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CLASSES OF RINGS TORSION-FREE
OVER THEIR CENTERS

Louis ROWEN

Let J( ) denote the intersection of the maximals ideals of
a ring. The following properties are studied, for a ring R
torsion-free over its center C: (i)J(R) n C = J(C); (ii) "Going
up" from prime ideals of C to prime ideals of R; (iii) If M
is a maximal ideal of R then MΠ C is a maximal ideal of C;
(iv) if M is a maximal (resp. prime) ideal of C, then M=MR n C.
Properties (i)-(iv) are known to hold for many classes of
rings, including rings integral over their centers or finite
modules over their centers. However, using an idea of
Cauchon, we show that each of (i)-(iv) has a counterexample
in the class of prime Noetherian PJ-rings.

Let R be a ring with center C. Throughout this note, we assume
that R is torsion-free as C-module, i.e., re Φ 0 for all nonzero r in
R, e in C. (In particular, this is the case if R is prime.) Let
J(R) = Π {maximal ideals of R}.

R is a Pi-ring if there exists a noncommutative polynomial
f(X19 , Xm) with coefficients ± 1 , such that f(r19 , rm) = 0 for all
rt in R. The basic facts about PJ-rings are in [6, Chapter X], as
well as in [10]. Kaplansky's theorem implies that if R is a PJ-ring,
then J{R) is the Jacobson radical of R, so clearly J(R) f)C Q J(C).
A natural question is, "Under what conditions does J(R) ΓlC = J(C)Ϊ"
or, more generally, "Is there any general correspondence between
J(R) and J(C)V An answer for PJ-rings given in [12, Theorem 5.9],
is that J(R) = 0 implies J(C) = 0. The object of this note is to tie
this question in with other notions which often arise (especially in
PJ-theory). Then we give some pathological examples, which show
that many interesting negative properties (including J(R) f]C Φ J(C))
occur in such natural classes as the class of prime Noetherian PJ-
rings. Some easy theory is developed to cast some light on the
sharpness of these counterexamples. (Although the counterexamples
are associative, one may note that associativity is not needed in the
positive results.)

Gall an ideal A of C contracted if A = A' Π C for some ideal A'
of R. (By [11, Theorem 2], semiprime PJ-rings have a wealth of
contracted ideals of the center.)

LEMMA 1. An ideal A of C is contracted, iff AR Γ\G Q A.

Proof. Suppose A is contracted, i.e. A = A' Π C Then AR £ A\
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so ARC\CQA'PiC = A. Conversely, if ARnC^A, then ARnC = A,
so A is contracted.

Lemma 1 gives us a useful way of characterizing contracted ideals
of C and shows that any chain condition on the lattice of ideals of
R induces the corresponding condition on the lattice of contracted
ideals of C. However, it is often hard to apply lemma 1 to determine
the precise make-up of {contracted ideals of C}. Some specific
information can be obtained.

REMARK 2. Every principal ideal of C is contracted.

Proof. We wish to show cR Π C £ cC for every nonzero c in
C. But if cr G C then 0 = [cr, x] = c[r, x] for all x in R, implying
reC.

REMARK 3. If C is a valuation domain, then every ideal of C
is contracted.

Proof. Recall that, given x and y in a valuation domain C,
either x divides y or y divides x. Hence, if A is an ideal of C and
iί c = Σ<=i airie AR Π C, then (by induction on t) some αy divides
every aίf 1 ^ i ^ t. Write at — a^a^. Then

(cf. Remark 2). Thus, AR f l C C i , so A is contracted.

To examine contracted ideals further, we use central localiza-
tion (cf. [12]), which is briefly described as follows: Given a
multiplicatively closed set S £ C containing 1, let Rs be the classical
localization (as C-module) of R respect to S; Rs& R ® c Cs. If
T £ R, we write Ts for {xs'1 \ x e T}. If P is a prime ideal of C,
then we write iϋP for RC-P', note that CP has a unique maximal ideal
PP. There is a canonical injection ψs: R —>i^, given by r->r l " 1 ,
and Gs = Cent (i2s) Moreover, i?s is always torsion free over Cs. If
P is a prime ideal of C, write ψP for ψ^_p and note that ψp is a
lattice injection of {prime ideals of RP} into {prime ideals of R}.
For S = C — {0}, call Rs the ring of central quotients of R.

LEMMA 4. ( i ) If A is a contracted ideal of C, then As is a
contracted ideal of Cs. (ii) If B is a contracted ideal of Cs, then

is a contracted ideal of C.

Proof. ( i ) If cs'1 eCs Γ\ ASRS, then, for some st in S, cst e
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AR f)C S A, implying cs~ι = (c81)(881)~~1 e As.

(ii) Suppose c e ψsι{B)R n C. Then cl"1 e j&β5 Π C* s 5, so

PROPOSITION 5. 1/ C is Prufer, then every prime ideal of C is
contracted.

Proof. Let P be a prime ideal of C. Then CP is a valuation
domain, so PP is contracted (by Remark 3). But P is then contracted,
by Lemma 4 (ii).

Of course, if every prime ideal of a ring is contracted, then
every semiprime ideal of the ring is contracted. Another property
of interest is "going up". We say that R satisfies GU(P, Pλ) if,
for every prime ideal P' of R with P = Pr n C, there exists a prime
ideal P[ 2 P', with Pι = P[ Π C. GU(P, Px) occurs to some extent in
every prime P/-ring (cf. [12, Theorem 4.16]); letting GU denote
G U(P, PO for all prime ideals P £ Px of C, it is natural to ask under
what conditions R satisfies GU.

All the ideas discussed so far can be related through central
localization, as follows:

PROPOSITION 6. Let & be a class of rings, such that, if Re&
and P is any prime ideal of R, then RP e &. Consider the follow-
ing sentences:

( i ) J(C) = J(R) Π C for all R in &.
(ii) J{C) Q J(R) for all R in £P.
(iii) GU for all R in &.
(iv) For every R in &, if P' is a maximal ideal of R, then

Pr f]C is maximal in C.
(v) For every R in &, each maximal ideal of C is contracted.
(vi) For every R in &, each prime ideal of C is contracted.

We have (i) « (ii) <=> (iii) <=> (iv) => (v) <=̂  (vi).

Proof, (i) => (ii). Trivial.
(ii) => (iii). Let P1

(^P be prime ideals C, with Px = P[ Π C.
Take a maximal ideal B of RP containing {P[)P. Then

Pp = J(CP) £ J(RP) c B ,

so P=ψP

1(B)nC; letting P' = ψP\B) 2 P[, shows that GU(P19 P)
holds.

(iii) => (iv) Clear.
(iv) => (v). Let P be a prime ideal of C. Then PP is the only
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maximal ideal of CP. Thus, for any maximal ideal B of
RP, PP = BΓΪ CP, by (iv), implying P = ψp(B) Π C.

(v) => (vi). Immediate; localize at the given prime.
(vi) => (v). Trivial.
(iv) and (v)=>(i). J(C) = Π {maximal ideals of C} = C Π (Π {maxim-

al ideals of R}) = C Π

For tΛβ resέ of this note, (i)-(vi) refer to the sentences given
in Proposition 6. Sentences (v) and (vi) do not imply (i)-(iv), as
evidenced by an example (Bergman-Small [1, §1]) of a prime Pi-ring
whose center is a valuation domain, but which does not satisfy G U.
Hence, by Remark 3, we have (vi), but (iii) fails (and thus (i)-(iv)
fail in various central localizations). The following remarks are
easy and well known.

REMARK 7. The usual proof of the Gohen-Seidenberg theorem
can be modified to show that any integral extension of an integral
domain satisfies GU. (This fact was observed in [2] and extended
in [13].) Since "torsion-free over C" implies C is a domain, we see
that {R integral over C} satisfies (i)-(vi).

REMARK 8. If R is finitely spanned as a C-module then R is
integral over C, of bounded degree. This is is seen via [8, p. 238
and p. 335]. Hence, any ring of this form satisfies (i)-(iv). (R.
Snider showed me a proof of (ii) even in the non-torsion-free
case.)

REMARK 9. If R has a unique maximal ideal, then C is local
and (i), (ii), (iv), and (v) hold. Indeed, let M be the maximal ideal
of R. For any noninvertible element c in C, clearly cC Q M. Thus,
{nonunits of C} is the unique maximal ideal of C, equal to M Π C,
so (i), (ii), (iv), and (v) follow easily. (Of course this class of rings
is not closed under central localization.)

There is also the following general situation where (v) holds:

PROPOSITION 10. (i) Every prime ideal P of C, minimal over
a contracted ideal A of C, is contracted, (ii) Every minimal prime
ideal of C is contracted.

Proof. ( i ) {ideals B 2 AR \ B Π C £ P) is nonempty, and this
has a maximal element P, which is clearly prime. Since P f] C is
prime in C and A £ P ΓΊ C £ P, we have P = P n C.

(ii) Every minimal prime ideal of C is minimal over a suitable
principal ideal, which is contracted (by Remark 2).
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Hence, any prime ring whose center has Krull Dimension 1 (no
two nonzero primes are comparable) satisfies GU, so (i)-(vi) hold in
this instance. An example of such a ring is the free noncommuta-
tive algebra over a commutative domain of Krull Dimension 1.

Having seen some situations in which some all of the sentences
in Proposition 6 hold, we shall now look for counterexamples to (v).
Example ll(b) will be "generic" in flavor, whereas Example 13 will
be Noetherian. Incidentally, in view of Remark 9, this will indicate
one of the complications of noncommutative localization of Noetherian
PJ-rings.

EXAMPLE 11. (a) Let ξff, 1 ^ i, j ^ n, k = 1, 2, be commuta-
tive indeterminates over a field F, and let F(ξ) be the field generat-
ed by all ξ[f over F. Let T be the n x n matrix ring Mn(F(ξ)),
with matric units {ei5 | 1 ^ i, j ^ n}, and let Xk be the "generic"
matrix Σ</fi*}β<i The ring RQ generated by F, Xl9 and X2, is the
famous "ring of generic matrices," and, by a theorem of Small, Ro

satisfies G U. Moreover, every central localization of RQ satisfies G U
(and thus (i)-(vi)), by [12, Theorem 4.24]. In fact, this class can
be expanded to {rings whose central kernel is a maximal ideal of
the center}, cf. [12, Theorem 4.24]. This example makes the follow-
ing example quite surprising:

(b) Notation as in (a), let X = Xlf and let μlf ---,μn be the
characteristic values of X~\ Define <xt — Σ?=ii"<» a* = Σi</AΆ » "•>
<*• = ΛA i"n We claim that R, the subring of T generated by
Ro and a19 •••,«», is a counterexample to (v).

Let C = Cent (R) and let A = Σ <*£. Clearly AR = R (since
Σ?=i( — ly^otiX* = 1). We will prove the claim by showing A Φ C.
The starting point is Process's observation that the characteristic
values of X are algebraically independent (seen by specializing all
ξfl to 0 for i Φ j). Hence the μt are algebraically independent, and
the theory of symmetric polynomials in commutative indeterminates
(cf. [8, pp. 133-4]) will be applied to alf •••,«».

Let Cλ = F[alf , an] and let D be the subring of R generated
by X and C,. Note that X"1 = Σ?=* (-l) '" 1^-?'" 1 e D. Suppose there
are ^ in C such that Σ « α A = 1. Specializing all ξ$ to 0, we may
assume that each cueC f] D. Since alt , an are algebraically
independent, we will have reached a contradiction once we prove
that C Π D = Clβ

So suppose c = Σ*=« Λ(α)-3L* e C (Ί A where each /fc(α) 6 Ct. Write
c in this form, with t minimal. First we show that t ^ 0. Other-
wise, assume t > 0. Write r t = Σ*=ff/*(«)-3L* Diagonalizing, we may
assume X"1 = Σ?=i J"A< L ^ t (/(X""1) = Σ f ^ i ί - i y ' α-i-i-X*""** where
α0 = 1. Clearly (̂-X""1) = anX, so we can write
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ale = air, + Σ <-kfh(a)g(X'ι)k

ί - 1

a matrix with entries in F[μ19 *"9μn]9 a polynomial ring. Now
g{X~ιYeόj — {μι μό_λμj+ι μnYej5. Examining the entry in the
j , j position, for i Φ j , we see that μt divides both an and ft{ά)g(X~ιY9

implying μt divides a\c. By symmetry, μλ μn\a\c\ reversing steps
shows that μό\ft{oή{μ1 μj^μj+ι μnγ. Hence μs\ft(fiή for each j ;
By symmetry, ft{ά) = aji for some element h in F[μl} •••, μ j .

Since h is symmetric in μ19 -''}μnf h is in Dt; hence, we can
write c = ΣJcZ2

qfk(a)Xk + (/t_i(α) + hg(X~~1))Xt~ι

9 contrary to the choice
of t minimal. Thus, t <* 0, after all.

In other words, c is a polynomial in X'1 and the at. Write
c = Σ?=i/(Λ> ' * •> μ^u Switching μi and jŴ  merely interchanges
the (equal) coefficients of eti and ejd, so we see that / is symmetric
in the μz. Therefore c e C19 as desired.

Examples l la and l ib show, in particular, that any of the
sentences (i) through (vi) may hold in some prime PJ-ring, but fail
in a finitely generated central extension. Also, l ib is in fact affine,
that is, finitely generated (as a ring) over a field. However, {affine
prime PJ-rings} is not closed under central localization at prime
ideals of the center; in fact, Amitsur proved that all affine prime
PJ-rings are semiprimitive (cf. [10, p. 102]), so (i) holds in this class.

In view of Remarks 7 and 8, and [5], clearly (i)-(vi) hold for
large classes of Noetherian PJ-rings, and it is natural to ask whether
(vi) holds for all prime Noetherian PJ-rings. First let us examine
the idea of example l ib. It is well-known that a prime PJ-ring can
be embedded in a matrix ring over a field. Example l ib "works"
because there is a suitably general matrix (X) which is not integral
over the center, but for which we have the coefficients of the
characteristic polynomial of its inverse. But for Noetherian rings,
Schelter proved [13, Theorem 2]: If J? is a prime Noetherian PJ-
ring then, for any r in R9 every characteristic value a of r satisfies
an equation of the form a* = Σ*=o oίιri9 for suitable τ% in R.

Thus, if a"1 G R then, multiplying by α 1 - ί, we conclude that
a e R. In particular, for an element r in an arbitrary prime
Noetherian PJ-ring, if det (r"1) e R then det (r"1) is a unit in R.
Hence, the idea of example l ib fails for prime Noetherian PJ-rings.

Now we give in an example of a prime, affine Noetherian PJ-
ring which does not satisfy (v). Of course, such an example cannot
be integral over its center, by Remark 7, and until recently, all
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known prime Noetherian P/-rings were integral (over their centers).
Cauchon [3] and Schelter [13] have discovered non-integral, prime
Noetherian Pi-rings. Although, as can be seen, both examples
satisfy (vi), Cauchon's example is representative of a wide class
including counterexamples to (v). (Small informed me that, using
an approach similar to that of Schelter [13], he has also obtained a
counterexample to (v).) Let us start by considering Cauchon's
example in its general setting. Recall that a derivation of a ring
R is an additive map D: R—+ R satisfying (xy)D = (xD)y + x(yD)
for all x, y in R.

EXAMPLE 12. Let L be a commutative domain with derivation
D, and let en, e12, e21, e22 be matric units of M2(L). For any element
a in L, let a' — a{en + e22) + (aD)e12. H = {a'\aeL} is a commuta-
tive ring isomorphic to L (via the map a H-> α/) Choose x in L, and
let R be the subring of M2(L) generated by H and xM2{L). As
shown in [3], 22 is a finitely spanned left (and right) module over H,
with generators xeijf 1 ^ i, j ^ 2. Since the ring of central quotients
of R is the (simple) ring of matrices over the field of fractions of
L, R is prime. Clearly H Γ) Cent (R) = {a'\aD = 0}.

EXAMPLE 13. A prime, affine Noetherian P/-ring R which does
not satisfy (v).

Let Lo be the field generated over Q by the indeterminates
%, Vi> V2, Zi, and z29 and let L be the Q-subalgebra of Lo generated
by x, ylf y2, z19 z2, and (1 - y^z2\ Let L, = Q[x, ^](«2), and we
extend the zero derivation on L1 to a derivation D on Lx[yu y2] via
the conditions yj) — y2z2 and y2D = y\. By restriction, D is also a
derivation on L.

We claim L Π Lt = {g eL\gD — 0}. Indeed, suppose gD = 0 and
0 = ΣU/<(#2)i/ϊ f o r suitable /£(#2) in LJ^] , chosen such that t is
minimal. The coefficient of y[ in βfD is (ft(y2))D, which is thus 0; it
follows easily that ft{y^ equals some element μ in Lλ. If t > 0, then
the coefficient of y\~λ in gD is (ft-ι(y2)D + tμyzzz) = 0; hence μ = 0,
contrary to the minimality of ί. Therefore t — 0, and g = μeLίy

proving the claim.
Now let R be built from L, using the construction and notation

of Example 12. Since L is Noetherian and R is a finite L-module, R
is left and right Noetherian. Also, R is clearly affine, as well as
prime (cf. Example 12). We claim that R does not satisfy (v).
Indeed, with C = Cent R, let A - z[C + z2C. Since

1 = z[y[ + sί((l - tfAte1)' e AR ,

it suffices to show that A Φ C. Suppose to the contrary that
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z\cγ + z2c2 = 1, for suitable c% in C. Taking the parts of degree 0
in x, we may assume cu c2 e H. Then we can write ct = d\ for
suitable dt in L. By Example 12, dj) = 0, so dt e L Π Li, implying
d t G Q[^i](^2) Now zγdγ + 22ώ2 = 1, which we assert is an impossibility.
Well, taking homogeneous components in terms of z29 we may assume
that dt = hx{z^ and d2 — h2(z^)z2

ι for suitable Ẑ OO in Q[zt]. Since
d2 e L, it follows that d2 = ((1 — ViZ^z^d for some element d in
L. Viewing d2 as a polynomial in ylf with coefficients in L^ we see
that d2 must have degree ^ 1 . But this contradicts the fact that
d2 e Lx. We conclude that AΦC, as wanted.
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