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THE NORM OF A CERTAIN DERIVATION

CHARLES A. McCARTHY

J. C. Stampfli has asked whether the norm of the deriva-
tion Q;: A—>TA — AT as a mapping of the subalgebra U of
B(H) into B(H) is given by inf{2||T — A’|: A’ eW’}. That this
need not be the case is shown through an example in 4 X 4
matrices.

H is a Hilbert space. B(H) is the algebra of all bounded linear
operators on H. 9 is a subalgebra of B(H) and A’ is the commutant
of 2.

In [6], J. C. Stampfli proved that the norm of Q, as a mapping
of B(H) into itself is precisely 2 inf,||T — N|l. Thus the question
about ||Q7|| as a mapping from A to B(H) naturally arises. In
addition, Kadison, Lance, and Ringrose [2, Theorem 3.1] show that if
T= T* and Q maps 2 into itself, then [|Q;|| = inf{2]|T— A'||: A" e N'}.
Our example will have T self-adjoint, which shows that their hy-
pothesis L(A) W is not inessential.

For our example, we take H to be complex four-dimensional
Hilbert spaces; elements of H are to be thought of as column 4-
vectors, and elements of B(H) as 4 x 4 matrices. We take U to be
the subalgebra of diagonal matrices, so 9’ = 9.

For T we take the Hermitian matrix
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T is of the form P — @ where P and Q are self-adjoint projections.
The range of P is two-dimensional and is spanned by the orthogonal
unit vectors
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the range of @ is one-dimensional and is spanned by the unit vector
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First we show that || Q|| = sup{|| TX — XT||: Xe¥, || X|| =1} < 2.
As the unit sphere of 2 is the convex hull of the unitary matrices
in %, it suffices to consider ||TX — XT|| only for diagonal unitary
matrices X. As T has norm 1 and any X has norm 1, || TX — XT|| < 2.
Suppose then that there were an X for which ||TX — XT|| = 2 (since
the set of X under consideration is compact, the supremum defining
Q, is attained). Then there must be a unit vector v € H for which
I(TX — XT)u|| = 2, and since TX and XT are both of norm 1, we
must have ||TXu|| = 1 = || XTw]||; and since the norm of H is strictly
convex, we must have TXu = — XTu. Further, since ||Tu|| = 1, we
must have v = Pu + Qu. The next two relations are consequences
of TXu = — XTu; start in the middle and work towards either end.

PXPu + PXQu = PX(P + Q)u = PXu
= P(P — QXu = PTXu = —PXTu

= —PXPu + PXQu,
so PXPu = 0;
—QXPu — QXQu = —QXu
=QTXu = —QXTu
= —QXPu + QXQu ;
so @XQu = 0.

Next we observe that XPu is in the range of @ and XQu is in
the range of P; for if one of these were not the case, we should
have the strict inequality below:

L= [lulf = [Qul + | Pulf = [| XQu|} + || XPu]l*
> || PXQull® + || @XPulf*
= [|PX(P + Qull* + [|QX(P + Qu]*
= [|PXull® + [|QXu |l = || TXu| .

But if ||Q;]] is to be 2, we cannot allow || TXul| < 1.

Since || XPul* + || XQu||* = 1, not both of XPu and XQu may be
zero. Observe that operation on a vector by the diagonal unitary X
does not change the absolute value of any component. If XPu = 0,
then XPu is in the range of @ and the conclusion we draw is that
there must be a nonzero vector in the range of » with moduli of
components the same as that of g. If XPu = 0, then XQu == 0 and
XQu is in the range of P; we draw the same conclusion.
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To finally reach the desired contradiction to the assumption
[1Q7|] = 2, we need only show that no vector in the range of p has
components of the same modulus as ¢q. Indeed, if there were, such
a vector must be of the form p = e*(cos Op™® + ¢’ sin Op®) for some
real B, 0, @. Equating the squares of the moduli of the first two
components yields

1=|cosB® + ¢®sin@P=1+ 2cos@sinBcos @,
4=cosO(—1+ iV 3) + ¢?sin@(—1 — iV 3)[

=4+ 8cos@sin@cos<d> —l——%ﬂ—) .

Thus cos®sin® =0 and p must be a multiple of p* or p®; but
neither of these has the moduli of their last two components the
same as q.

Having demonstrated that ||Q,|| <2, we show now that ||T—A4'||=1
for every A'eW'. As ||T|| =1, this is equivalent to showing that
|T — D|| = 1 for every diagonal matrix D. Suppose, then, that there
were a diagonal matrix D-with diagonal entries d,, d,, d,, d,—for which
|| T—DJ||<1l. We may assume D real, since || T—Re D||=||Re(T—D)|| =<
|T — Dj| <1, where by Re A we mean 1/2(4 + A4*).

Let p be any unit vector in the range of p, and ¢ as before.
Consider the inner product

((T — D)(cos 6p + €% sin Bq), (cos Op — e sin Oq)) .
This is equal to
1 — (D(cos Op + ¢ sin Oq), (cos Op — e sin Og)) ,
but has absolute value less than 1. Hence
Re(D(cos Op + ¢ sin Oq), (cos Op — ¢* sin Oq)) > 0,

for any choice of p, ©, and @. The choices ® =0, p = p®, and p = p?®
give
<dl + dd, + iz?’_dg + %ah) >0,

<dl +4d, + La, + E(L) >0,
2 2
and hence
(dl + 4d, + %ds + -;—d4> >0.

But the choice & = /2 gives
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—(d, +4d, + —;—da + _;-d4> >0.

This incompatibility is a contradiction to ||T — DJ| < 1.

The reader will observe the similarity with Example 5.5 of [3].
In spirit, we have the logarithmic analogue of the problem of con-
ditioning matrices. One can ascertain conditions that || T — A'||= || T'||
for all A’e’ by consideration of the norms || T'||, = [trace(T™ T)"?]'»
as p— oo, as in [4, Lemma 4.7, Theorem 4.8] or, more generally, [5,
§6]. For T self-adjoint, the relevant condition to have || T—A"||=]| T||
for all diagonal A’ is that both numbers —||T|| and || T|| are eigen-
values of T and that the spectral projections associated with these
eigenvalues have proportional diagonals. Conditions involving su-
prema of norms over the group of diagonal unitaries are related to
the moduli of components of certain vectors; see [4, Theorem 5.4],
as well as [1, 2]. Finally, we note that for the analogous problem
of conditioning matrices, examples such as we have constructed are
not available in 3 x 3 matrices, nor with 4 x 4 real matrices.
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