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ON THE IMPOSSIBILITY OF OBTAINING S%x S' BY
ELEMENTARY SURGERY ALONG A KNOT

Louise E. MOSER

Elementary surgery along a knot has been used in an
attempt to construct a counterexample to the Poincaré
Conjecture. Certain classes of knots have been examined,
but no counterexample has yet been found. Another, and
perhaps as interesting a question, is whether S? X S* can be
obtained by elementary surgery along a knot. In this paper
the question is answered in the negative for knots with
nontrivial Alexander polynomial, for composite knots, and for
a large class of knots with trivial Alexander polynomial—the
simply doubled knots.

By a knot we will mean a polygonal simple closed curve in the
3-sphere S®. A solid torus T is a 3-manifold homeomorphic to S* x D2
The boundary of T is a torus, a 2-manifold homeomorphic to S* x S*.
A meridian of T is a simple closed curve on Bd T which bounds a
disk in T but is not homologous to zero on Bd 7. A meridianal disk
of T is a disk D in T such that DNBdT=BdD, and BdD is a
meridian of 7. A longitude of T is a simple closed curve on Bd T
which is transverse to a meridian of T and is null-homologous in
S — T.

The basic construction, elementary surgery along a knot, is now
described: Let N be a regular neighborhood of a knot K, m an
oriented meridianal curve on Bd N, and ! an oriented curve on Bd N
which is transverse to m and bounds an orientable surface in S* — N.
Let T be a solid torus and let 2: T— N be a homeomorphism. Then
S® is homeomorphic to S* — N U, sy T. Now let h,: Bd T— Bd N be
a homeomorphism with the property that 27*-h,: Bd T— Bd T does not
extend to a homeomorphism of T onto 7. Let M*=S"—NU, T,
then we say that M?is obtained from S® by performing an elementary
surgery along K.

Consider now the fundamental group of the complement of the
knot 7,(S* — N) with base point m N1, where m and [ are considered
as elements of 7,(S° — N) = G. Then the coset m = mG’ generates
the commutator quotient group G/G’ = H(S® — N), and the longitude
! is in the second commutator subgroup G'’. The fundamental group
of M?® is obtained by adjoining the relation I = m? to 7, (S®— N)
where pl — gm is the image under %, of the boundary of a meridianal
disk of T, p and q are relatively prime, and p > 0. The first homology
group of M:® is generated by 7 with the relation m* = 1.
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Thus if M?is homeomorphic to S* x S, then 7,(M?®) =~ H,(M?) =~ Z.
Hence, ¢ = 0 and p = 1; that is, a longitudinal surgery is performed
in which the image of the boundary of a meridianal disk is a longitude.
It should be noted that a longitudinal surgery along a trivial knot
does yield S* x S'. In the following theorem we give a necessary
condition that a surgered manifold be homeomorphic to S* x S*.

THEOREM 1. If a manifold homeomorphic to S*®x S' results
Jfrom elementary surgery along a knot K, then the Alexander poly-
nomial of K 1s trivial.

Proof. If a surgered manifold M? is homeomorphic to S* x S', then
a longitudinal surgery must have been performed. The fundamental
group of M?® is obtained by adding the relation =1 to 7,(S*—N)=G.
In other words, 7,(M?®) is the quotient group of G by the normal
closure of the subgroup generated by !; denote this subgroup by (7).
Now since [ € G” and G” is a characteristic subgroup of G’, it follows
that (I) £ G”" £ G'. Thus if G” is a proper subgroup of G’, then
w(M?®) = Z and M*® is not homeomorphic to S* x S'. But G” is a
proper subgroup of G’ if and only if the Alexander polynomial of K
is nontrivial [1]. This establishes Theorem 1.

So now we consider a large class of nontrivial knots with trivial
Alexander polynomial—the simply doubled knots. A simply doubled
‘knot or a doubled knot without twists is defined as follows: Let T,
be a standardly embedded solid torus in S® with meridian m, and
longitude I, Let J be a self-linking simple closed curve in T, (as
shown in Figure 1 for the trefoil) and let T, be a regular neighborhood
of Jin T, with meridian m, and longitude !,. Let K be a nontrivial
knot in S®, N(K) a regular neighborhood of K with meridian m and
longitude ! which bounds an orientable surface in S® — N(K). Let
f: Ty— N(K) be a homeomorphism with the property that f(m,) = m
and f(l,) =1, then we say that K is simply doubled to obtain f(J).

FIGURE 1.
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The doubled knot f(J) we will denote by dK.

Consider now the fundamental group of T, — T, with base point
meN 1l let G, = (T, — T;) and let G(K) = 7,(S* — N(K)). By van
Kampen’s theorem, the group of the double of K, G(K) =
7,(S* — N(dK)), is the free product with amalgamation G(K)+G, with
the identification of subgroups (I, m) of G(K) and (L, m, of G, de-
termined by ! =1, and m = m,. Furthermore, G, is generated by [,
and m, subject to the relation [l,, m,] =1 where [z, y] = zyz™ 'y,
m, = [I;7, m,][l;", mT'], and [, = [m7, L][m:", I5']. See [2].

THEOREM 2. Elementary surgery along a doubled knot does not
yield S* x S'.

Proof. Perform a longitudinal surgery along dK by replacing
the regular neighborhood f(T,) of dK by a solid torus T, to obtain
M =S — f(T)U, T, where h:Bd T,— Bd f(T,) is a homeomorphism
which takes a meridian of 7, to the longitude f(I,) of f(7)).

D =

FIGURE 2.

Now instead of first replacing N(K) by 7T, and then replacing
N(K) = f(T,) by T, first replace T, by T, and then replace N(K)
by T,. Then by van Kampen’s theorem, the fundamental group of
M?® is the free product with amalgamation G(K)+G, with the identifi-
cation of subgroups (I, m) of G(K) and (I, m,) of G, where G, is obtained
from G, by adding the relation [, = 1. The group G, has the following
presentation: = (b, m,|[l, mo] =1, my = [I7", m][;7, mT*], L=
[mt, L][mi, l0“1] = 1) If we add the relation m,l, = l;'m, to G, then
mil, = l7'm7Y, and it follows that m, = 5 'mJlm ' mym, = I;* and
I = m om0 m7 ' myl, = 1. Thus the relations [l, m,] =1 and [, =1
are consequences of the relation ml, = I;'m, and the group G, =
(lo, 7, | ML, = 17m,) is a quotient group of G,. Now the propertles of
G, are well-known: G, is torsion-free and 7, == 1. Hence, 7, = [;* # 1
in Gy, my#1 in Gy, and m, = 1in 7 (M?). But m, = [I;*, m][l;", mi].
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Thus z,(M?®) is not abelian, and M?® is not homeomorphic to S? x S
This completes the proof of Theorem 2.

Finally we consider composite knots. A knot K is a composite
of nontrivial knots K, and K, if there is a 2-sphere S*® and an arc «
in S§* such that (1) S*°NK = {x, ¥} (x + y) (2) «a is an arc from x to y
3) (Int SN K) U« is a knot of the same typeas K, (4) (Ext SN K)U«
is a knot of the same type as K,. The composite knot K is denoted
by K, % K..

If m, is a meridian of K, and I, is a longitude of K, (1 =1, 2),
then the group of the composite knot, G(K, £ K,) = 7,(S* — N(K)), is
the free product with amalgamation G(K,)*G(K,) with the identification
of subgroups (m,) of G(K,) and (m,) of G(K,) determined by m, = m,.
A longitude for K, ¢ K,is | = l,l,. See [3]. By Theorem 1 it suffices
to consider composite knots with trivial Alexander polynomial. Such
a knot is the composite of two knots each with trivial Alexander
polynomial. The following theorem will be proved, however, for ar-
bitrary composite knots.

THEOREM 3. FElementary surgery along a composite knot does
not yield S* x S*.

Proof. Perform a longitudinal surgery along K, % K,. The fun-
damental group of the surgered manifold M?® is obtained by adding
the relation I =1 or I, = I;* to G(K, # K,). Thus 7,(M°) can be con-
sidered as the free product with amalgamation G(K,)*G(K,) with the
identification of subgroups (I, m,) of G(K,) and (I, m,) of G(K,) de-
termined by !, = ;' and m, = m,. Since K, is nontrivial, /, # 1 in
G(K;), and so l; # 1 in 7 (M?. But [, is in the commutator subgroup
of G(K,), so also in the commutator subgroup of 7, (}M°). Hence 7 (M?)
is nonabelian, and M?® is not homeomorphic to S*x S'. This es-
tablishes Theorem 3.

We conclude with the following conjecture: S* x S' cannot be
obtained by elementary surgery along any nontrivial knot. The proof
of this conjecture like the proof of the conjecture, that elementary
surgery along a nontrivial knot does not yield a counterexample to
the Poincaré Conjecture, seems very difficult.
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