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TORSION THEORIES AND RINGS OF QUOTIENTS
OF MORITA EQUIVALENT RINGS

DARRELL R. TURNIDGE

A ring of left quotients Q^ of a ring R can be constructed
relative to any hereditary torsion class J7~ of left i?-modules.
For Morita equivalent rings R and S we construct a one-to-
one correspondence between the hereditary torsion classes
(strongly complete Serre classes) of π$l and #371 and describe
the resulting correspondence between the strongly complete
filters of left ideals of R and S. We show that the proper
rings of left quotients of R and S relative to corresponding
hereditary torsion classes are Morita equivalent. Applications
are made to the maximal and the classical rings of left
quotients and the corresponding torsion theories.

A torsion theory for the category R$Jl of unitary left modules over
an associative ring R with identity has been defined by Dickson [3]
to be a pair (J7~9 j^) of classes of left j?-modules such that

(a) i 'Πi^=: {0}
(b) J7~ is closed under homomorphic images
(c) J/r is closed under submodules
(d) for every left i?-module M there exists a submodule T(M)

of M with T(M) 6 T and M/T(M) e j r .
A class J7~(J^~) of left modules is called a torsion (torsion-free) class
if there is a (necessarily unique) class J^iJ^) such that (^", ά?~) is
a torsion theory. A torsion class closed under submodules is said to-
be hereditary. By [3, Theorem 2.3] a class J7~ is a hereditary torsion
class if and only if it is closed under submodules, homomorphic images,
extensions, and arbitrary direct sums. Walker and Walker [13] call
such a class a strongly complete Serre class. Gabriel [4] has shown
that for a ring R there is a one-to-one correspondence between the
strongly complete Serre classes of Jΰl and the strongly complete
filters F of left ideals of R given by the mapping

where I ^ R denotes that / is a left ideal of i?. The inverse corres-
pondence is given by

F >^~(F) = {Me RTl I (0: m) e F for all meM}

where (0: m) = {reR | rm = 0}. We say a strongly complete filter F
of left ideals of R is faithful if (0: r) e F implies r = 0 for each r e
R. A strongly complete Serre class J7~ is called a faithful Serre
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class if F(^7~) is faithful, Viewing J7~ as a hereditary torsion class
this is equivalent to the requirement that RR is torsion-free.

1. Rings of quotients* Throughout this section J7~ will denote
a faithful Serre class of RTt with associated filter F. Then
is a torsion theory for RΊfl and RR e j ^ ~ where

= {MeRWl\Ή.omR(T, M) = 0 for all TejΓ} .

Let S$? denote the quotient category of RTl relative to J7~ as defined
in [4] and let

R y = Horn v(i2, R) = lim ϊlomR(I, R)
IeF

the endomorphism ring of R as an object of s/. The opposite ring
of Ry is denoted by Q^ and is called the ring of left quotients
of R relative to ^Γ". The natural ring anti-isomorphism of R and
Hom^ (R, R) induces a one-to-one ring homomorphism φ: R —* Q^. We
usually identify R as a unital subring of Q9-. More generally, for
each left ί?-module M let

My- = Horn y(i2, Λf) = lim HomΛ(J, MjM!) .
i?//, M' ear

Using the composition of morphisms in Ssf each Mr is a right i2^-
module and thus a left Q.^-module. The ring homomorphism φ induces
a left iϋ-module structure on M^ and there is a natural left iί-homo-
morphism φM: M—> M^- given by φM{^) = \Pv]i the equivalence class of
pm in Mjr> where for each me M, pm: R —> Mby (θm(r) = rm. As shown
in [13] for each left i2-module M, ker φM = T(M) = {meM\ (0: m) e F}.

A left u?-module M is said to be ^-injeztive if for every exact
sequence

0 >K >L > T >0

of left i?-modules with Te<^~, the associated sequence

0 > Hom^T, M) > Ή.omR(L, M) > KomR(K, M) > 0

is exact. By [13, Proposition 4.2] for each left .B-module M

= {xe E{M) I (M: x) e F)

is .^"-injective and is (up to isomorphism) the unique minimal
jective module containing M where E(M) is an injective envelope of
M. We call E^(M) a J7~-injective envelope of M. The following
lemmas are consequences of [4, Proposition 4, page 413] but the proof
is included for the sake of completeness.
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LEMMA 1.1. For each Me^, E^(M) ~ M^ as left R-modules.

Proof. For each x e E^{M), (M: x) e F. Define λ: E^ (M) — M^
by X(x) = [px] for each x e E^(M) where px(r) = rx for each r e (M: x).
It is easily checked that X is additive.

By [3, Theorem 2.9] J?" is closed under injective envelopes. Thus
E(M) and hence E^-(M) e ^ . If x e E^(M) and X(x) = 0, then Ix =
0 for some le F. Since E^(M) e ^ ^ this implies a? = 0. Thus λ is
one-to-one.

Let [/] G M<r be represented by /: /—> M with IeF. Since E^(M)
is .^"-injective and contains Λf, / extends to an i2-homomorphism /: R

• Ejr(M). Let x = /(I) e E^(M). Then λ(a ) = [/] so λ is onto.
Finally, for xeE^-(M) and r e i ϋ one checks that X(rx) = rX(x).
In the special case that M = RR we have the following.

LEMMA 1.2. As left R-modules, Qτ = E^R).

From this we get the following proposition which will be used
later in studying Morita equivalence of quotient rings.

PROPOSITION 1.3. If ^ is any faithful Serre class of ŜK, then
Q y = EndΛ(JMi2))° as rings.

Proof. Let fe ΈndR(Q^) and let q,xeQ^. Then for each r e (R: q),
r(qf(x) - f(qx)) - 0. But (R: q) e F and Q^ e j r . Thus qf(x) = f(qx).
It follows that EndR(Qy) = Endρj7-(Qi7-). Using the natural ring anti-
isomorphism and (1.2) we have

We now investigate more closely the relationship between the
ring of left quotients Q^ and the torsion theory (^~, ^). As pre-
viously noted ker φM — T(M) for each left J?-module M where φM is
the natural i?-homomorphism from Mto My-. For each left i?-module
M, φM = θMηM where

ηM: M > Q^®RM by ηM{m) = 1 (g) m

and

ΘM' Q^-ΘRM > M^ by θM(x®m) = xφM{m)

for each me M and each x e Q^» Thus in general we have ker ηM S

THEOREM 1.4. Lβί ^ " &β a strongly complete Serre class of RTt.
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Then T(M) = ker ηM for every left R-module M if and only if Q^-φ(I) =
Q^ for all Ie F = F(^~). Moreover Q^ is flat as a right R-modul&
whenever T(M) = ker ηM for all M.

Proof If Qyφ(I) = Qrr for all IeF, then ΘM is an isomorphism
for each left j?-module M by [13, Theorem 3.2]. Hence ker φM = ker
ηM = T(M) for every M.

Conversely if ker ηM — T(M) for every left iϋ-module M, then
R/I = ker ηRlI for each IeF. Thus Q^®RR/I = 0 for every I e F .
Hence for each Ie F the mapping Q^(&RI > Q^®R R is an isomor-
phism. Thus Q^ = QJ7-φ{I) for each IeF. The last remark follows-
by [13, Corollary 3.3].

We conclude this section indicating two important special cases of
this result.

A left ideal / of R is said to be dense if (/: a)b Φ 0 for all α, b
in R with b Φ 0. The strongly complete faithful filter D of dense-
left ideals of R is maximal among all the strongly complete faithful
filters of left ideals of R. The corresponding faithful Serre class

jT-' = {Me Rm I (0: m) e D for all meM}

is thus maximal among all the faithful Serre classes of RW, and coin-
cides with the E(R)-torsion class considered by Jans [6]. The ring of
left quotients of R relative to ^~r is called the maximal ring of left
quotients of R and is denoted by Q(RR).

For each left ίϋ-module RM we let Z{RM) denote the set of all
elements of RM whose annihilator is an essential left ideal of R.
Then Z(RM) is a submodule of RM called the singular submodule of

RM. For a ring R with Z(RR) = 0, a left ideal is dense if and only
if it is essential. For such rings Q(RR) is von Neumann regular. (See
[7]) Moreover for a ring R with Z{RR) = 0, Q(RR) is semisimple (with
minimum condition) if and only if Q{RR)I = Q{RR) for all essential left
ideals of R by [11, Theorem 1.6] or [13, Theorem 4.19]. Combining
these facts with (1.4) we get the following results of Sandomierski [11]..

PROPOSITION 1.5. Let R be a ring tvith Z(RR) = 0. Then Z(M) =
ker ηM where ηM: M > Q(RR)®RM via ηM(m) = l@m for every left
R-module M if and only if Q(RR) is semisimple. Moreover, if Q(RR)
is semisimple it is flat as a right R-module.

Let U denote the set of two-sided nonzero divisors of R, let Fc =
{1^ R\I Π UΦ 0} and let

^Γc = {Me Rm I (0: m) e Fc for all meM} .

A r i n g R i s s a i d t o b e left Ore i f f o r a l l & e R a n d d e U t h e r e e x i s t
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a' e R and d' e U such that dfa = a'd. One checks that Fc is a strongly
complete faithful filter of left ideals of R and ^~c is a faithful Serre
<ίlass of RWl if and only if i2 is left Ore. For any left Ore ring R,
the ring of left quotients of R relative to ^~c is denoted by QC(R)
and is called the classical ring of left quotients of R. For a left Ore
ring R, QC(R) has the following properties:

(a) d G U implies d~ι exists in QC(R)
(b) for each qe QC(R), there exists ae R and cϋe U with g = (J^α.

For a left Ore ring R, every ί e ^ contains an invertible element of
QC(R). Hence QC(R)I = QC(R) for every / G ^ . Applying (1.4) we
have the following results of Levy [8].

PROPOSITION 1.6. Let R be a left Ore ring. Then for each left
R-module M, the kernel of the mapping τjM: M • QC(R)®RM defined
by ηM{m) = l®m is TC(M) = {me M| (0: m) e Fc}. Moreover QC(R) is
fiat as a right R-module.

2. Morita equivalence of quotient rings* Morita has shown that
two rings R and S have equivalent categories of unitary left modules
if and only if S = ΈndR(PR) for some right jβ-progenerator PR where
a right lϋ-module PR is called a progenerator if it is finitely generated
projective and if the right regular module RR is isomorphic to a direct
summand of a direct sum of copies of PR. (See [1] or [10]) Two such
rings are said to be Morita equivalent. Throughout this paper we
assume S — ΈndR(PR) with PR a progenerator. Then the functors

and

H=P*®S( y.sm—>Bwι

are inverse category equivalences where P* — Homjβ(P, R) is a left i?-
progenerator.

If J7~{R) is any strongly complete Serre class of RWly then

J^(S) = {Me sm I H(M) e ^(R)\

is a strongly complete Serre class of sWl since H preserves exactness
and direct sums. The mapping pairing each ^~(R) with J7~(S) as
defined above gives a one-to-one correspondence between the strongly
complete Serre classes of ŜJί and <βl. Henceforth ^~(R) and J7~(S)
will denote corresponding strongly complete Serre classes of R$Jl and
3̂K respectively. By our introductory remarks there are (unique)

classes ^(R) and ^~(S) such that (^"(J2), ̂ (R)) and (^~(S), J^iS))
are hereditary torsion theories for Jΰl and ŜK respectively. Moreover,
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= {Me sTt I H(M) e

PROPOSITION 2.1. ^~(R) is faithful if and only if ^~{S) is
faithful.

Proof. If ^~(R) is faithful, then RRe^(R). Hence by [3,
Theorem 2.3] every finitely generated protective left ϋ?-module is in
^{R). But H(SS) = *P* is a finitely generated projective left i?~
module, so H(SS) e J?~(R). Thus sSe^{S), so j^~(S) is faithful. The
converse follows by a dual argument.

Throughout the remainder of this paper unless otherwise noted
we restrict our attention to the case where J7~{R) and J7~(S) and
faithful.

We let Q^iR) and Q^{S) denote the rings of left quotients of R and
S relative to J7"(R) and J7~(β) respectively as defined in § 1. Before
examining the Morita equivalence of Q^{R) and QjrίS)

 w e n e e ^ a few
observations on ^-injectivity. Using routine arguments with the
category equivalences G and H one gets the following.

LEMMA 2.2. Let M be a left R-module. Then M is J7~(R)- in-
jective if and only if G(M) is ^(S)-injective.

PROPOSITION 2.3. Let M be a left R-module with ^(R)-injective
envelope E^{R)(M). Then G(E^{R)(M) is a ̂ ~(S)-injective envelope of
G(M).

Proof. By the lemma, G(E^-{R){M)) is a ^(S)-injective extension
of G(M). Using the fact that G induces an isomorphism between the
lattices of submodules of Ey-m(M) and G(E^{R)(M)) one checks that
G(Ejr{R)(M)) is a minimal j7~(S)-injective extension of G(M).

Two left i?-modules M and N are said to be similar if each is
isomorphic to a direct summand of a finite direct sum of copies of the
other. Observing that finite direct sums of J7~(R)-injective modules are
J7~{R)-injective one checks that similar left j?-modules have similar
^"(i?)-injective envelopes. Since the left iϋ-module RP* is a progen-
erator and is thus similar to RR we have E^-iR)(RP*) is similar to
E^{R)(RR).

To simplify our notation we let E^(R) = E^{R)(RR), E^(P*) =
ErmdiP*) a n d EAS) = EjrwisS). Then using (2.3) and the fact that
G(Pη = 8S, we have

^ ( P * ) ) = Enάs(G(EAP*)))

~ End8(EAG(P*)))
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Thus by (1.3)

and
~ Έnds(EAS))° s

Hirata [5, Theorem 1.5] has shown that for similar left i^-modules
M and N, the rings E = End^ikf)0 and E' = ΈnάB(N)° are Morita
equivalent. (The opposite rings arise from our convention of regard-
ing mappings as operating on the left.) Moreover Ή.omB(M, N) is a
progenerator both as a left i?-module and as a right i?'-module. Simi-
larly HomR(N, M) is a progenerator both as a left ϋ"-module and as
a right jE-module.

Letting M = EAR) and N = EAP*) we conclude that the rings
Qsr{R) and Q^{8) are Morita equivalent and that ΊlomR{E^{P*),
is a progenerator both as a left ζ>^(S) -module and as a right
module.

Since P®RE^(R) is ^"(S)-injective and

0 > S > E^(S) > Ejr(S)/S > 0

is an exact sequence of left S-modules with EJ7-(S)/Se^r"(S),

0 > Έίoms(EAS)/S, P®REAR)) > Hom,(^(S),

>Hom5(S, P®REAR)) > 0

is an exact sequence of right Q^m-modules. But
P®REAR)) = 0 since EAS)/Se^~(S) and P®REAR) e ̂ ^(S). Hence
as a right Q^-(Λ, -module

Summarizing, we have the following theorem.

THEOREM 2.4. Let ^"(R) be a faithful Serve class of RΈl and let
be the corresponding faithful Serre class of sWl. Then the rings

of left quotients Q^-{R) and Q^iS) are Morita equivalent. Moreover
is a right Q^-iR)-progenerator with

Let FR be a free right J?-module of rank n. Then End^i^) = Rn

and

COROLLARY 2.5. Let ^(R) be a faithful Serre class of RW and
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let j7~(Rn) be the corresponding faithful Serve class of BJ$Jl. Then

Previously in this section we described a one-to-one correspondence
between the strongly complete Serre classes of Jffl and S3ft. We con-
clude this section by describing the resulting correspondence between
the strongly complete filters of left ideals of R and S.

By hypothesis S = End^P^) with PR a progenerator. Since PR is
finitely generated and projective, by the Dual Basis Lemma [2, Pro-
position VII, 3.1] there exist x19 , xn e P and f19 , fn e P* such that

« = Σ a \ /i(α) and / = Σ / ( ^ ) Λ

for all xeP and all feP*.
For each left ideal I of R, let

7 = {s e S I s(Xi) ePI for all i = 1, , n) = Π (0: ^ )

where xt is the canonical image in P/PI of a;f. Similarly, for each
left ideal / of S, let

J= {reRlrfiG P*J for all i = 1, , n} = f] (0: J,)

where /< is the canonical image in P*/P*J of / i β

If IeF(R), the strongly complete filter of left ideals correspond-
ing to JT(R), then G(R/I) = P®BR/I ~ P/PIe ^~(S). Thus (0: ̂ ) e
i^(S), the strongly complete filter of left ideals corresponding to ^~(S),
for all i = 1, , n. It follows that le F(S).

Similarly, if Je F(S), then H(S/J) = P*®SS/J = P*/P*Jej^(R).
Thus (0: Bfi) e F(R) for all i = 1, , n. Thus Je F(R).

Finally, if JeF(S) and / = J one checks that I £ J. Thus we
have shown the following.

PROPOSITION 2.6. Let ^{R) and ^~(S) be corresponding strongly
complete Serre classes of RW and sΈl with associated filters of left
ideals F(R) and F(S) and let J be a left ideal of S. Then JeF(S)
if and only if there exists an Ie F(R) with I ^ J.

3* Applications* In this section the results of the preceding
section and applied to the maximal and the classical rings of left
quotients.

Let ^~f{R) and ^~'{S) denote the maximal faithful Serre classes
of *9K and 5SK. By virtue of their maximality ^~'{R) and ^'(S)
correspond as in § 2. Hence as a special case of (2.4) we have the
following.

THEOREM 3.1. The maximal rings of left quotients of Morita
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equivalent rings are Morita equivalent.

COROLLARY 3.2. Let R and S be Morita equivalent rings. Then
Q(BR) is von Neumann regular if and only if Q(SS) is von Neumann
regular. Consequently, Z{RR) = 0 if and only if Z(SS) = 0.

In the following let R be a left Ore ring and let ^Γ

C(R) and
FC{R) be as defined in § 1. As usual let S = End^P*) with PR a right
iϋ-progenerator. It is unknown whether S is necessarily left Ore.
Indeed, we do not know whether the ring of n x n matrices over a
left Ore ring is left Ore for n > 1 unless additional requirements are
placed on QC(R). (See Small [12, Theorem 2.28]) As a partial result
we shall show that S is left Ore if R is commutative.

As indicated in § 2,

= [M e sm I H(M) e

is a faithful Serre class of 5SK with associated filter F(S) given by

F(S) = {J^S\T^J for some Ie FC(R)} .

Let

FC(S) = {J^S\JΠ U(S)* 0 }

where U(S) denotes the set of nonzero divisors of S and let

JT^(S) = {Me sm I (0: m) e FC(S) for all meM} .

If ^~C(S) - ^~(S) or equivalents if FC(S) = F(S), then S is left Ore
and Qc(R) and QC(S) are Morita equivalent.

THEOREM 3.3. If R is commutative, then S is left Ore and QC(R)
and Qc(S) are Morita equivalent.

Proof. We show FC(S) = F(S). Let JeF(S). Then there exists
Ie FC(R) with I ^ J. Let del f] U(R) and define pd e S by ρd(x) = xd
for each xe P. Then ρdeΐ since ρd(x) e PI for all x e P. For all
se S and all xe P, ρds(x) = spds(x) = s(x)d. If pds = 0 then fi(s(x))d=0
for i — 1, ---,n. Since deU(R) and fi(s(x))eR this implies that
/.(s(x)) = 0 for i = 1, , n. Therefore s(x) - Σ XifMx)) = 0 for all
xeP. Hence s= 0 so ^ e U(S). Thus ρdeJn U(S) so JeFc(S).
Therefore F(S)SFC(S).

Conversely, let JeFc(S) and let S G J Π ( S ) . Let FR be a free
right JS-module of rank n with FR = PR®PR for some PΛ ' and let
yl: End^ίF^) —> JB% be a unital ring isomorphism. Using the fact that
PR is a progenerator one checks that s e E n d ^ ) defined by s(p, p') =
(s(p), pf) is a nonzero divisor of EnάR(FR). Since /f(s) is a nonzero
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"divisor of Rn and R is commutative, det Λ(s) e U(R). (See McCoy [9]).
Thus letting I = Rd, we have IeFc(R). Let s' denote the restriction
of A*1 (adj A(s)) to PR. Then s's = ^ where #*(#) = a%£ for each xe P
and since s e J, ^ e J . Let ί e J. Define ί ' e S by

n

t'(x) = Σ %Jrijfi(%) for each a e P where

= v ^- <| iJ cϊ e P I for i = 1, , n .
Σ
3 = 1

Then one checks that t = f <od and since pdeJ,teJ. Hence J ^ J so
JeF(S) by (2.6). Therefore i ^ S ) s ^(S). Thus we have shown that
FC(S) = F(S) and by our previous remarks the theorem follows.
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