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AN ANALOGUE OF OKA'S THEOREM FOR WEAKLY
NORMAL COMPLEX SPACES

WILLIAM A. ADKINS, A L D O ANDREOTTI, J. V. LEAHY

Two well known results concerning normal complex spaces
are the following. First, the singular set of a normal complex
space has codimension at least two. Second, this property
characterizes normality for complex spaces which are local
complete intersections. This second result is a theorem of
Abhyankar [1] which generalizes Oka's theorem. The purpose of
this paper is to prove analogues of these facts for the class of
weakly normal complex spaces, which were introduced by
Andreotti-Norguet [3] in a study of the space of cycles on an
algebraic variety. A weakly normal complex space can have
singularities in codimension one, but it will be shown that an
obvious class of such singularities is generic.

1. P r e l i m i n a r i e s . All complex spaces are assumed to be
reduced. If X is a complex space, there is the sheaf ϋx of holomorphic
functions on X, and the sheaf 0c

x of c -holomorphic functions on X. A
section of 0c

x on an open subset U of X is a continuous function
/: 17—>C such that / is holomorphic on the regular points of U. The
complex space X is said to be weakly normal if Ux = ΰc

x. Examples of
weakly normal spaces are normal spaces and unions of submanifolds of
Cm in general position.

Let Vj={(xu •••,xm)eCm: xk = 0 for n^k<j and j<k^m}
where n^j^m. Then V} is an n-dimensional linear subspace of
Cm. Let

V(n,m)= U V,={(x1, , jc m )GC m 1 X ^ = 0 for n ^ i < j ^ m}

and let S(V ( n m )) be the singular set of V(π,m).

LEMMA. V(nm) is a weakly normal complex space and dim S( V(n,m)) =
n-ί.

Proof. Since S(V(n,m)) = {(JC1? • ,x m )G Cm: xn = = xm = 0},
dim S(V{thm)) = n - 1. Let /: V^)—> C be a continuous function which is
holomorphic on the regular points of V(n,m). To prove weak normality of
V(n,m), w e need to show that / is holomorphic. Let fi = / | Vj. By the
Riemann extension theorem, fi is holomorphic on the n -plane V, and
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thus fj = fj(x\ Xj) is a convergent power series, where x' = (x1? , xn_2)
and JC, are coordinates on Vy. Since ^|X/=0 = /* Ufc=o for n i / , fc ̂  ra, we
let /o(x') = ̂ (x',O) and set gJ(x\x]) = f}(x\Xj)-fo(x') for n ^ / ^
m. Then f(xu , xm) = fo{x')+ Σ;"Ln g ;(x', JC;) and hence / is holomor-
phic on V(n,w).

If X is a complex space with dimX = n, let Sg(X) =
S(X) U (Uo<κ« Xik)) where S(X) is the singular set of X and X ( k ) is the
analytic subset of X defined by X(k) = {x E X: X has a branch of
dimension k at x}. If C4(X, JC) denotes the fourth Whitney tangent cone
of X at x, then Stutz [6] has shown that W4 =
Sg(X) ΓΊ {x E X : dimC4(X, x)>n} is an analytic subset of X of
codimension at least two.

2. Codimension one singularities of weakly normal
spaces. Let X be a complex space. A point JC E X is said to be an
elementary point of type (n, m), for n ̂  m, if the germ (X, JC) is
isomorphic to the germ (V(n,m), 0). Note that if x E X is an elementary
point of type (π, ra), then the germ (X, JC) is of pure dimension n and the
imbedding dimension of (X, x) is m. The set of elementary points of X
contains the set of regular points of X, i.e. the elementary points of type
(n, n) for some n. In addition, it contains a particularly simple class of
singular points of X. If x is an elementary point of type (n,m) with
n < m, then x is singular and dim (S (X), JC ) = n - 1 = dim (X, JC ) - 1.

If dim X = n, let Y = U 0^ k < n X
(fe) and let Xα = X\ Y. By a theorem

of Remmert, X1 is an analytic set of pure dimension n. Let Xs denote
the set of all elementary points of X of type (nym) for some m with
m ^ n = dim X. Hence Xs C Xi and X5 contains the regular points of X
of maximal dimension.

THEOREM 1. Lei X be a weakly normal complex space. Then
A = Xι\Xs is an analytic subset of Xγ of codimension at least 2.

Proof Let n = dim X. If dim 5 (X) g n - 2 then A =
Xi Π 5(X). Hence A is analytic and codimension A i=2. Now sup-
pose that dimS(X) = n - 1 . We will show that A =
Xλ Π (5g(5g(X)) U W4). Since 5g(5g(X)) U W4 is an analytic set of
codimension at least 2 in X and since dim X = dim Xu this will prove the
theorem.

Let JC 6 X , If JC is a regular point of X, then x£Sg(Sg(X)) U
WA. If x is an elemetary point of type (n, ra) where m > n, then

dim C4(X, JC ) = n. Hence xgi W4. Moreover, 5(X) is a manifold of
dimension n — 1 in a neighborhood of JC. Thus jefZ: 5g(Sg(X)). Hence
XsCXA(Sg(Sg(X)) U W4) and Xί Π (5g(Sg(X)) U W4)CA

Now suppose that JC0 E Xx Π S(X) Π (XΛ(Sg(Sg(X)) U W4)). Thus
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xo£Sg(X)\Sg(Sg(X)) and dim C4(X, x0) = n. Note also that the germ
(X, JCO) is of pure dimension n. Since the result to be proved is local, we
may assume that X C C. By Proposition 4.2 of Stutz [6], there is a
neighborhood N of x0 in X, a polydisc D C Cn, and a choice of
coordinates JCI, , xn in C" and yu , y, in C centered at JC0 with the
following properties.

If Bθ9 —,Br are the global branches of X Π N, then for each /
(0^/ ^ r) there is a holomorphic map f>,: D —> By such that

(a) /; is a homeomorphism;
(b) with respect to the coordinates xu , xn, yl5 , y,, /j(0) = 0 and

where p, is a positive integer for 0 =§/ ̂  r;
( c ) / y ( j C i , - , * „ ) = Σ ^ ^ . / ^ ^ X i , , j c n _ i ) J C * f o r n - f l ^ i ^ ί a n d

Let g;: Bj-^D be the continuous inverse of f} and define a map
f ι : X n N - » C π + r by π, °ft |B, = &• where π, : Cn+r -> C,,,...,*,,^, is the
natural linear projection onto the n -plane with coordinates
JCI, , xn-u χn+p for 0 ^ / ^ r. To see that the map h is well defined, note
first that S(X) is an n - 1 dimensional manifold in a neighborhood of
jc0. Furthermore, B, Π Bfc C S(X)Π N for all /, k. But f}(x',0) =
(x',0, ,0) = fk(x\0) where xf = (jcl5 ,xn_i). Therefore, if N is cho-
sen small enough, then B} Π J3k = S(X) Π iV = {yn = = y, = 0} for
0^/, fc^r. For each (y1? , y,)G S(X)Π N, it follows that g;(y) =
(yb , yn_j, 0) for O g / ^ r . Thus /i is a well defined continuous map.

Since the jacobian matrix dfjdx is given by

/ι is holomorphic on the regular points of X (Ί N. Since X is weakly
normal and h is a homeomorphism onto its image, it follows that h is
biholomorphic. Therefore x0 is an elementary singularity of type (n, n +
r). Hence A C Xi Π (Sg(Sg(X)) U W4) and the theorem is proved.

REMARK. Let X be a weakly normal complex space and suppose
that codim5(X)=l. Theorem 1 shows that there is an elementary
singularity of type (n, m) where m > n. Since such a singular point is
not normal, Theorem 1 implies the well-known theorem that
codimS(X)^2 for a normal complex space X.
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THEOREM 2. Let X be a pure dimensional local complete
intersection. Then X is weakly normal if and only if codim X\X5 ^ 2.

Proof Let A = X \ Xs. If X is weakly normal then codim A ^ 2
by Theorem 1.

Conversely, suppose codim A § 2 . Since X\A=X S , the germ
(X, x) is weakly normal for each x E X\A. Since X is a pure dimen-
sional local complete intersection, pf(OXx) = dimX for each x E X,
where pf = profondeur. From the Hartog theorem for weak normality
[2], we conclude that X is weakly normal.

REMARKS. (1) For the case of curves, the assumption of local
complete intersection is not needed. A curve X is weakly normal if and
only if X \XS = 0. An algebraic proof of this fact was given by Bombieri
[5].

(2) If X is a pure dimensional hypersurface in Cn+1, then Theorem 2
can be proved without the use of the Hartog theorem for weak
normality. This case follows from the result of Becker in [4].

(3) Let X C Cn+1 be a pure dimensional hypersurface. If X is
weakly normal, there is another characterization of X\XS than that
which is given by the proof of Theorem 1. This description is as
follows. There is a holomorphic function / E ϋ(Cn+ί) such that X =
V(f) = {x EC n + 1 : f(x) = 0} and such that there is a sheaf equality
(/) ΰ = $x where $x is the sheaf of ideals of X. Then

At a point xo£Ξ S(X) the Hessian form is defined by

Let μ(jc0) = rankH(f)n and set 52(X) = {x E 5(X): μ(x)^l}.

Claim. If X is weakly normal and dim S(X) = n - 1, then

w4 n (S(X)\sg(5(X))) = s2n (S(x)\sg(S(X))).

Proof From the proof of Theorem 1, X\XS =
Sg(5(X)) U WA. Suppose x E 5(X)\Sg(5(X)) but x£ WA. Then the
proof of Theorem 1 shows that x is an elementary singular point of type
(n, n + 1). A proper choice of local coordinates about x shows that
(X, x) is isomorphic to (V(z1z2), 0). Hence μ(x) = 2 and x£ S2(X).
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Now suppose that x G S(X)\Sg(S(X)) but JC£S 2 (X) . Thus
μ(x)^2. If μ(x)>2 then the implicit function theorem shows that
dim(5(X), x) ^ n - 2. Therefore μ (x) - 2 and choosing convenient
local coordinates centered at x gives /(z)^ azιz2 + 0(3) where
α^O. Hence x is an elementary singular point of type (n, n -f
1). Therefore, xg: W4 and the claim is proved.

For weakly normal hypersurfaces this claim gives an easy differential
criterion for computing the portion of the set WA which is contained in
S(X)\Sg(S(X)). This claim is false for hypersurfaces which are not
weakly normal.

EXAMPLE. Let X = {(JC, y, z) E C3: x2 - zy2 = 0} be the Cay ley um-

brella in C3. Then X\X5 ={(0,0,0)} so that X is weakly normal by
Theorem 2. Remark (3) then shows that W4 = {0,0,0)}.
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