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FUNCTIONS REPRESENTED BY RADEMACHER SERIES

JAMES R. McLAUGHLIN

A series of the form 3 5-,a,7,(t), where {a,} is a sequence
of real numbers and r,(t) denotes the mth Rademacher fun-
ction, sign sin(2”zt), is called a Rademacher series (as usual,
sign 0 = 0),

Letting f(t) denote the sum of this series whenever it exists,
we shall investigate the effect that various conditions on {a,}
have on the continuity, variation, and differentiability proper-
ties of f.

2. Continuity properties. We now prove

THEOREM (2.1). If X,|a,| < oo, then f(t) is continuous at dyadic
wrrationals (i.e., numbers not of the form p/2*) and has right and
left hand limits everywhere in [0, 1].

Proof. Under our hypothesis we have that >} a,r.(t) converges
uniformly to f(¢), which implies our conclusion since the Rademacher
functions are continuous at dyadic irrationals and have right and left
hand limits everywhere in [0, 1].

In general, the right and left hand limits of f(t) are unequal at
dyadic rationals. We now investigate under what conditions we have
equality and prove.

THEOREM (2.2). If 3 |a, | < oo, then the following are equivalent:

(a) a, = Z (L2
m=k+1

(b) f(p27* + &) = f(P27) as n— o0,
(¢) f(w27* +4,) = f(p27") as n— o0,
d) f2™* + &) — f(27" + 9,) =0 as n— o0,

where {e,} and {0,} are some positive and megative sequences tending
to zero, and p is an odd integer.

Proof.

A2 + ) = fp2) = S aura(o2™ + 1) — art)

oo

k—1
+ Z a’m,rm(t) - leam/rm(p2~k) ’

m=k+1

since 7,2 F +t) =7r, () if m=k+ 1, and 7,(027F + t) = —7 ().
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Therefore,

f(p27* +¢,) — f(p27F) — —a, + %1% as n— oo .
This shows the equivalence of (a) and (b). A similar argument
establishes the equivalence of (a), (¢), and (d).
We have, at once, the following

COROLLARY (2.1). For absolutely convergent Rademacher series
the following are equivalent:

(i) f (t) is continuous at p2~* for some odd integer p,

(il) f(t) is continuous at p2=F for all odd integers p,

(i) a, = f‘, A -

m=k+1

REMARKS. 1. Notice that, if a, = >\ 1 @, a0d Gy = S it Gy
then a,., = (a,)/2.

2. Theorem (2.2) is false under the hypothesis that 3 |a,| =
and a, — 0, since under these conditions we have that in every interval
f(t) assumes every real number ¢ times [2, p. 234, Th. 2].

This shows that the existence of the limit in the sense of Theorem
(2.2) implies no relationship whatever between ¢, and > .., a,.. Also
by choosing {a,} such that ¥ (a,)’ = o we see that the existence of
the limit in the above sense does not even imply that > a,7.(t) con-
verges in a set of positive measure [8, p. 212].

3. If f(t) = 3, a,r.(t) is essentially bounded, then > |a,| < oo
(see [3]).

We now omit the condition that > |a,| < co and prove

THEOREM (2.3) a, = (at_1)/2, k > 1, if either

lm (2 + p2tet + &) — @ + p27H 4 6,)]

n—oo

(1) = lm [£2 + p275 4 6,) — F@H 4+ p2-Ht 4 )]

n-—00

or

lim [£(27 + P2+ + ¢,) = F(3-27 + p2+%* 4 ¢,)]

n—roo

(2) —lm[fE* 4 p2H 4 5,) — f3-27F + p2+ 4 5,)]

n—oo

where €, > 0,0, < 0,lime, =1limo, = 0 and p s an interger.

Proof. If k > 1, 4(t)
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= @ + P2+ 1) — FE 4 2 4 1)

= a)[r (27" + P27 + t) — r(27F 4 p27EE L )] 4 .-
+ g 75o(@7F 4 P27 4 8) — 7 (270 4 p27HEE 4 1))
+ @[ (270 4 8) + ()] + @l = 1) — ru0)] .

Thus,
lim 4(e,) = 2a,_, — 2a, and lim 4(3,) = 2a, .

n—r00 n—0

In view of (1) we have then 2a, = a,_,.
A similar proof will suffice if equation (2) is valid.

REMARK. In much the same way we can prove a more general
result, namely that if {¢,} has the property that

gl/lﬁla te)=c"#0

1

is absolutely convergent, then

&) = efOH) S ra@)/ L @ + )

if and only if for every k& > 1 we have that in (1) the first limit equals
¢, times the second.

We now utilize the concepts of approximate limits and approxi-
mately continuous functions (see [5, pp. 132, 219]). From Theorem
(2.3), we deduce immediately.

COROLLARY 2.2. If the approximate limit of f(t) exists at either
27k 1 p2 2 qud 27 4 p27FE op 27D 4 p2-k2 qud 8.27F 4 p2-%+2
(where k£ > 1 and p is any integer), then a, = (a,_,)/2.

We now prove
COROLLARY (2.3). If F(t) is approximately continuous in [0, 1]
and 3, a,r.(t) converges a.e. in [0,1] to F(t), then
F@t) = F(0)-(1 — 2t), a,, = F(0)/2"(m =1, 2, ---) .

Proof. Since F(t) is approximately continuous in [0, 1], we have
that f(¢) has approximate limits everywhere. Thus

F(t) = C 3, r,(t)/2™ a.e., C being a constant.

But, since 3 r,(f)/2™ =1 — 2t a.e. (see [7, p. 220]), this implies
that

F(t) = C(1 — 2t) a.e.
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which concludes our proof since F'(t) is approximately continuous.

REMARKS. 1. Corollary (2.2) shows that, if the approximate limits
of f(t) exist at certain dyadic rationals, then a, = C/2™ for m = m,
(where m,, C are constants).

2. The conclusion of Corollary (2.3) was proved by Wang Si-Lei
([6, p. 704]; cf. [7, p. 221]) under the stronger hypothesis that F(¢)
be continuous in [0,1]. Wang’s result can also be obtained from
Theorem (2.2) and Remarks (1) and (3) following it.

3. Corollary (2.2) is a generalization of some theorems of Wang
[6, Th. 1,2, 3].

4. In Corollary (2.3), the condition ‘‘convergent a.e.”” cannot be
replaced by ‘‘convergent in Ec[0,1],|E| <1” [6, p. 706].

3. Variational properties. A. I. Rubinstein has shown [4, p.
143] that if 3>|a,|2™ < oo, then f(t)e Lip (1, 1).

In order to strengthen this result we now state the following
lemma which follows from Minkowski’s inequality:

LemmA (3.1). If V,(f.) denotes the pth variation of f.(t), then
() iF0<p=1, V(3 ra) = 3 VIS

@) if pzl, V,(S/) = 5 Vilsa) -

We will now prove

THEOREM (3.1). (i) If 0<p <1, then 3,|a,|*2™ < oo implies
At) is of bounded pth variation;

i) of p=1, then 3, |a,|2™* < o implies f(t) is of bounded
pth variation;

(i) f0<p=<1,then a, | 0,3, ar2™ = co implies

g(t) = Z (*l)mamrm(t)

is not of bounded pth variation.

Proof. Parts (i) and (ii) are immediate by the lemma.
Also, setting {t;} = {2 + 42~"}%5* and b,, = (—1)"a, we obtain
2n—1
g{ fgt) —g(ti) | =|—2b, + --- + 2b,["
+ 2| —2b, 4 eo0 +2b, |7 + e + 2| —2b,_, + 2b, |7
4+ 21| 2b, P = 32 | 2b; [P — 0o aS m—s 00 .

i=1
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This demonstrates Part (iii).

4. Differentiability properties. With regard to differentiability,
L. A. Balasov has shown [1, p. 631] that f(¢) has a derivative at
least one point if and only if

(3) lim 2"q,, = A exists .

Balasov has demonstrated that this condition alone is not sufficient
in order to have f(t) differentiable a.e. [1, pp. 633-4]. He then proves
that condition (3) and the relation

@y

v

f} a, for every k=1
=k

m=k+1

implies f(t) is monotone in [0, 1], which of course implies differentia-
bility almost everywhere.
We now prove

THEOREM (4.1). () If 3 |a.|2™ < oo, then f(t) is differentiable
almost everywhere;

(i) ©f {en} 1s any null sequence, then there exists a sequence {a.,}
satisfying

(@ 2lan2"e,| < oo,

b) @) = 3 a,r.(t) s differentiable nowhere.
Proof. Part (i) follows immediately from Theorem (3.1).

Part (ii). Since {e,} is a null sequence, there exists an increasing
sequence of positive integers {N,} such that

(4) ley, | <27, m=1,2, ...
Now set
a, = 2™, if m = N, 1=2,4,6, -
= 0, otherwise.
Then (a) follows from condition (4), and (b) follows since Balasov’s

condition (3) for differentiability is not satisfied.

REMARK. It would be interesting to know if the sum, f(t), of a
Rademacher series is of bounded variation whenever f(t) is differen-
tiable almost everywhere (as is the case for lacunary trigonometric
series).
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