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INVARIANT MEANS AND THE STONE-CECH
COMPACTIFICATION

CARROLL WILDE AND Kravs Wirz

In the first part of this paper the Arens multiplication
on a space of bounded functions is used to simplify and extend
results by Day and Frey on amenability of subsemigroups and
ideals of a semigroup. For example it is shown that if S is
a left amenable cancellation semigroup then a subsemigroup
A of S is left amenable if and only if each two right ideals
of A intersect, The remainder and major portion of this
paper is devoted to relations between left invariant means on
m(S) and left ideals of 8S (=the Stone-Cech compactification
of S). We find: If u is a left invariant mean on m(S) and
if S has left cancellation then .S (u), the support of . con-
sidered as a Borel measure on 5(S), is a left ideal of A(S).
An application is that if S is a left amenable semigroup and
I is a left ideal of S, then K(I), the w*-closed convex hull
of I, contains an exireme left invariant mean; if in addition
S has cancellation then K(I) contains a left invariant mean
which is the w*-limit of a net of unweighted finite averages.

2. Preliminaries. For standard notation and terminology we
follow Day [2] in functional analysis and Kelley [6] in topology.
Specific terms and notation in amenable semigroups follow Day [1].

Let S be any set, and let m(S) be the Banach space of all bounded,
real-valued functions on S, equipped with the supremum norm. A
mean on m(S) is a positive linear functional on m(S) which has norm
one; every mean g satisfies p(e) = 1, where ¢ is the function which
is identically one on S. We denote by M(=M(S)) the set of all means
on m(S). Then M is a nonempty, convex subset of m(S)*; it is also
compact in the w*-topology, the only topology we consider in m(S)*.

For each se S, q(s) denotes the evaluation functional at s:

gs(x) = wx(s) (x € m(S)) .

We have gse M(se S) and 8BS, the Stone-Céch compactification of the
discrete space S, coincides with the (w*-) closure of ¢S in m(S)*, so
that S < M. The symbols k(T), K(T) will always indicate the
convex hull, resp. the (w*-) closed convex hull, of any subset 7 of
m(S)*; in particular, we write kA for k(qA) and KA for K(gA) when
A< S. Then we have M = KS = K(BS).

Now suppose S is a semigroup. Then each se S determines two
mappings, I, and r,, on m(S) defined by Ilx(t) = x(st) and r,ux(t) =
a(ts) (te S,wem(S)). A mean p on m(S) is left [right} imvariont if
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and only if
plx) = p() [pe(rx) = pe(x)]

for all seS and xem(S); ¢ is tnvariant if and only if it is both
left and right invariant. A semigroup S is (left) [right] amenable
if and only if there exists a (left) [right] invariant mean on m(S).
We denote by L(=L(S)) the set of all left invariant means on m(S);
then L is a (possibly empty) closed convex subset of M.

Following Day [1], we define the Arens product, p(® v, of two
functionals p, v € m(S)* by (¢ ® v)z = p(y), where y e m(S) is defined
by y(s) = v(l,x)(seS). Arens’ multiplication makes m(S)* into a
semigroup and has the following properties: For fixed ve M and
6 € k(S) the mappings /¢t — ¢ (© vand pt — 0 (o p are linear and (w* — w*)
continuous on M (if 6 M the mapping ¢ — 6 (&) ¢ may not be con-
tinuous), and the mapping ¢ is an isomorphism of the semigroup S
onto the semigroup ¢S [1]. It follows easily that 8S is a semigroup
under (), A~ is a subsemigroup of GBS if A is a subsemigroup of S,
and the closure of a (left) [right] ideal of S is a (left) [right] ideal
of B8S. Moreover M is a semigroup under (¢, KA is a subsemigroup of
M if A is a subsemigroup of S, and if I is a (left) [right] ideal of S,
then KI is a (left) [right] ideal of M. Finally if I is a left ideal of
BS then KI is a left ideal of M. For if I is a left ideal of AS, then
BS®IZ I and in particular, ¢S® IS I. Hence kS ® kIS kI,
therefore

ES(® KIS KI,

and therefore M () KI < KI by (w* — w*) continuity of Arens’ mul-
tiplication in the second, resp. first, variable.

The significance of the Arens multiplication for left invari-
ance of means is this: For any semigroup S, peL if and only if
v(@© p = p for all ve M |1, p.530]. (This is clearly equivalent to the
condition ¢s ® ¢ = 1 (s€S)). In general, define the kernel of the
semigroup M, Ker(M), to be the smallest closed two-sided ideal of M.
We always have Ker (M) = ¢ (by compactness of M), and L = ¢ if
and only if Ker (M) is the smallest closed right ideal of 3, in which
case L = Ker (M) [10].

The ideas of the preceding two paragraphs are used repeatedly
throughout this paper.

3. A theorem of Day and some applications. We first extend
the theorem of Day mentioned in the introduction.

THEOREM 3.1. If S is a semigroup and A is a subsemigroup of
S, let L, = {re M(S): qs & pt=p for all sc A}, and let N,= L, N KA.
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Then the following conditions are equivalent:

(i) 4 s left amenable.

(ii) There exists pe L, such that p(X,) >0 (X, is the char-
acteristic function of A).

(ili) N, # o.

Proof. (il) = (i). This is Day’s Theorem with the observation
that his proof requires invariance of p over A only.

(iii) = (ii). Since pe KA, we have p(X,) = 1.

(i) = (iii). Let v be a left invariant mean on m(A) and define
¢ = I1*v, where [] is the restriction map of m(S) onto m(A) defined
by TTx(t) = x(t) for te A, x e m(S) [see 1, p. 512]. It is easily checked
that p is a mean on m(S). Now JIX, is the function identically one
on A4, so u(X,) =v(JIX,) =1. Therefore ;rc KA. For we can write

p=nzy+ (1= N,

where 0 =\ =<1, pr,e KA, and p,c KA’ (A’ = S\A4). Evaluating both
sides at X, yields A =1, whence p = p,e KA, It remains to show
that pe L,. If se A and v < m(S) then

(gs ® w2 = ¢s(y) ,
where y(t) = p(l,x) and therefore
(as © pw = y(s) = plw) = v(11() = v(\ (%) = v(Il®) = p(@)

(here [, is the left shift by s in m(A)).

Theorem 3.1 and the ideas involved in its proof combine with
facts mentioned at the end of §2 to give quite short proofs for some
known results and to extend others. For example, the following coroll-
ary is due to E. Granirer (unpublished); his proof is independent of

ours.

COROLLARY 3.2. Suppose G is any group and A is a subsemi-
group of G which generates G. Then A is left amenable if and only
if KA N L(G) + .

Proof. Ounly the forward implication is not apparent by Day’s
Theorem itself. By Theorem 3.1, there exists ;e KA such that

Qg@Op=p
for all ge A. Thus if ge A, then
QO Op=q"0@QWOM =0@OeHYOr=qudOp=p,

where u is the group identity. Since each ge G can be written as a
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product of elements which are in A or A~', we are finished.

COROLLARY 3.3. (i) If a semigroup S contains a left amenable
left ideal I, then S is left amenable.

(ii) Conversely, if S 1s a left amenable semigroup, then each
left or right ideal I of S is left amenable.

Proof. Part (i) appears in Frey [4]; Frey also proves (ii) for
right ideals but states that he was unable to obtain the result for
left ideals. In our setting everything becomes quite simple. For (i),
we note that since I is left amenable, there exists g e KI such that
gt © p = p for all tel by Theorem 3.1. If seS, choose any teI;
then gs O p =qs O (gt O p) = qst ©O p = p; hence pe L(S). For (ii),
suppose S is left amenable and let I be a left [right] ideal of S. Then
KI is a left [right] ideal of M(S) and must intersect the two-sided
ideal L(S) = Ker(M). That is, there exists ¢ ¢ L such that u(X;) =1,
and the result follows from Day’s Theorem.

We now use Theorem 3.1 to sharpen another result of Frey,
namely: In a left amenable, two-sided cancellation semigroup, every
subsemigroup is left amenable if and only if every subsemigroup
satisfies the condition that its family of all right ideals has the finite
intersection property. We show (Theorem 3.5) that this last condi-
tion characterizes any left amenable subsemigroup.

LEmMA 3.4. Let G be a group, and let A be a subsemigroup of
G such that A generates G and the family of all right ideals of A
has the finite intersection property. If ge G, then gAN A is a
right ideal of A.

Proof. We need only prove that gAN A = ¢ for an arbitrary
geG. This is clear if ge A or g'c A. If ge @, we can write

g = 019z *** Gu,

where g;¢ A or A~ for 1 <+ < n. Letting h =gg,---9¢,, we have
gANA=ghANA, and by induction, hAN A # @. If g,€ A, then
g:(hAN A) # o, and

g:(hANA) = (g(RANA)NAS ghANA=9gANA,
so gAN A +# o in this case. If g, A™, then
(RANANGTA+o
because it is the intersection of two right ideals of A. Hence

RANGT'A + @
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and so gAN A = g.(hA N g7 A) # .

THEOREM 3.5. Let S be a left amenable, two-sided cancellation
semigroup. Then the following conditions on a subsemigroup A of
S are equivalent:

(i) A s left amenable.

(i) The family of all right ideals of A has the finite intersec-
tion property.

Proof. Frey shows that condition (ii) is necessary for left amen-
ability of any semigroup; we give a shorter proof. Let T be any
left amenable semigroup and assume I and J are two disjoint right
ideals of 7. Then KIN KJ = ¢ in M(T); for if pe KIN KJ, then
Xy = p(X;) =1, which would imply p(e) = 2. Hence M(T) contains
two disjoint closed right ideals, contradicting that L(T) = Ker (M(T))
is the smallest closed right ideal of M(T). Taking T = A, we have
(i) == (ii). To prove (ii) = (i), we use the following theorem of Ore
[ef. 7, p.392]: A two-sided cancellation semigroup T is embeddable in
a group if, given s,te T, there exist s',¢' e T such that ss’ = &t
This tells us that S is embeddable in a group G, and we can assume
that S generates G. By Corollary 3.2, G is amenable. By Lemma
3.4, {gA N A: ge G} has the finite intersection property; hence so does
{(gANA): geG} in BG. Set E= N{(gdAn A~ geG}. By com-
pactness, E +# ¢, and clearly ES A~ and E = N{(g4): geG}. We
shall show that E is a left ideal of AG. Let heG; since

q(hA)~ = qh O A,
we have gh O E < N {(hgd)~: gcG}. But
N{(hgd): ge Gt = N{(gd):9eGl =E

because G is a group and so the intersections are over the same class
of sets. Hence gh & E S E. It follows that ¢G ) E S E and

BCGOESE.

Thus A~ contains a left ideal of AG (namely E), and so K(A™) = KA
contains a left ideal of M(G) (namely KFE). The proof of Corollary
3.3, part (i), shows that A is left amenable.

We note the following immediate corollary to the proof of Theorem
3.5.

COROLLARY 3.6. A left amenable, two-sided cancellation semi-
group ts embeddable in an amenable group.



582 CARROLL WILDE AND KLAUS WITZ

4. Supports. We identify m(S) with C(8S) as usual and regard
M as a subset of C(BS)*. Thus for each pe M there is a unique
regular Borel measure ¢Z on BS which satisfies

(@) = Sﬁsfdﬁ zem(S)

(where Z is the unique continuous extension of x from S to AS), and
H(BS) = 1. Let o(y) be the support of [, i.e., the smallest closed
subset F' of BS such that p(F) = 1.

LEmMMA 4.1. If pe M then
o) = N{A: A< S and pe KA} .

Proof. Denote the intersection on the right by F,. It is well
known' that if F' is a closed subset of BS and if yge M then

A(F) =1 (i.e., o(x)c F) if and only if pe KF.

Hence o(p¢) C F, and since S is dense in 8BS, F,C o(y).

Recall that a subset A of a compact convex subset K of a locally
convex space is extremal in K if and only if A is compact, convex, and
every open segment in K which contains a point of A lies wholly in

A [2, p.T8].

LemMMA 4.2, (i) If D is a closed subset of G8S, then D = <2 (KD).

If E is an extremal subset of M, then E = K(<Z(E)).
(ii) The mapping D — KD is a one-to-one correspondence between

the class of all closed subsets D of BS and the class of all extremal
subsets of M.

Proof. (i) By Lemma 4.1, $(KD)S D, and a separation
argument shows that the inclusion is not proper. Let E be an
extremal subset of M. Then clearly £ < K($FE) and by the Krein-
Mil'man Theorem, E is the closed convex hull of its set of extreme
points. Since E is an extremal set in M, each extreme point of £
is an extreme point of M and hence in 8S. Hence E = KD, where
D is a subset of BS, and D can be assumed closed. Thus

K(<E)S KD = E.

(ii) The mapping D — KD on the closed subsets D of 8BS is one-
to-one, again by a separation argument. To see that KD is an ex-
tremal subset of M, let xe KD and suppose £t = My, + (1 — \)p, with

1 See, e.g., Bourbaki’s Integration, Chapter III, p. 87.
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0<x<1l and p,p,eM. Fix AS S such that KA 2 KD; then
re KA, so that ;(X,) = 1. Since p, pr,€ M, we have

(X)), Xy =1,
and if either is less than one, we would have
1= p(X,) = Mu(X) + (1~ W(X) <Al (1—n)-1=1.

Hence p(X,) = p(X,) =1, so that p, p,e KA. Since AS S was
arbitrary subject only to the restriction KA = KD, we have

M € N{KA: AS S and KA 2 KD}
= K(N{A: A< S and KA 2 KD}
= K(5#(KD)) = KD.

We now assume that S is a semigroup and apply the preceding
results. Namely, we show that for certain semigroups the supporting
sets of 1nvariant means are left ideals of B8S. The general case is
still open (see the comment after 5.1.)

THEOREM 4.3. Let S be a left amenable, two-sided cancellation
semigroup. If L,< L,L,+# @, then S7(L,) is a closed left ideal
of BS.

Proof. Suppose first that S = G, a group. Let we.57(L,) and let
geG. Then qg O weqg ® (A7) = (gA)~ for all AS G such that
KAD L, Thusqg Owe N{{gd):A=Gand KA2L,}). Now L,= KA
if and only if L, = K(hA) for each heG; for if peL, < KA, then
p=qh®preqh® KA = K(hA), and if pe XK(hA), then = qh O v
withve KA, sothat g = qh7 O p = qh™ O (gh O v) = ve KA. Hence
{A:AS G and KA2 L} = {gA: AS G and KA 2 L} so that

q9 © we F(L,) .

Then ¢G O w & (L), BG O w & & (L), and BG O (L) S S (Ly).
To remove the group restriction, we embed S in a group G such that
S generates G. The mapping [[* identifies 8S with S— in BG, and
by Corollary 2.2, TI*(L,) is a subset of the left invariant means on
m(G). Applying the result for groups, we get that (JI*L,) is a closed
left ideal of S-. Taking the inverse under [[* yields the desired
result.

In particular, if g is a left invariant mean on m(S), then .&/(y)
is a left ideal of BS (provided cancellation is present).

THEOREM 4.4. If S is a left amenable semigroup and I is a
left ideal of BS, then KI contains an extreme point of L.
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Proof. Since I is a left ideal of 8S, KI is a left ideal of M, so
KINL = ¢, and since KI is an extremal subset of M and L is com-
pact and convex, we have that KIN L is an extremal subset of L.
Hence KIN L contains an extreme point of L {2, p. 78].

In BS minimal left ideals exist, are closed, are pairwise disjoint,
and are usually abundant. Then Theorem 4.4 and the facts noted
in the proof of 4.1 imply that there are at least as many extreme
points of L as there are minimal left ideals of AS. In the special
case where S = N, the additive semigroup of positive integers, Raimi
[9] recently showed that there are at least two extreme points of L
in KI for each minimal left ideal I of SN. We remark that if Iis a
minimal left ideal of AS, then I = .¢(L,) for each subset L, of KIN L.

We close this section with a corollary to Theorem 4.3.

COROLLARY 4.5. If S is a left amenable, two-sided cancellation
semigroup and A is a subsemigroup of S which is not left amenable,
then (A~ contains a (minimal) left ideal of BS.

Proof. By Day’s Theorem, p(X,) = 0 for all e L; thus L & KA,
and so .&“(L) & (A')~.

5. On a theorem of Mitchell. In his thesis |8, p.39], T.

Mitchell proved the following theorem:

(%) Let S be a left amenable semigroup, and let AS S. Then
there exists pe L such that p(X,) =1 (i.e., peKA) if and
only tf given awny finite subset F' of S, there exists s€ S such
that Fs < A.

We give an easy and different proof of a related fact.

LeMMA 5.1. If S is any semigroup, then the following condi-
tions on A< S are equivalent:

(i) A~ contains a (closed) left ideal of BS.

(i) For each finite subset F of S there exists seS such that
Fs = A.

Proof. (i)=(ii). Let I< A~ be a left ideal of BS. Let wel
and take a net {s,;ne N} such that ¢s,—w. If F is a finite
subset of S, F = {t, ¢, ---, ¢}, then ¢(t;s,) = q¢t;, O gs,—qt, Hwel
for 1 <7 <k ; and since A~ is an open set containing I, there exists
n,€ N such that n =mn, implies qt;(©Ogs, e A~ for 1 <1 <k; in
particular,

Fs, & A.

(ii) = (i). Let & be the family of all finite subsets of S directed
upward by inclusion. Define a net over & as follows: For each
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Fe & choose an s, such that Fs, & A. By compactness, there is
a subnet {s,;ne N} of the net {s,; Fe o7} and weBS such that
qs,— . Fix se S, and put F, = {s}. Then there exists n,c N such
that n = », implies that s, = s, with ' = F,. Since

ss,cFs, & Fs, S A

for all n =z n, and ¢s ©gs,—gs O ®, we have gs O we A-. Since
seS was arbitrary, we have ¢SO wC A~, and so BSOw< A-.
Since S © w is a closed left ideal of 8S, the lemma is proved.

Let S be a left amenable semigroup, and let A = S. It follows
as in Corollary 3.3 that if A~ contains a left ideal of 8BS, then

KANL + o,

and in view of Lemma 5.1, this is one half of (*). Conversely, if
AZ S and KAN L +# ¢, then by (*) and Lemma 5.1, A~ must contain
a left ideal of 8S. Observe that we get the same conclusion inde-
pendent of (*) from Theorem 4.3 in case two-sided cancellation holds
in S, and this suggests that it may be possible to extend Theorem
4.3 to more general semigroups.

For our next and final result we need Frey’s generalization |4]
of Folner’s Theorem |3]: A two-sided cancellation semigroup S is left
amenable if and only if for each €€ (0,1) and each finite subset I of
S there exists a finite subset E of S such that ((sENE|/|E|)=1 — ¢
for each se F' (here | D| denotes the cardinality of D & S).

DEFINITION. Let S be a semigroup. An arithmetic average on
S is a mean on m(S) of the form p; = 1/| | > er qs, where E is a
finite subset of S.

THEOREM 5.2. Let S be a left amenable, two-sided cancellation
semigroup and L, S L. Then there ewists pe K(.<7 L)) N L such that
L 1s the limit of a net of arithmetic averages on S.

Proof. We remark that our proof assumes that S is infinite;
the theorem is trivial otherwise. We consider three directed sets,
T, .07 7 is the system of finite subsets of S directed upward by
inclusion; _# is the real interval (0, 1) directed upward by <; .o is the
system of all subsets A of S such that KA 2 L,, directed downward by
inclusion. Let (&, _#,.%) be the product directed system and fix
n=(F,¢ Ac(s , 7,.o). By the Frey-Folner theorem, there ex-
ists a finite subset FE,,. of S such that (|sE, N E. /| Eyv.]) =1 —¢
for each se F. By Lemma 5.1, there exists sy, = s, €S such that
E;.s,< A. Let D, = E,,.s,, and let p, be the arithmetic mean over
D,. Since ne N = (&, _#,.%) was arbitrary, {¢,;ne N} is a net
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over N. By cancellation,

(l S-Dn m —Dn |/) Dn ]) = (} S(E",ssn) ﬂ (Eﬁ',ssn) I/l E '»5Sn D
- (l SEF’E m E' ’e V) Elf"s i) :i: 1 — &

for each se F. If teS and 2 € m(S), then

[ (gt © pr)(@) — p@) | = || D, |7 Zsen, (@(ls) — a(s)) |
=[D,[T-e-2fa]-[D,[—0;

Il

hence {¢,} converges to left invariance [1, p.520]. Let p« be a cluster
point of {y,; me N}, so that geL |1, p.520]. Fix 4,e. .. If
A=A, and FFe &, ec _# are arbitrary, then D, = E, s, S A< A,
so that g, € KA, This implies that pe KA,; and since 4, was arbitr-
ary in .o, we have pe K(S7L,).

In particular, if I is a minimal left ideal of 8S, then KT contains
at least one left invariant mean ¢, which is the (w*~) limit of a net
of arithmetic averages. Thus there are at least as many invariant
means of this type as there are distinct minimal left ideals in BS
(see the discussion after Theorem 4.6).
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