup. For example it is shown that if S is
a left amenable cancellation semigroup then a subsemigroup
A of S is left amenable if and only if each two right ideals
of A intersect. The remainder and major portion of this
paper is devoted to relations between left invariant means on
m(S) and left ideals of βS (=the Stone-Cech compactiδcation
of S). We find: If μ is a left invariant mean on m{S) and
if *S has left cancellation then *£"%"), the support of μ con-
sidered as a Bore! measure on β(S), is a left ideal of β(S).
An application is that if S is a left amenable semigroup and
/ is a left ideal of βS, then K(I\ the w*-closed convex hull
of I, contains an extreme left invariant mean; if in addition
S has cancellation then K(I) contains a left invariant mean
which is the w*-ϋmit of a net of unweighted finite averages,

2* Preliminaries* For standard notation and terminology we
follow Day [2] in functional analysis and Kelley [6] in topology.
Specific terms and notation in amenable semigroups follow Day [1].

Let S be any set, and let m(S) be the Banach space of all bounded,
real-valued functions on S, equipped with the supremum norm. A
mean on m(S) is a positive linear functional on m(S) which has norm
one; every mean μ satisfies μ(e) = 1, where e is the function which
is identically one on S. We denote by M( = M(S)) the set of ail means
on m(S). Then M is a nonempty, convex subset of m(S)*; it is also
compact in the w*-topology, the only topology we consider in m{S)*.

For each s e S, q(s) denotes the evaluation functional at s:

qs(x) = χ(s) (x G m(S)) .

We have qs e M(s e S) and βS, the Stone-Cech compactification of the
discrete space S, coincides with the (w*-) closure of qS in m(S)*, so
that /3SSM. The symbols k(T),K(T) will always indicate the
convex hull, resp. the (w*-) closed convex hull, of any subset T of
m(S)*; in particular, we write kA for k(qA) and KA for K{qA) when
4 g S . Then we have M = KS = K(βS).

Now suppose S is a semigroup. Then each s e S determines two
mappings, ls and r s, on m(S) defined by lsχ{t) = x(st) and rΛx{t) =
£(ίs)(teS,xem(S)). A mean μ on m(S) is left [right] invariant if
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and only if

μ(lsx) = μ(x) [μ{rsx) = μ(x)\

for all seS and xem(S); μ is invariant if and only if it is both
left and right invariant. A semigroup S is (left) [right] amenable
if and only if there exists a (left) [right] invariant mean on m(S).
We denote by L( = L(S)) the set of all left invariant means on m(S);
then L is a (possibly empty) closed convex subset of M.

Following Day [l], we define the AT ens product, μ®v, of two
functionals μ,vem(S)* by (μ ® v)x ~ μ(y), where yem(S) is defined
by y(s) = v(l8x)(seS). Arens' multiplication makes m(S)* into a
semigroup and has the following properties: For fixed v e M and
θ e k(S) the mappings μ—+μ( )v and μ —> θ © μ are linear and (w* — w*)
continuous on ikf (if θ e M the mapping μ—^θ®μ may not be con-
tinuous), and the mapping q is an isomorphism of the semigroup S
onto the semigroup qS [l]. It follows easily that βS is a semigroup
under ©, A~~ is a subsemigroup of βS if A is a subsemigroup of S,
and the closure of a (left) [right] ideal of S is a (left) [right] ideal
of βS. Moreover M is a semigroup under ®, KA is a subsemigroup of
ikf if A is a subsemigroup of S, and if I is a (left) [right] ideal of S,
then if/ is a (left) [right] ideal of M. Finally if I is a left ideal of
βS then if/ is a left ideal of M. For if / is a left ideal of /9S, then
βS® I s J and in particular, qS ® IS L Hence kS ® kl S- kl,
therefore

fcS © ί:i S iLΓ ,

and therefore ikf © J5Γ/S J5Γ/ by (w* — w*) continuity of Arens' mul-
tiplication in the second, resp. first, variable.

The significance of the Arens multiplication for left invari-
ance of means is this: For any semigroup S, μe L if and only if
y © μ — μ for all v e M [1, p. 530], (This is clearly equivalent to the
condition qs © μ = μ (s e S)). In general, define the kernel of the
semigroup M, Keτ(M), to be the smallest closed two-sided ideal of M.
We always have Ker (ikf) Φ φ (by compactness of ikf), and L Φ φ if
and only if Ker (M) is the smallest closed right ideal of ikf, in which
case L = Ker (ikf) [10].

The ideas of the preceding two paragraphs are used repeatedly
throughout this paper.

3* A theorem of Day and some applications* We first extend
the theorem of Day mentioned in the introduction.

THEOREM 3.1. // S is a semigroup and A is a subsemigroup of
S, let LΛ = {μ e M(S): qs © μ = μ for all s e A}, and let NΛ = LΛD KA.
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Then the following conditions are equivalent:
( i ) A is left amenable.
(ii) There exists μe LA such that μ(XA) > 0 (XΛ is the char-

acteristic function of A).
(iii) NΛ Φ φ.

Proof, (ii) => (i). This is Day's Theorem with the observation
that his proof requires invariance of μ over A only.

(iii)=*(ii). Since μeKA, we have μ(XA) — 1.
(i) => (iii). Let v be a left invariant mean on m(A) and define

μ = Π * ^ where Π *s ^he restriction map of m(S) onto m(A) defined
by Y[x(t) = x(t) for t e A, x e m(S) [see 1, p. 512], It is easily checked
that μ is a mean on m(S). Now Π ^ is the function identically one
on Ay so μ(XΛ) — V(TLXA) = 1. Therefore μ e KA. For we can write

μ = λ ^ + (1 - X)μ2 ,

where 0 ̂  λ ^ 1, μ,e KA, and μ2 e KA' {Af = S\A). Evaluating both
sides at XΛ yields λ = 1, whence μ — μ1eKA. It remains to show
that μ e LΛ. If s e A and a; 6 m(S) then

(?s © μ)x = qs(y) ,

where y(t) = μ(ltx) and therefore

(qs 0 )̂a? = i/(s) = μ(lax) =

(here ls is the left shift by s in
Theorem 3.1 and the ideas involved in its proof combine with

facts mentioned at the end of § 2 to give quite short proofs for some
known results and to extend others. For example, the following coroll-
ary is due to E. Granirer (unpublished); his proof is independent of
ours.

COROLLARY 3.2. Suppose G is any group and A is a subsemi-
group of G which generates G. Then A is left amenable if and only
if KA n L(G) Φ ψ.

Proof. Only the forward implication is not apparent by Day's
Theorem itself. By Theorem 3.1, there exists μeKA such that

VQ ® μ = μ

for all g e A. Thus if g e A, then

qg~ι Θ μ = QQ"1 Θ (Q9 Θ μ) = (QQ Θ qg~ι) Θμ=:QuΘμ = μ,

where u is the group identity. Since each g e G can be written as a



580 CARROLL WILDE AND KLAUS WITZ

product of elements which are in A or A~\ we are finished.

COROLLARY 3.3, (i) // a semigroup S contains a left amenable
left ideal I, then S is left amenable.

(ii) Conversely, if S is a left amenable semigroup, then each
left or right ideal 1 of S is left amenable.

Proof. Part (i) appears in Frey [4]; Frey also proves (ii) for
right ideals but states that he was unable to obtain the result for
left ideals. In our setting everything becomes quite simple. For (i),
we note that since / is left amenable, there exists μ e KI such that
qt 0 μ = μ for all te I by Theorem 3.1. If se S, choose any t e I;
then qs 0 μ = qs 0 (qt 0 μ) = qst 0 μ — μ; hence μ e L(S). For (ii),
suppose S is left amenable and let I be a left [right] ideal of S. Then
KI is a left [right] ideal of M(S) and must intersect the two-sided
ideal L(S) — Ker(M). That is, there exists μ e L such that μ{XΣ) = 1,
and the result follows from Day's Theorem.

We now use Theorem 3.1 to sharpen another result of Frey,
namely: In a left amenable, two-sided cancellation semigroup, every
subsemigroup is left amenable if and only if every subsemigroup
satisfies the condition that its family of all right ideals has the finite
intersection property. We show (Theorem 3.5) that this last condi-
tion characterizes any left amenable subsemigroup.

LEMMA 3.4. Let G be a group, and let A be a subsemigroup of
G such that A generates G and the family of all right ideals of A
has the finite intersection property. If geG, then gA f] A is a
right ideal of A.

Proof. We need only prove that gA Π A Φ ψ for an arbitrary
geG. This is clear if g e A or g~x e A. If g e G, we can write

9 = 9i92 9n,

where g^e A or A~ι for 1 ̂  i ^ n. Letting h = g^g3 gn, we have
gAf] A = gJiA Π A, and by induction, hA Π A Φ φ. If gx e A, then

Π A) Φ φ, and

g,{hA Π A) - (gi(hA n i ) ) Π i g gJiA Π A = gA n A ,

so gA Π A Φ φ in this case. If gx e A~~\ then

(hAnA)ΠgT1AΦφ

because it is the intersection of two right ideals of A. Hence

hA n gr'A Φ φ
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and so gA Π A = g1(hA Π g^Λ) Φ ψ.

THEOREM 3.5. Let S be a left amenable, two-sided cancellation
semigroup. Then the following conditions on a subsemigroup A of
S are equivalent:

(i) A is left amenable.
(ii) The family of all right ideals of A has the finite intersec-

tion property.

Proof. Frey shows that condition (ii) is necessary for left amen-
ability of any semigroup; we give a shorter proof. Let T be any
left amenable semigroup and assume I and / are two disjoint right
ideals of T. Then KIf)KJ = φ in M(T); for if μeKInKJ, then
μiXί) — μ(Xj) — 1, which would imply μ(e) 1Ξ> 2. Hence M(T) contains
two disjoint closed right ideals, contradicting that L(T) = Ker(M(T))
is the smallest closed right ideal of M(T). Taking T = A, we have
(i) => (ii). To prove (ii) => (i), we use the following theorem of Ore
[cf. 7, p. 392]: A two-sided cancellation semigroup T is embeddable in
a group if, given s,te T, there exist β', V e T such that ss' = tt'.
This tells us that S is embeddable in a group G, and we can assume
that S generates G. By Corollary 3.2, G is amenable. By Lemma
3.4, {gA Π A: ge G} has the finite intersection property; hence so does
{(gA n A)~: geG} in βG. Set E = Π {(<?A n A)~: g e G}. By com-
pactness, E Φ φ, and clearly E ξΞ, A~ and £7 = Π {(#A)~: ^ e G}. We
shall show that E is a left ideal of βG. Let feeG; since

q(hA)~ =

we have qhQE^ f] {(hgA)~: g e G}. But

Π {(hgA)~: geG}= Π

because G is a group and so the intersections are over the same class
of sets. Hence qhQE^E. It follows that qG 0 E Q E and

Thus A~ contains a left ideal of βG (namely E), and so K(A~) =
contains a left ideal of M(G) (namely KE). The proof of Corollary
3.3, part (ii), shows that A is left amenable.

We note the following immediate corollary to the proof of Theorem
3.5.

COROLLARY 3.6. A left amenable, two-sided cancellation semi-
group is embeddable in an amenable group.
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4* Supports* We identify m(S) with C(βS) as usual and regard
M as a subset of C(βS)*. Thus for each μeM there is a unique
regular Borel measure μ on βS which satisfies

μ(x) = I xdμ xem(S)
JβS

(where x is the unique continuous extension of x from S to βS), and
μ(βS) = 1. Let δ(μ) be the support of μ, i.e., the smallest closed
subset F of βS such that μ(F) = 1.

LEMMA 4.1. If μeM then

δ{μ) = n { I : A s S αwd μ e

Proof. Denote the intersection on the right by Fo. It is well
known1 that if F is a closed subset of βS and if μe M then

jδ(F) = 1 (i.e., δ(μ)czF) if and only if μeKF.

Hence δ(μ)aF0, and since S is dense in βS, FQczδ(μ).
Recall that a subset A of a compact convex subset IT of a locally

convex space is extremal in iΓ if and only if A is compact, convex, and
every open segment in K which contains a point of A lies wholly in
A [2, p. 78].

LEMMA 4.2, (i) If D is a closed subset of βS, then D = ^f(KD).
If E is an extremal subset of M, then E = K(^f(E)).

(ii) The mapping D —> KD is a one-to-one correspondence between
the class of all closed subsets D of βS and the class of all extremal
subsets of M.

Proof, (i) By Lemma 4.1, £f(KD) g D, and a separation
argument shows that the inclusion is not proper. Let E be an
extremal subset of M. Then clearly E gΞ K(S^E) and by the Krein-
MiΓman Theorem, E is the closed convex hull of its set of extreme
points. Since E is an extremal set in M, each extreme point of E
is an extreme point of M and hence in βS. Hence E = KD, where
D is a subset of βS, and D can be assumed closed. Thus

K{SΈ) ^KD = E .

(ii) The mapping D —> KD on the closed subsets D of βS is one-
to-one, again by a separation argument. To see that KD is an ex-
tremal subset of My let μ e KD and suppose μ — \μx + (1 — X)μ2 with

1 See, e.g., Bourbaki's Integration, Chapter III, p. 87.
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0 < λ < 1 and μu μ2 e M. Fix i g S such that KA 3 KD; then
μeKA, so that μ(XΔ) = 1. Since μu μ2eM, we have

μi(XΛ), μ2(XA) £ 1 ,

and if either is less than one, we would have

1 = μ{XA) = \μi(XΛ) + (1 - \WXΛ) < λ 1 + (1 - λ) 1 = 1 .

Hence μi(XΛ) — μ2(XΛ) — 1, so that μu μ2eKA. Since 4 g S was
arbitrary subject only to the restriction KA a KD, we have

μly μ2e Π {KA: A S S and KA 2
- if(Π {A-: A s S and

We now assume that S is a semigroup and apply the preceding
results. Namely, we show that for certain semigroups the supporting
sets of invariant means are left ideals of βS. The general case is
still open (see the comment after 5.1.)

THEOREM 4.3. Let S be a left amenable9 two-sided cancellation
semigroup. If Lo £ L, Lo Φ <p, then J^(L0) is a closed left ideal
of βS.

Proof. Suppose first that S — G, a group. Let ω e S^{L0) and let
g e G. Then qgQωeqgQ (A~) = (gA)~ for all 4 g G such that
KASLO. Thus qgQωe Π{(gA)~:A^G and KA^LQ}. Now LQQKA
if and only if Lo g K(hA) for each h e G; for if μeLQ^ KA, then
μ = qhQ μeqhQ KA = UΓ(/LA), and if μ e XK(hA), then μ = qhQv
with v G iL4, so that μ = gfe"1 Q μ = qh~x 0 (gΛ, 0 y) = j ; G ίΓA. Hence
{ 4 : 4 g G and iL4 3 Lo} = {gA: A Q G and KA 3 Lo} so that

qg&ωe

Then g G 0 ω g ^ ( L o ) , /5G 0 ω S ^ ( I Ό ) , and /3G 0 ^ ( L o ) e
To remove the group restriction, we embed S in a group G such that
S generates G. The mapping Π* identifies βS with S~ in /SG, and
by Corollary 2.2, Π*(^o) is a subset of the left invariant means on
m{G). Applying the result for groups, we get that (Π*£o) is a closed
left ideal of S~. Taking the inverse under Π* yields the desired
result.

In particular, if μ is a left invariant mean on m(S), then S^(μ)
is a left ideal of βS (provided cancellation is present).

THEOREM 4.4. If S is a left amenable semigroup and I is a
left ideal of βS, then KI contains an extreme point of L.
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Proof. Since I is a left ideal of βS, KI is a left ideal of M, so
KI Π L Φ φ, and since KI is an extremal subset of M and L is com-
pact and convex, we have that KI Π L is an extremal subset of L.
Hence KI Π L contains an extreme point of L [2, p. 78].

In βS minimal left ideals exist, are closed, are pairwise disjoint,
and are usually abundant. Then Theorem 4.4 and the facts noted
in the proof of 4.1 imply that there are at least as many extreme
points of L as there are minimal left ideals of βS. In the special
case where S = N, the additive semigroup of positive integers, Raimi
[9] recently showed that there are at least two extreme points of L
in KI for each minimal left ideal I of βN. We remark that if I is a
minimal left ideal of βS, then I = S^(L0) for each subset Lo of KI Π L.

We close this section with a corollary to Theorem 4.3.

COROLLARY 4.5. If S is a left amenable, two-sided cancellation
semigroup and A is a subsemigroup of S which is not left amenable,
then (AT contains a (minimal) left ideal of βS.

Proof. By Day's Theorem, μ(XA) = 0 for all μ e L; thus L g KA',
and so &>(L) S (AT.

5* On a theorem of Mitchell* In his thesis [8, p. 39], T.
Mitchell proved the following theorem:
(*) Let S be a left amenable semigroup, and let A g S. Then

there exists μeL such that μ(XΛ) = 1 (i.e., μeKA) if and
only if given any finite subset F of S, there exists s e S such
that Fs S A.

We give an easy and different proof of a related fact.

LEMMA 5.1. If S is any semigroup, then the following condi-
tions on AξΞ= S are equivalent:

(i) A~ contains a (closed) left ideal of βS.
(ii) For each finite subset F of S there exists s e S such that

Fs S A.

Proof. (i)=>(ii). Let / s i " be a left ideal of βS. Let ωel
and take a net {sn;neN} such that qsn—+ω. If F is a finite
subset of S, F = {tu t2, •••, tk}, then q(t{sn) = qUQ qsn—> qUQ ωe I

for 1 ̂  i ^ k and since A~ is an open set containing J, there exists
noe N such that n ^ n0 implies qt{ 0 qsn e A" for 1 ίg i rg k; in
particular,

FsnQ s A .

(ii) ==> (i). Let J^ be the family of all finite subsets of 5 directed
upward by inclusion. Define a net over j ^ ~ as follows: For each



INVARIANT MEANS AND THE STONE-CECH COMPACTIFICATION 585

choose an sF such that FsF Q A. By compactness, there is
a subnet {sn;neN} of the net {^ F e j Γ } and ωeβS such that
qsn —> ω. Fix s e S , and put Fo = {s}. Then there exists noe N such
that n ^ n0 implies that sn — sF with F ^ Fo. Since

ss% G ί X £ Fsn s A

for all n ^ n0 and gs 0 gβw —> gs 0 co, we have qs 0 ω e A~. Since
s e S was arbitrary, we have qS Qωa A~, and so βS Q ω g= A~.
Since /SS 0 co is a closed left ideal of /3S, the lemma is proved.

Let S be a left amenable semigroup, and let 4 g S . It follows
as in Corollary 3.3 that if A~ contains a left ideal of βS, then

KA Π L Φ φ ,

and in view of Lemma 5.1, this is one half of (*). Conversely, if
4 g S and KA f] L Φ φ, then by (*) and Lemma 5.1, A~ must contain
a left ideal of βS. Observe that we get the same conclusion inde-
pendent of (*) from Theorem 4.3 in case two-sided cancellation holds
in S, and this suggests that it may be possible to extend Theorem
4.3 to more general semigroups.

For our next and final result we need Frey's generalization [4]
of Folner's Theorem [3]: A two-sided cancellation semigroup S is left
amenable if and only if for each ε e (0,1) and each finite subset F of
S there exists a finite subset E of S such that (| sE Π E\/\ E\) ^ 1 - ε
for each seF (here \D\ denotes the cardinality of D^S).

DEFINITION. Let S be a semigroup. An arithmetic average on
S is a mean on m(S) of the form μE = lj\E\ ΣseεQS, where E is a
finite subset of S.

THEOREM 5.2. Let S be a left amenable, two-sided cancellation
semigroup and Lo ϋ L. Then there exists μ e K(S^L0) f] L such that
μ is the limit of a net of arithmetic averages on S.

Proof. We remark that our proof assumes that S is infinite;
the theorem is trivial otherwise. We consider three directed sets,
^~, J ^ , ,$/\ J^ is the system of finite subsets of S directed upward by
inclusion; Jf is the real interval (0,1) directed upward by <£; j ^ is (he
system of all subsets A of S such that KA 2 Lo, directed downward by
inclusion. Let (J^, Jf, s>/) be the product directed system and fix
n = (F, ε, A) e (J/r, J?, .Ssf). By the Frey-Folner theorem, there ex-
ists a finite subset EF>ε of S such that (| sEF,ε Π EFtC |/| EF,ε |) ^ 1 - ε
for each seF. By Lemma 5.1, there exists sF,ε,A = sneS such that
EFtεsn S A. Let Dn = EF,εsn, and let μn be the arithmetic mean over
Dn. Since neN = ( J Γ > V / , J / ) was arbitrary, {μn;neN} is a net
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over N. By cancellation,

(I sDn Π Dn I/I Dn I) = (I s(EF,εsn) Π (EF>εsn) |/| EF,εsn |)

= (\sEF,εnEF,ε\/\EF,ε\)^l~-e

for each seF. If £ e S and xem(S), then

I («ί Θ /O(a) - μ«(x) I - II D% h 1 Σ.e* w (α(te) - α(s)) |

^ I Z>Λ I-1 - e - 2 || a? || - I ̂ >» I — 0

hence {/*r6} converges to left invariance [l, p. 520]. Let μ be a cluster
point of {μn; nεN}, so that / i e i [l, p. 520J. Fix i o e j / . If
A ^ 4, and Fe _̂ "~, S G , / are arbitrary, then Dn = jE^,esn S A s Ao,
so that μn e KAQ. This implies that μ e KAQ; and since Ao was arbitr-
ary in s/, we have μ e K(S^L0).

In particular, if I is a minimal left ideal of βS, then KI contains
at least one left invariant mean μL which is the (w*~) limit of a net
of arithmetic averages. Thus there are at least as many invariant
means of this type as there are distinct minimal left ideals in βS
(see the discussion after Theorem 4.6).
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