THE INDEX OF CONVEXITY AND PARALLEL BODIES

GERALD A. BEER

Intuitively, the visibility function for a set C in \mathbb{R}^n measures the n-dimensional volume of the star of a variable point of C. Suppose that the visibility function for C is measurable. If the measure of C is positive, normalizing the integral of the function produces a measure of the relative convexity of C, called the Index of convexity of C. The purpose of this paper is to study the relationship between the Index of convexity of a compact set C in \mathbb{R}^n and the Indices of its parallel bodies. Continuity properties of the Index are established relative to an appropriate metric on the class of compact sets in \mathbb{R}^n .

1. Introduction.

DEFINITION. The visibility function assigns to each point x of a fixed measurable set E in a Euclidean space R^n the Lebesgue outer measure of $\{y: rx + (1-r)y \in E \text{ for each } r \text{ in } [0,1]\}$ and zero to each point of $R^n \setminus E$.

DEFINITION. Let $E \subset R^n$ be a measurable set with measurable visibility function v_E , and suppose the Lebesgue measure of E, m(E), is finite. If m(E) > 0, the Index of convexity of E, I(E), is given by $\int v_E/(m(E)^2) \ dm$. If m(E) = 0, we agree to let I(E) be 1.

The reader will find a general treatment of the visibility function and the Index of convexity in [3]. Important for the present article are the following results: The visibility function for E is uppersemicontinuous whenever E is compact, and I is upper-semicontinuous on the class of all compact sets in \mathbb{R}^n with an appropriate metric; namely, if C and K are compact sets, define $\bar{d}(C, K)$ to be $\sup (d(C, K), m(C \Delta K))$ where d denotes Hausdorff distance.

Let $B_r(x)$ denote the closed r-ball about a point x in \mathbb{R}^n .

DEFINITION. Let C be a compact set in R^n . The ε -parallel body of C, denoted by $B_{\varepsilon}(C)$, is the compact set $\bigcup_{x \in C} B_{\varepsilon}(x)$.

This paper illustrates the central role played by parallel bodies in the study of the Index of convexity. Using this concept, we can characterize those sequences $\{C_k\}$ of compact sets convergent in the \overline{d} metric to a compact set C of positive measure having the property that $I(C) = \lim_{k \to \infty} I(C_k)$.

We then consider the Index as a function of the radius ε of the

parallel body $B_{\epsilon}(C)$ of a fixed compact set C in \mathbb{R}^n . This function is continuous if C is starshaped. Also, if C is contained in a flat of dimension p, its p dimensional Index of convexity, if it is not "trivially" 1, is determined by the Indices of its parallel bodies in \mathbb{R}^n .

With a few exceptions we use the same terminology as in [1]. We denote ordinary Lebesgue measure by m_n or simply by m if only one space is under discussion. Conv ker E and conv E will indicate the convex kernel and convex hull of E, respectively. As usual, bd E, int E, and cl E are the boundary, interior, and closure of E. Finally, xy will denote the line segment joining x to y. If $x \in C$, we say that x sees y via C if $xy \subset C$. The star of x relative to x is simply all those points which x sees via x. As alluded to above, x represents the visibility function for a fixed set x, and x is the Index of x.

2. The characterization theorem. The visibility function v_c of a compact set C is continuous on C if and only if the visibility functions for the parallel bodies of C, when restricted to C, converge uniformly to v_c [2]. We establish here an analogous result for the unnormalized integral of the visibility function defined on a compact collection of compact sets in R^n relative to the Hausdorff metric.

If C is a compact set in \mathbb{R}^n , denote the unnormalized integral of the visibilility function for C, $\int v_C \, dm$, by V(C).

LEMMA 1. Let $\{C_i\}$ be a collection of compact sets in \mathbb{R}^n convergent in the Hausdorff metric to a compact set C. Then $V(C) \geq \limsup_{i \to \infty} V(C_i)$.

Proof. If x is in C, let S(x) denote the star of x relative to C, and let $S_l(x)$ denote star of x relative to C_l . Since $\{C_l\}$ converges to C in the Hausdorff metric, for any fixed $\varepsilon > 0$, $B_{\varepsilon}(S(x))$ includes $S_l(x)$ for all sufficiently large integers l. This yields $v_c(x) \ge \sup_{l \to \infty} v_{c_l}(x)$ for each x in C. By Fatou's lemma

$$egin{aligned} V(C) &= \int v_{\scriptscriptstyle C} dm \geqq \int_{\scriptscriptstyle C} \limsup_{l o \infty} v_{\scriptscriptstyle C_l} dm \geqq \limsup_{l o \infty} \int_{\scriptscriptstyle C} v_{\scriptscriptstyle C_l} dm \ &= \limsup_{l o \infty} \int \!\! v_{\scriptscriptstyle C_l} dm = \limsup_{l o \infty} V(C_l) \end{aligned}$$

since $m(C_l \backslash C) \rightarrow 0$.

Hence, V is an upper-semicontinuous function on the metric space of compact sets in R^n with the Hausdorff metric. Since $\{x: ||x|| \leq 1\}$ in R^n is the Hausdorff limit of a sequence of compact sets of measure zero, V fails to be globally continuous.

In establishing our main result we use the following famous theorem of Dini: Let $\{f_n\}$ be a sequence of upper-semicontinuous nonnegative functions defined on a compact metric space \mathscr{L} . Suppose for each x in \mathscr{L} , $\{f_n(x)\}$ converges monotonically to zero. Then $\{f_n\}$ converges uniformly to the zero function on \mathscr{L} . For simplicity of notation, let $V_k(C)$ denote $V(B_{1/k}(C))$ for each $k \in \mathbb{Z}^+$.

THEOREM 1. Let \mathscr{A} be a compact collection of compact sets relative to the Hausdorff metric. The function $V\colon \mathscr{A}\to R$ is continuous on \mathscr{A} if and only if $\{V_k\}$ converges uniformly to V on \mathscr{A} as $k\to\infty$.

Proof. Suppose first that V is continuous on \mathscr{A} . The previous lemma implies that $\{V_k - V\}$ is a sequence of upper-semicontinuous functions. Clearly, the sequence converges monotonically to zero on \mathscr{A} . Since \mathscr{A} is compact, Dini's theorem now applies.

Conversely, suppose V is discontinuous at some compact set C in \mathscr{L} . Since V is upper-semicontinuous, there must then exist a sequence $\{C_k\}$ in \mathscr{L} and an $\varepsilon>0$ satisfying $V(C)>V(C_k)+\varepsilon$ and $d(C_k,C)<1/k$ for all k. By the definition of Hausdorff distance, $B_{1/k}(C_k)\supset C$ so that $V_k(C_k)>V(C_k)+\varepsilon$. Thus, the convergence cannot be uniform on \mathscr{L} .

Suppose that $\{C_l\}$ is a sequence of compact sets in R^n convergent to C in the \bar{d} metric (not merely in the Hausdorff metric), and m(C) > 0. The following are necessary and sufficient conditions for $\lim_{l \to \infty} I(C_l)$ to exist and to equal I(C).

THEOREM 2. Let $\{C_l\}$ be a collection of compact sets convergent in the metric \overline{d} to a compact set C of positive measure. Then $\lim_{l\to\infty} I(C_l) = I(C)$ if and only if $I(B_{1/k}(C_l)) \to I(C_l)$ uniformly on $\{C_l: l \in Z^+\}$ as $k \to \infty$.

Proof. Let \mathscr{M} denote $\{C\} \cup \{C_l \colon l \in Z\}$. \mathscr{M} is compact relative to the \overline{d} metric and has only one limit point, the set C. Since Lebesgue measure is an upper-semicontinuous function on the metric space of compact sets in R^n with the Hausdorff metric, an application of Dini's theorem yields the uniform convergence of $\{m(B_{1/k}(F))\}$ to m(F) for each $F \in \mathscr{M}$ as $k \to \infty$. It follows that $\lim_{k \to \infty} m(B_{1/k}(C_k)) = m(C)$. A slight modification of the technique used in the preceding theorem now yields the sufficiency of the conditions as the Index of convexity is upper-semicontinuous with respect to the metric \overline{d} . Conversely, if $\lim_{l \to \infty} I(C_l) = I(C)$, then $\lim_{l \to \infty} V(C_l) = V(C)$. Our result now follows from Theorem 1, as any uniformly convergent sequence of functions on $\mathscr M$ will automatically be uniformly convergent on

 $\{C_i: l \in Z^+\}.$

Since the Index of convexity is not upper-semicontinuous with respect to the Hausdorff metric [3], the necessity of using the \overline{d} metric in the previous theorem is not surprising. To verify this, given $l \in Z^+$, let C_l be the planar set $\{(x,y)\colon 0 \le x \le 1,\ 0 \le y \le 1\} \cup \{(x,y)\colon 1 \le x \le 2,\ y=k/l,\ k=0,\ 1,\ \cdots l\}$. The sequence $\{C_l\}$ converges to $C=\{(x,y)\colon 0 \le x \le 2,\ 0 \le y \le 1\}$, and $I(C_l)=I(C)$ for all l. However, $I(B_{1/k}(C_l))$ does not converge uniformly to $I(C_l)$ on $\{C_l\colon l \in Z^+\}$. One can also see that both Theorems 1 and 2 fail if the metric only reflects convergence in measure.

3. Parallel bodies of a fixed set. Let C be a fixed compact set in R^n . Define $I^*: (0, \infty) \to R$ by $I^*(r) = I(B_r(C))$. It is obvious that $I^*(r) > 0$ for r > 0 and that $\lim_{r \to \infty} I^*(r) = 1$.

THEOREM 3. Let C be a compact set in R^n . Then $I^*(r-) \le I^*(r) = I^*(r+)$ for each r > 0.

Proof. Let $\{s_k\}$ be a decreasing sequence of positive numbers convergent to r. The visibility function for C is the pointwise limit of the sequence of visibility functions corresponding to $\{B_{s_k}(C)\}$. Hence $I^*(r) = I^*(r+)$. If $\{r_k\}$ is an increasing sequence of positive numbers convergent to r, then the visibility function for $\bigcup_{k=1}^{\infty} B_{r_k}(C)$ is the pointwise limit of the sequence of visibility function corresponding to $\{B_{r_k}(C)\}$. An application of the Dominated Convergence Theorem yields the existence of $I^*(r-)$. Since $\{B_{r_k}(C)\}$ converges in the \bar{d} metric to $B_r(C)$, we have $I^*(r-) \leq I^*(r)$.

A compact planar set for which I^* has infinitely many discontinuities is

$$(0, 0) \cup \bigcup_{k=1}^{\infty} \left\{ (x, y) : \frac{1}{2k+1} \le x^2 + y^2 \le \frac{1}{2k} \right\}.$$

Theorem 4. If C is a compact starshaped set, I^* corresponding to C is continuous.

Proof. We need only show that I^* is left continuous at each point of $(0, \infty)$. Fix r in $(0, \infty)$, and let $\{r_k\}$ be an increasing sequence of positive reals convergent to r. As we have seen, $\{B_{r_k}(C)\}$ converges in the \bar{d} metric to $B_r(C)$. Moreover, since C is starshaped, $\bigcup_{k=1}^{\infty} B_{r_k}(C)$ is precisely int $B_r(C)$. The assertion now easily follows from the Dominated Convergence Theorem upon verifying that $v_{B_{r_k}(C)}(x) \to v_{B_r(C)}(x)$ for each x in int $B_r(C)$.

Suppose such a point x sees a point z via int $B_r(C)$. The com-

A compact set that is the closure of an open set and that has Index 1 must be convex [3]. Hence, if $I^*(r) = 1$ for some r > 0, then $I^*(s) = 1$ for all s > r.

THEOREM 5. Let C be a compact set in \mathbb{R}^n . The number 1 is a value of I^* corresponding to C if and only if $\operatorname{bd}(\operatorname{conv} C) \subset C$.

Proof. If bd (conv C) $\subset C$, it is easy to show that $B_r(C)$ is convex for sufficiently large r. Conversely, suppose bd (conv C) $\cap C^{\circ} \neq \emptyset$. Given a fixed p in bd (conv C) $\cap C^{\circ}$, choose an outer unit normal x to a hyperplane of support of conv C at p. Evidently, for each r>0, $p+rx \notin B_r(C)$. Since p is a convex combination of points in C, say $\{x_1, x_2, \cdots, x_k\}$, the point p+rx is a convex combination of $\{x_1+rx, \cdots, x_k+rx\} \subset B_r(C)$. Hence $B_r(C)$ is never convex, so that $I^*(r)$ is never one.

COROLLARY. Let C be a compact nonconvex starshaped set in \mathbb{R}^n . Then I^* corresponding to C never assumes the value 1.

Even when C is starshaped, it is not necessarily true that I^* corresponding to C be a monotone increasing function. It would be useful to characterize those compact sets having this property, for if I^* were bounded, monotone increasing, and right continuous, a normalization of I^* yields a probability distribution function.

If $\{C_k\}$ is a sequence of compact sets converging in the \overline{d} metric to C, it may well occur that C is contained in a hyperplane H. Relative to H, C has an n-1 dimensional Index of convexity which we denote by $I^H(C)$. One might guess that if the projections of $\{C_k\}$ onto H converged to C in terms of n-1 dimensional measure, then $\limsup I(C_k) \leq I^H(C)$ would follow. Unfortunately, the inequality is invalid. Let $H = \{(x, y, z): z = 0\}$. Let $C_k = \{(x, y, z): x^2 + y^2 \leq 1, 0 \leq z \leq 1/k\} \cup \{(x, y, z): (x-2)^2 + (y-2)^2 \leq 1, 0 \leq z \leq 2/k\}$. If $C = C_1 \cap H$, then $\{C_k\} \to C$. However, $I^H(C) = 1/2$ while $I(C_k) = 5/9$ for all k. Clearly the projection of each C_k is just C.

342 G. A. BEER

We now show that the n-1 dimensional Index of such a set C is the limit of the Indices of its parallel bodies in R^n .

THEOREM 6. Let H be a hyperplane in R^n . Suppose C is a compact subset of H and $m_{n-1}(C) > 0$. Then $\lim_{k\to\infty} I(B_{1/k}(C)) = I^H(C)$, the Index of convexity of C with respect to H.

Proof. We may assume that $H = \{(x_1, \dots, x_n) : x_n = 0\}$. Let $\pi \colon R^n \to R^{n-1}$ be defined by $\pi(x_1, \dots, x_n) = (x_1, \dots, x_{n-1})$. Two facts are obvious: For each $k \in Z^+$ we have $B_{1/k}(C) \supset \pi(C) \times [-1/k, 1/k]$, and if x belongs to $\pi(C) \times [-1/k, 1/k]$ then the star of x relative to $B_{1/k}(C)$ includes the Cartesian product of the star of $\pi(x)$ relative to $\pi(C)$ with [-1/k, 1/k].

Suppose $p \in R^{n-1}$ does not belong to the star of $\pi(x)$ relative to $\pi(C)$. If k is sufficiently large, no point of $\{p\} \times [-1/k, 1/k]$ can be seen by any point in $\{\pi(x)\} \times [-1/k, 1/k]$ via $B_{1/k}(C)$ or else $\pi(x)p \subset \pi(C)$ by the compactness of C.

For each $k \in Z^+$ and y in $\pi(C)$, let $r_k(y)$ be the n-1 dimensional measure of the projection onto H of the union of the stars of all points in $\{y\} \times [-1/k, 1/k]$ relative to $B_{1/k}(C)$ minus $v_{\pi(C)}(y)$. Thus for fixed k if T(y) denotes $\bigcup_{x \in [y] \times [-1/k, 1/k]} \{z \colon xz \subset B_{1/k}(C)\}$ we have

(1)
$$r_{k}(y) = m_{n-1}(\pi(T(y))) - v_{\pi(C)}(y).$$

The compactness of [-1/k, 1/k] and $B_{1/k}(C)$ imply (i) T(y) is compact so that $\pi(T(y))$ is compact for each $y \in \pi(C)$ (ii) if $\{y_i\}$ is a sequence in $\pi(C)$ with limit y, then

(2)
$$\pi(T(y)) \supset \bigcap_{i=1}^{\infty} \bigcup_{i=1}^{\infty} \pi(T(y_i)).$$

By (1) and (2), r is the difference of two upper-semicontinuous functions. Evidently $\lim_{k\to\infty} r_k(y) = 0$ for each y in $\pi(C)$. Since $B_{1/k}(C) \subset B_{1/k}(\pi(C)) \times [-1/k, 1/k]$ we conclude that for each x in $\pi(C) \times [-1/k, 1/k]$

(3)
$$v_{B_{1/k}(C)}(x) \leq \frac{2}{k} \left(v_{\pi(C)} \circ \pi(x) + r_k \circ \pi(x) \right).$$

Choosing M to be the n-1 dimensional measure of $\pi(B_1(C))$ we also see that

$$(4) v_{\pi(C)} \circ \pi(x) + r_k \circ \pi(x) \leq M$$

for $x \in \pi(C) \times [-1/k, 1/k]$ and all $k \in Z^+$.

To show $\lim_{k\to\infty}I(B_{1/k}(C))=I^{H}(C)$, it suffices to show

(5)
$$\lim_{k\to\infty} \frac{k}{2} m(B_{1/k}(C)) = m_{n-1}(\pi(C))$$

and

(6)
$$\lim_{k\to\infty}\frac{k^2}{4}\int v_{B_{1/k}(C)}dx_1\cdots dx_n=\int v_{\pi(C)}dx_1\cdots dx_{n-1}.$$

To establish (5) we again use the fact that $\pi(C) \times [-1/k, 1/k] \subset B_{1/k}(C) \subset B_{1/k}(\pi(C)) \times [-1/k, 1/k]$ to conclude

$$\frac{2}{k} m_{n-1}(\pi(C)) \leq m_n(B_{1/k}(C)) \leq \frac{2}{k} m_{n-1}(B_{1/k}(\pi(C))).$$

The compactness of $\pi(C)$ implies that $m_{n-1}(B_{1/k}(\pi(C))) \to m_{n-1}(\pi(C))$ as $k \to \infty$ and (5) easily follows.

Recalling that the star of each x in $\pi(C) \times [-1/k, 1/k]$ relative to $B_{1/k}(C)$ includes the Cartesian product of the star of $\pi(x)$ relative to $\pi(C)$ with [-1/k, 1/k], we have

$$egin{aligned} rac{k^2}{4} \int v_{B_1/k(C)} dx_1 & \cdots & dx_n & \geq rac{k^2}{4} \int_{\pi(C)} \left(\int_{-1/k}^{1/k} v_{B_1/k(C)} dx_n
ight) dx_1 & \cdots & dx_{n-1} \ & \geq rac{k^2}{4} \int_{\pi(C)} \left(\int_{-1/k}^{1/k} rac{2}{k} \; v_{\pi(C)} \circ \pi dx_n
ight) dx_1 & \cdots & dx_{n-1} \ & = rac{k^2}{4} \int_{\pi(C)} v_{\pi(C)} \cdot rac{4}{k^2} \, dx_1 & \cdots & dx_{n-1} & = \int v_{\pi(C)} dx_1 & \cdots & dx_{n-1} \end{aligned}$$

since $v_{\pi(G)} \circ \pi$ is constant on any vertical line.

The reverse inequality does not follow so easily. We make a preliminary decomposition:

$$\frac{k^2}{4} \int v_{B_1/k(C)} dx_1 \cdots dx_n$$

$$= \frac{k^2}{4} \int_{\pi(C)} \left(\int_{-1/k}^{1/k} v_{B_1/k(C)} dx_n \right) dx_1 \cdots dx_{n-1}$$

$$+ \frac{k^2}{4} \int_{B_1/k(\pi(C))/\pi(C)} \left(\int_{-1/k}^{1/k} v_{B_1/k(C)} dx_n \right) dx_1 \cdots dx_{n-1} .$$

Since

(8)
$$\frac{k^2}{4} \int_{-1/k}^{1/k} v_{B_{1/k}(C)} dx_n \le M$$

for all k, the second integral in (7) can be made less than $\varepsilon/3$ if k is sufficiently large.

Since r_k is measurable for each k, by Egoroff's theorem there is a subset F of $\pi(C)$ such that $m_{n-1}(F) < \varepsilon/3M$ and r_k converges to zero uniformly on $\pi(C)/F$. For any $k \in \mathbb{Z}^+$, we now have using (8)

$$rac{k^2}{4}\int_F \left(\int_{-1/k}^{1/k} v_{B_{1/k}(C)} dx_n
ight) dx_1 \cdot \cdot \cdot dx_{n-1} < rac{arepsilon}{3M} \cdot M = rac{arepsilon}{3} \ .$$

344 G. A. BEER

Pick k so large that $|r_k(y)| < \varepsilon/3M$ uniformly on $\pi(C)/F$. We can now conclude from (3) and (4) that

$$egin{aligned} & rac{k^2}{4} \int_{\pi(C)/F} \left(\int_{-1/k}^{1/k} v_{B_{1/k}(C)} dx_n
ight) \! dx_1 \cdot \cdot \cdot \cdot dx_{n-1} \ & \leq rac{k^2}{4} \int_{\pi(C)/F} \left(\int_{-1/k}^{1/k} rac{2}{k} (v_{\pi(C)} \circ \pi \, + \, r_k \circ \pi) dx_n
ight) \! dx_1 \cdot \cdot \cdot \cdot dx_{n-1} \ & \leq \int_{\pi(C)/F} v_{\pi(C)} + rac{arepsilon}{3M} \! dx_1 \cdot \cdot \cdot \cdot dx_{n-1} \leq \int_{\pi(C)} v_{\pi(C)} dx_1 \cdot \cdot \cdot \cdot dx_{n-1} + rac{arepsilon}{3} \ . \end{aligned}$$

Combining our three integrals over $B_{1/k}(\pi(C))/\pi(C)$, F and $\pi(C)/F$ we have

$$\frac{k^2}{4} \int v_{B_{1/k}(C)} dx_1 \cdots dx_n \leqq \int v_{\pi(C)} dx_1 \cdots dx_{n-1} + \varepsilon$$

when k is sufficiently large so that (6) is established. Theorem 6 has the following obvious generalization.

THEOREM 7. Let C be a compact set in R^n contained in a flat F of dimension p, and suppose $m_v(C) > 0$. If $I^r(C)$ denotes the Index of convexity of C with respect to F, then $\lim_{k\to\infty} I(B_{1/k}(C)) = I^r(C)$.

The proofs of Theorems 6 and 7 are identical modulo replacing [-1/k, 1/k] by an n-p dimensional sphere of radius 1/k. Of course, the notation required to establish Theorem 3 would be horrendous, and for this reason we confined ourselves to p=n-1.

Can we define the Index of convexity of a compact C of measure zero to be the limit of the Indices of its parallel bodies? If C is a compact set of positive measure, then $\lim_{r\to 0^+} I^*(r) = I(C)$, but if m(C) = 0, then the limit need not even exist. To see that I^* may behave poorly, we construct a peculiar compact set C in the plane consisting of a countable collection of vertical segments. Each segment has length one and lies in the strip $\{(x, y): 0 \le y \le 1\}$. After placing a segment at the origin, we construct the others in an iterative manner. Let $\delta_1 = 1/8$. Initially place two vertical segments at $x=1-\delta_1$ and at $x=1+\delta_1$. Adjoin to this set 4 equally spaced segments between $x=1/4\delta_1$ and $x=3/4\delta_1$. Denote half the distance between such segments by δ_2 . Having chosen $\delta_1, \delta_2, \dots, \delta_n$, construct 2^{2^n} equally spaced vertical segments between $x=1/4\delta_n$ and $x=3/4\delta_n$, and denote half the distance between adjacent new segments by δ_{n+1} . Let C be the union of the segments so constructed. Although $I^*(\delta_n -) < 1/2$ for all n, $\lim_{n \to \infty} I^*(\delta_n) = 1$. example also indicates that I^* need not be of bounded variation.

REFERENCES

- 1. G. A. Beer, Continuity Properties of the Visibility Function, to appear, Michigan Math. J., 20 (1973), 297-302.
- 2. ——, The continuity of the visibility function on a starshaped set, Canad.
- J. Math., 24 (1972), 989-992.
- 3. _____, The index of convexity and the visibility function, Pacific J. Math., 44 (1973), 59-67.
- 4. F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964.

Received May 7, 1973 and in revised form November 25, 1973.

CALIFORNIA STATE UNIVERSITY