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ON THE JORDAN STRUCTURE OF COMPLEX
BANACH *ALGEBRAS

SATISH SHIRALI

All algebras considered are complex Banach algebras with
identity and continuous involution, The principal results of
§1 are that for a Jordan *homomorphism 7T of %, into %,
where %, is *semisimple, continuity is automatic, the kernel
is a closed *ideal, and if ¥. is commutative then the factor
algebra U,/kernel T is also commutative, In §2 a cone dif-
ferent from the usual cone is introduced and its relation to
the usual cone is studied. The principal result is that if this
cone coincides with the usual cone, then any Jordan *repre-
sentation is the sum of a *representation and a *antirepre-
sentation. §3 is devoted to proving that for a *semisimple
algebra, the axiom ||zy || < ||z || || ¥ || follows from the weaker
axiom |2y +yx || = 2|z [ly]l.

Our notation will be as follows: A, A, A etc., are algebras;
e, e, ¢ etc. are the identities of U, A, A’ ete.; || |l., is the spectral
radius; H, H,, H' etc. are the real subspace of hermitian elements of
A, A, A’ ete. We generally abbreviate “Jordan” as simply “J”.

1. DEFINITION. A linear transformation 7T: 2, — 2, is called a J-
homomorphism if T(xy + yx) = T(x)T(y) + T(y)T(x) and T(e,) = e,.
If A, and 2, have involutions and T(z*) = T(x)* then T is called a
J-*homomorphism.

The assumption 7T(¢,) = ¢, will usually be used in studying the
spectrum. Since the adjunction of an identity merely adjoins 0 to
any spectrum which does not already include 0, this assumption is
removable in many situations.

LEMMA 1.1 If 2, then the spectrum of Tx is contained in
the spectrum of w.

Proof. It suffices to show that if x has a two-sided inverse in
A, then Tz has a two-sided inverse in A,. So let yxr = a2y = ¢, u =
Tx and v = Ty. Then uv + vu = T(xy + yx) = T(2e,) = 2¢,. Multiply
on each side by v separately to get wvuv + vu = 2v, wv* + vuv = 2v
so that vu = uv®. Therefore u commutes with 2 and hence so does u?2.
Thus 2u*? = 20*u* = w** + v*u* = T(2*y* + y*x*) = T(2¢,) = 2¢,. There-
fore u*v® = vu* = ¢, and hence v = T2 has a two-sided inverse in 2.

An immediate consequence of Lemma 1.1 is the following lemma
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which has been stated in [1].

LEmMA 1.2, If xe ¥, then || Tz ||, = || ¢ ]l.p.

THEOREM 1.3. Suppose A, and WA, have continuous involutions
such that A, is *semisimple ([6], p. 210) and T:A, — A, is a J-
*homomorphism. Then T is continuous.

Proof. Since 2, is *semisimple, it has an auxiliary norm | |
such that |2 | < ||«||,, for x € H,. Now let x,—« in 2, and let each
2,€ H. Thenxe H, Tx,c H,and Tx ¢ H,. Also suppose that Tz, — vy
in 2A,. Then y e H,. Therefore ||z, — 2||,,— 0 so that || Tz, — T2 ||,,—0,
by Lemma 1.2. Also since T, — y € H,, therefore |T, — y|—0. It
follows that T = y. By the Closed Graph Theorem T is continuous
on H, and therefore on all of ..

THEOREM 1.4. With the hypothesis of Theorem 1.3, the kernel
of T is a closed *ideal.

Proof. The only nontrivial part is to show that the kernel is an
ideal. Let K = kernel of T,ac K and be¥,. Since K* = K, the
hermitian and the skew parts of any element of K are again in K.
It therefore suffices to consider hermitian a and b. We present the
proof in three brief steps.

Step 1. If a* =ac K and b* = be ¥, then T(ba) and T(ab) are
both skew: 0 = T(a)T(b) + T(®)T(a) = T(ab + ba) = T((ab) + (ab)*) =
T(ab) + T(ab)* = T(ba) + T(ba)*. Therefore T(ab)* = —T(adb) and
T(ba)* = —T(ba).

Step 2. If a* = a€ K and b* = be ¥, then aba, a’h, ba* are in K:
Since aba is hermitian, so is T(aba). But we can prove T(aba) skew
because aba + a’b = (ab)a + a(ab) € K so that T(aba) = — T(a*) which
is skew by Step 1. Therefore T(aba) = 0 = T(a*h) and similarly
T(ba?) = 0.

Step 3. If a* =ac K and b* = be ¥, then abe K: From Step 2,
we know that a*be K. Therefore

b(ad) + (@?b)be K and a(ab?) + (abac K .

Combining we get ba’® — ab’a € K. But by Step 2, ab’a € K, and there-
fore ba*b ¢ K. Therefore 0 = T(ba’d + ab’a) = T((ba)(adb) + (ab)(ba)) =
T((ab)*(ab)) + T((ab)(ab)*). Since ¥, is *semisimple, it follows that
T(ab) = 0.

THEOREM 1.5. With the hypotheses of Theorem 1.3, let K =
kernel of T. Then if A, is commutative, A,/K is also commutative.
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Proof. Since K is an ideal, we can form the algebra /K. But
this algebra is J-isomorphic to T(2(,), which is commutative and there-
fore has an associative Jordan product aob = ab + ba. Therefore U,/K
also has an associative Jordan product. This means that /K satisfies
a polynomial identity of degree 3. By Lemma 1.1 it is semisimple.
It follows that A,/K is commutative from a result of Kaplansky ([3],
p. 580).

2. In studying the Jordan structure of *algebras it is natural to
introduce the cone generated by the Jordan products z*x + za*. This
gives a cone in the subspace of hermitian elements even if the in-
volution preserves the multiplication instead of reversing it. This
cone turned out to be useful in the study of another problem not
connected with Jordan homomorphisms. (See [7] where it is called
the “quasicone”). For a commutative algebra, this cone is the same
as the usual cone. For a symmetric algebra also this is quite obvious.
Which other algebras have this property is an open question, which
becomes all the more interesting because of Theorem 2.1 below. Since
noncommutative nonsymmetric algebras are not easy to come by, it
is hard to construct an example where this J-cone differs from the
usual cone. Positivity with respect to this cone has also been used
by Rickart in [6].

DEFINITION. The J-cone @ of a Banach *algebra 2 is the closed
cone in H generated by the elements of the form z*x + xx*.

The following nine assertions are either obvious or can be proved
as in the case of the usual cone:

1°. @ is the closed cone generated by {x*:x ¢ H};

2°. @ is contained in the usual cone;

3°. If A is *semisimple, then QN (—Q) = {0};

4°., @ includes the open ball in H of radius 1 about e;

5°, If the linear functional f: 2 — C is J-positive (i.e. f(Q) = 0)
then f(z*) = f(x) and the norm of the restriction of f to H is f(e);

6°. ||, = sup{| f(x)|: f J-positive, f(e) = 1} defines a pseudonorm
on H;

7°. If | | is the auxiliary pseudonorm on %, then for xe H,
|| = sup {| f(«) |: f positive, f(e) =1} (see [4]);
8°, If U is *semisimple, | |, is a norm;

. |jel=lel =llell, = |lo|| for ve H.

The following theorem says that Stermer’s Theorem [8] extends
to any algebra whose J-cone equals the usual cone.

THEOREM 2.1. Any J-*representation T of a Banach *algebra
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A, with identity e, and whose J-cone Q, is the wusual cone, is the
sum of a *representation and a *antirepresentation.

Proof. Let 9, be a B*-algebra such that T:%% — A, is a J-
*homomorphism. Since ¥, is symmetric its J-cone is the usual cone,
and for 2, this is assumed to be the case. So we can freely inter-
change positivity and J-positivity in both algebras.

The relevance of the J-cone is that a J-*homomorphism preserves
it. Consequently if f is a J-positive functional on U, then fo T is a
J-positive functional on 2,. Thus for any x e H, we have

[[Tx|l = |Te| = | Tx|, = sup{| f(T2)|: f J-positive, f(e) = 1}
= sup{|(fe T)(=)|: f J-positive, (foT)(e) = 1}

(A) < sup{| ¢(x) |: ¢ J-positive, ¢(e) = 1}
= { X Il = j kY l .
Therefore if 2, is *semisimple, T is continuous with respect to the
norm | |, and therefore extends to the completion. But the completion
is a B*-algebra and Stermer’s Theorem ([8], p. 445) yields the desired
conclusion. However if 2, is not *semisimple, then (A) shows that the
*radical of 2, is contained in the kernel of 7. Consequently, we may
pass to the factor algebra which is *semisimple. Then the *representa-
tion and the *antirepresentation of the factor algebra can be lifted
to U, via the natural map.

It is proved in |[7] Lemma 3, that if % is “J-symmetric” (i.e.,
every element of @ has a nonnegative spectrum-called “quasisymmetric”
in [7]), then 2 is symmetric. As a consequence, we have

THEOREM 2.2. Let T: A, — A, be a J-*isomorphism of A, onto
W, If A, is symmetric, then so is U,.

Proof. Consider any Txec,. Then
T(x)*T(x) + T(x)T(x)* = T(x*x + xx™¥)

so that by Lemma 1.1, (Tx)*(Tx) + (Tx)(Tx)* has a nonnegative spec-
trum. Thus 2, is J-symmetric and therefore symmetric.

Next we shall give two results regarding the relation between
the J-cone and the usual cone. The first result is quite trivial, though
interesting. 92 is *semisimple in the rest of this section.

LeMMA 2.3. Any | |-continuous J-positive jfunctional on A is
positive.

Proof. Let f be a | |-continuous J-positive functional. Since f
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is | |-continuous, it extends to the completion, where it continues to
be J-positive. But the completion is a B*-algebra and therefore f is
positive.

Denote the set of all positive (respectively J-positive) functionals
f for which f(e¢) =1 by & (respectively ). Then clearly both are
weak*-compact convex sets in the dual space of H.

Our next proof was simplified by the referee, to whom the author’s
thanks are due.

THEOREM 2.4. If A is *semisimple them F 1is a face of Z.
In other words, if f=tfi+ (1 —1t)f, where fe F,f,eZ, f,e€Z,
0<t<1, then fie &, f,e F.

Proof. Let fes and f=1tf,+ (1 —t)f, where fie <, f,e &
and 0 <t <1, Then f~ tf, = (1 — t)f, is J-positive, so that f(v?) =
tfi(v*) for all ve H. Using the Cauchy-Schwarz inequality for J-
positive functionals,

[i) = fillv*) = ¢7f°) = ¢ [0 = ¢ w]* for all ve H.

Therefore f is continuous on H. Since the involution is continuous
in the norm | |, f; is continuous on . So by Lemma 2.3, f,c #.
Similarly f,e #.

For the rest of the section, the reader is assumed to be familiar
with the material on GM-spaces and Takeda’s Theorem given in [4].
We note that H becomes a GM-space with the usual cone as well as
the J-cone @ (see 3° and 4° above). The norm obtained from the
GM-structure given by the usual cone is | | (see 7° above). The
norm obtained from the GM-structure given by @ is | |,. Therefore
Takeda’s Theorem ([4], p. 221) applies to both norms: Any linear
functional f: H— R which is | [-continuous (respectively | [-con-
tinuous) can be written as ¢ — 4 where ¢ and 4 are positive (respec-
tively J-positive) and | ¢ | + | ¥ | = | f| (respectively | ¢, + [ ¥ ], = [ f])-
In the former case however one can pass to the completion with re-
spect to the norm | |, which gives a B*-algebra; and then one can
also assert that ¢ and + are unique, because of Grothendieck’s Theorem
[2]. This procedure is not available for the | |, case, because | |,
seems to have no extension to all of 9 which would make multiplica-
tion continuous. For our problem, the extension must also make the
involution continuous, and it can be shown that if there is a norm on
2 which makes multiplication and involution both continuous, and
which agrees with | |, on H, then Q is the usual cone, | |, =] |.
It would be interesting to know whether the uniqueness holds for the
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| |-case also. However, if it is shown that @ is always the usual
cone, then this problem is trivialised. (It can also be shown that in
the linear space case, as in Takeda’s Theorem, uniqueness fails. The
counterexample is three-dimensional).

3. The notion of a *radical does not depend upon the norm.
Suppose 2 is any (complex) *algebra. One can define the *radical as
the set of all # ¢ U such that f(x) = 0 for all positive f. One may
use the condition that f(x*x) = 0 in place of f(x) = 0. The *radical
is a *ideal. All this is worked out in [5]; the norm is nowhere used.
Thus one can speak of a *semisimple algebra. Our main result of
this section is:

THEOREM 3.1. Let U be a *semisimple complex algebra with an
identity e. Let || || be a Banach space norm on U such that ||x* || =
lall,llell=1and ||ey +yx||<2]||z]||||y]|l. Then thereis an equivalent
norm on A such that A is a Banach *algebra. :

We prove this theorem in the form of three lemmas.

LEMMA 3.2. Let U be a complex  *algebra with identity e and
let 7 be the set of all positive functionals f on A such that f(e) = 1.
Assume F monempty and define |x| = sup {f(x*zx)'* fe F}. Then
| | has the following properties:

@ let+ylslz|l+|yl,

() Ixa|=[r|z], NeC,
(e lay|=|z|ly| and
(d |z*|=|=|.

Proof. Since the Cauchy-Schwarz inequality holds, all is trivial.
In (c) use the fact that if fe & and f(y*y) = 0, then

3(2) = fy*z29)[f(y*y)

defines an element of &,

The lemma says that | | has all the properties of a norm except
that it may take the value oo, and that |x| = 0 may not imply that
2 = 0. The second difficulty is taken care of by the *semisimplicity
and the first by an argument analogous to the case of Banach algebras.

LEmMA 3.3. Let U be as in Theorem 3.1. Then every positive
Sunctional f restricted to H is continuous with norm f(e); i.e. | f(h)| <
f@) ||h|l ©f heH. Consequently the function | | of Lemma 3.2 is
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a norm and |h| < ||k|| iof h is either hermitian or skew.

Proof. The proof for Banach *algebras on pp. 189-190 of [5]
goes over word for word.

Now let U’ denote the algebra ¥ with norm | |. Then for any
2 the map y — oy is continuous from 2 to A’ because of Lemma
3.2 (¢) and Lemma 3.3. We exploit the Closed Graph Theorem to
show that it is continuous from 2 to 2. '

LeEMMA 3.4. Let U be as in Theorem 38.1. For any xe U let
T.,: N —A map y into xy. Then the linear operator T, is continuous.

Proof. Let ||h, — h]|— 0 and let each h,ec H. Then A is also
hermitian so that by Lemma 3.3, |k, — k| —0. Then by Lemma 3.2
(¢) and (d) we have

(A) |xh, — ah|— 0, | hyo* — ha* | — 0.

Assume that ||ah, —2]|—0. If we can prove z = xh then by the
Closed Graph Theorem T, is continuous on H and therefore on all of
A. Now

ok, — 2| — 0,  [[h2* —2*[|—>0.
Therefore
(B) I (@h, + h2*) — (2 + 2%) || — 0,
and
(©) Il @h, — k™) — (2 — 2%) || — 0.

But since these elements are hermitian and skew respectively, there-
fore by Lemma 3.3, (B) and (C) hold if the norm | | is used. Com-
bining this with (A), xh + ha* =z + 2*, 2h — ha* = 2z — 2*, so that
z = xh.

We have so far shown that multiplication is a continuous opera-
tion in . Our theorem now follows from a well-known result (Prop
VIII, subsection 5, § 9 of [5]).
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