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A left module over a ring A is called completely faithful if A is a sum of

those left ideals which are homomorphic images of M. The notion was first

introduced by Morita [9Πυ, and he proved, among others, the following theorem

which plays a basic role in his theory of category-isomorphisms: if a Λ-module

M is completely faithful, then M is finitely generated and projective with

respect to the endomorphism ring Γ of M and A coincides with the endomorphism

ring of Γ-module M. § 1 of the present paper is devoted to summerize, with

some supplements and refinements, Morita's theorems centering around the

notion of completely faithful modules. Now, the above theorem implies in

particular every completely faithful modules is faithful. However the converse

is not necessarily true, so that there naturally arises a problem to find out

possible types of ring A for which every faithful module is completely faithful.

In §2 we shall give a complete answer to the problem: in order that every

faithful left module be completely faithful it is necessary and sufficient that A

be left self-injective and a direct sum of indecomposable left ideals having

minimal left subideals. The rings characterized here may be regarded as a

natural extension of quasi-Frobenius rings which have been largely studied by

Nakayama [11, 12].2) In fact, the theorem of Nesbitt and Thrall [14] that

every faithful representation of a quasi-Frobenius algebra contain the reduced

regular representation as a direct constituent means actually that quasi-Frobenius

algebras provide a typical example for the problem.

1. Let A be a ring with identity element 1. Let M=AM be a (unital)

left Λ-module. If we let / range over all ^homomorphisms of M into A, the

Received September 3, 1965.
2> Cf. also Appendix of Auslander-Goldman [1].
2) Cf. also Eilenberg-Nakayama [6] and Ikeda [7].
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sum of all homomorphic images f(M) of M is (not only a left but also) a two-

sided ideal of Λ, because for any element λ of A f(M)λ is the homomorphic

image of M by the Λ-homomorphism fλ : x^f(x)λ, x^M; the two-sided ideal

is called the trace ideal of ΔΛf. We shall call M a completely faithful^ left Λ-

module if the trace ideal coincides with A itself, or equivalently, if the trace

ideal contains the identity element 1, or what comes to the same, if there

exist a finite number of Λ-homomorphisms /, : M-+A, i= 1, 2, . . . , n, and the

same number of elements <z, e M, /= 1, 2, . . . , nt such that

Σ / . U ) = i.

The last condition is however equivalent with the condition that A is, as a left

Λ-module, a homomorphic image of the direct sum Mn of n copies of M, because
n

the above equality implies that the mapping (#ι, x2, . . . , #«)-*Σ/ί(ΛΓι), ^ ε M ,
t = l

is an epimorphism of Mn onto Λ and, besides, every homomorphism Mn-*A is

given in the form (xlf x2f . . . , #n) ->Σ/A*ί) with suitable homomorphisms /,-:
» - l

M-+A. Thus, M is completely faithful if and only if A is an homomorphic image

of or equivalently, since A is projective, A is a direct summand of a direct sum

of copies of M^ Now, we shall call M upper distinguished if every simple left

Λ-module is a homomorphic image of M, while we call M lower distinguished

if M contains an isomorphic image of every simple left Λ-module. A completely

faithful module M is necessarily upper distinguished. For, if ί is any maximal

left ideal of A there exists a homomorphism f : M-+A such that f(M) is not

contained in ί and so the mapping x-+ftx) + ί gives an epimorphism of M onto

the simple module A/I The converse is not true in general. But we have

THEOREM 1. Under the assumption that M be projective, M is completely faithful

if and only if M is upper distinguished.

For, suppose M is not completely faithful, and let ί be a maximal left ideal

containing the trace ideal of M. Then any homomorphism of M into A/ί is,

since M is projective, factored into a product h °f of the natural epimorphism

3> The notion was called generator by Bass [4] from the category theoretical view
point, while it iβ to be noted that the notion is different froin full faithfulness defined in
Morita [10].

*} Pass [4, Lemma 1].
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h : Λ-*Λ/ί and a homomorphism / : M-+Λ. But f(M) is in the trace ideal and

so is in ί, which implies h(f(M)) = 0. This shows, since A/ί is a simple left

Λ-module, that M is not upper distinguished.

Now, Morita obtained in [9, Lemma 3.3] a fundamental theorem on com-

pletely faithful modules, which we shall restate here in a slightly modified

form •

THEOREM 2. Let M be a left A-module, and let Γ be the Λ-endomorphism ring

of M, considered as a right operator ring on M.

(i) If M is completely faithful as A-module then M is finitely generated and

projective as Γ-module and A coincides with the Γ-endomorphism ring of M.

(ii) If M is finitely generated and protective as A-module then M is completely

faithful as Γ-module.

While (i) can be proved as in the second half of the proof of [9, Lemma

3.3], the same method is applicable to proving (ii). Namely, we associate

with each φ •* AM-*AA a unique / : Mr~*ΓΓ such that ψix^y = xf(y) for all x,

y<=M. The finite generatedness and the projectivity of AM means the existence

of a finite number of ψi : ΛM-»ΛΛ, i = 1, 2, . . . , n, and α, e M, i = 1, 2, . . . , n,

such that x=*Σjψi(χ)ai for all x<=M. Let /; Mr-*ΓV be the mappings

corresponding to ψi. Then we should have #= *Σ<pAx)ai = ̂ ΣxfΛai) = ΛτΣ/ί(β/)

for all i s M, which means that Σ//(«/) = 1, i.e., M is completely faithful.

If we combine Theorem 1 with Theorem 2, we have the following theorem

for projective modules •*

THEOREM 3. Let A, Γ be two rings, and let P be a two-sided A-T-module.

Then the following conditions are equivalent '

(1) P is, as A-module, finitely generated, projective and upper distinguished,

and Γ coincides with the A-endomorphism ring of M.

(2) P is, as Γ-module, finitely generated, projective and upper distinguished,

and A coincides with the Γ-endomorphism ring of M.

(3) The covariant functors HomΛ(P, ) and PΘr provide mutually inverse

category-isomorphisms between the category of left A-modules and the category of

left Γ-modules.

This theorem is regarded as a generalization of Morita [9, Theorem 7.3],

and the equivalence of (1) (or of (2)) and (3) can be proved in the similar way
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as in the proof of the theorem.

It may be interesting to compare this theorem with the following theorem,

which was proved in Morita [9, Theorem 6.3] or in Azumaya [3, Theorems 6,

8, 9]:

THEOREM 4. Let A, Γ be two rings, and let Q be a two-sided Λ-Γ-module.

Then the following conditions are equivalent .*

(1) A is left-Art inian, Q is, as A-module, finitely generated, injective and lower

distinguished, and Γ coincides with the A-endomorphism ring of M.

(2) Γ is right-Artinian, Q is, as Γ-module, finitely generated, injective and

lower distinguished, and A coincides with the Γ-endomorphism ring of M.

(3) The contravariant functors HomΛ( , Q) and Homr( , Q) provide mutually

inverse dual category-isomorphisms between the category of finitely generated left

A-modules and the category of finitely generated right Γ-modules.

It is to be noted that, while Theorem 4 is regarded as a dualization of

Theorem 3, the assumptions of the chain conditions for A and Γ as well as the

finite generatedness for modules are indispensable in Theorem 4, contrary to

in Theorem 3.

Finally, we shall consider the case where A is a subring of some over-ring:

THEOREM 5. Let Ω be a ring and A its unital subring.^ Then Ω is, as a left

A-module, completely faithful if and only if A is a direct summand of Ω.

Proof. The "if" part is evident. In order to prove the "only if" part,

suppose Ω be completely faithful, i.e., there exist homomorphisms /, : AΩ^> AA
n

and elements at e Ω, i = 1, 2, . . . , n, such that Σ/t(tf, ) = 1. Consider then the
l

mapping ΛΓ->Σ/»(#0I), # G Ω. This is obviously a homomorphism•' AΩ-+AA,
t = l

and the above equality shows that the image of the identity 1 is also the

identity 1, which implies that AQ is a direct sum of A and the kernel of the

homomorphism.

COROLLARY. Let Ω be a ring and A its unital subring. If Ω is, as a left Λ-

module, projective and upper distinguished, then A is a direct summand of Ω.

This follows immediately from Theorems 1 and 5.

5> A subring is called unital if it contains the identity element of the oyer ring.
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If we combine Theorem 5 with (the left-right analogy of) Theorem 2,

(ii), we have Nakayama Cl3, Proposition 1] Let Ω be a ring, and let Γ be a

ring of endomorphisms of the additive group Ω containing all right multiplications

by elements of Ω and such that Ω is Γ-projective. Then if we put A the Γ-endo-

morphism ring of £,6) A is a direct summand of Ω as Λ-modules.

2. If a left Λ-module M is completely faithful then M is faithful, that is,

0 is the only element of A which annihilates M. Indeed, if /,- AM->AA and

ai e M, i = 1, 2, . . ., n, satisfy the equality 1 = Σ/*(#:) and if λ e A is an an-
n n n

nihilator of M then λ = ΛΣ/»(#*) - ΣΛ/ι(β, ) = Σ / i ( M ) = 0. The converse is

not necessarily true. However, the following theorem gives a characterization

of those rings A for which the converse is true:

THEOREM 6. Let A be a ring. In order that every faithful left A-module be

completely faithful it is necessary and sufficient that A be left self-injective and a

finite direct sum of indecomposable left ideals each of which contains a minimal

left ideal of A.

Proof. We first prove the necessity Let A be a simple left Λ-module and

let Q(A) denote the injective envelope of A in the sense of Eckmann-Schopf

[5]. Then Q(A) is an essential extension of A, or equivalently, every non-

zero Λ-submodule of Q{A) contains A (and hence A is the only minimal A-

submodule of Q{A)). We let A range over (up to isomorphism) all simple

left yl-modules and consider the direct sum Q of all corresponding injective

envelopes Q{A) -

Then Q is faithful. For, let μ be any non-zero element of A. Then the left

annihilator l(μ) of μ in A is a left ideal different from A. Therefore, there

exists a maximal left ideal ί of A containing l(μ). The factor module A/I is

a simple left A -module and so is isomorphic to some A, which we shall

denote by Ao. Then Ao must contain a non-zero element a such that ίa = 0.

Since λμ = 0 implies Λe/(μ)cί whence λa-Qy the mapping λμ->λa, λ<^A, is

6) A is regarded as a unital subring of Q, and in fact A is characterized as the subring
of those elements λ of Ω for which λT = λ(l 7) for all reΓ, where 1 means the identity
element of Ω and so 1 7 is an element of Ω.
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well-defined and is a /1-homomorphism of Aμ into AQ. Since Q(A0) is an injective

module containing Ao, this homomorphism can be extended to a yί-homomorphism

of A into Q{Ao), or what is the same, there exists an element q of Q(Ao)

such that μq=a. Thus we have μQ(AQ)^Q whence μQ^O, showing that Q

is faithful. Q is therefore completely faithful according to our assumption.

This means that A is, for some positive integer n, a homomorphic image of the

direct sum Qn = Σ Φ Q W ) M of n copies of Q. Let x be an element of Q whose
A

image is the identity element 1. Then x is in some partial finite direct sum,

say, Q'= Q(A1)
n®Q(A2)

n® ΘQUr)", and consequently A is also a homo-

morphic image of, or equivalently (since A is projective), a direct summand

of Q'. Since each Q(Ai) is injective, their finite direct sum Q' is injective

and hence its direct summand A is also injective, i.e., A is left self-injective.

On the other hand, since each Q(Ai) is an essential extension of Ai, their

direct sum Q' is an essential extension of A1 = A?® A?® ®A?. Therefore,

A is, as a Λ-submodule of Q', an essential extension of A ft A1. Thus Q1 and

A are the injective envelopes of A1 and Aft A1 respectively. Now Aft A1 is, as

a /1-submodule of the completely reducible module A1 = Ai®Ai® ®A?,

also completely reducible and is isomorphic to a finite sum of the form Af[1)

ΘAf ( 2 )φ ®Af(r\ where each multiplicity g(i) of Ai is an integer such

that 0<g(i)<n. Then A is, because of the uniqueness of injective envelope,

isomorphic to the injective envelope Q(Aι)g(V ®Q(A2)
e{2)® ' ΦQ(Ar)

8{r) of

Aί(1)@Af2)® ' ®A?T). This, together with that each Q{Ad is, since every

non-zero its /1-submodule contains Ai, indecomposable, implies that A is

decomposed into a direct sum of indecomposable left ideals each of which

contains a (unique) minimal left ideals of A.

Next, we prove the sufficiency: Let A be a self-injective ring and let

A = U θ h θ ® Is

be a decomposition of A into a finite direct sum of indecomposable left ideals

U which have minimal left subideals m*. Then each f, is injective and therefore

contains an injective envelope of m, . The injective envelope is a direct summand

of and hence, since ί, is indecomposable, coincides with f,. In particular, it

follows that U and ίy are isomorphic if and only if m, and rn/ are isomorphic.

Let us assume, without loss of generality, that among the 5 left ideals ίi, ί2,
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. . . , ίs, the first k ideals ίi, ί2, . . ., ίk are pair-wise non-isomorphic and such

that any other ί, , k<i<s, is isomorphic to one of these. For each index i be-

tween 1 and k, we denote by g{i) the number of those indices j between 1 and

s such that ίy is isomorphic to ί, : thus

A — fSd) β\ ig(Z) (T\ . . . β\<g{k)
71 rr: \\ vP 12 vD vP l&

Let now M be a faithful left Λ-module. Consider any ί, with l<i<k. Since

the minimal left subideal m, of ί, is non-zero, there exists an element <n in M

such that nT|βf=*Fθ. We then consider the homomorphism λ-*λaιy λ^U, of U

into M. The kernel of this homomorphism cannot contain tnf and so must be

0, since ί, is an essential extension of m, . Thus the homomorphism is a

monomorphism, so that the image ί, β, is a Λ-submodule of M isomorphic to U

and hence is the injective envelope of its unique minimal Λ-submodule m, β, .

We shall next prove that the sum of these k submodules ίi^i, f2α2, . . . , hak is

direct.7) For the purpose, suppose for some j(<k) the sum ί1ai-\-ΐ2a2+ +

tjaj be direct, and consider the intersection (ίi<ZiΘί2ίz2θ ΘΓytfy) Πfy+1βy+].

If this was non-zero, then this would, since ίy+î y+i is an essential extension of

my+iflyn, contain my+ifly+i thus my+î y+i would be contained in fi«i©i2^20

θίyβy and therefore, for some i(<j), the i-th component of my+i«y+i (with

respect to this direct decomposition) would be non-zero. Since my+i#y+i is a

simple yl-module isomorphic to my+1, the non-zero component is isomorphic to

my+i too, while the component must contain whence coincide with the unique

submodule m, β, of Uai. This is a contradiction, because my+i and m, are not

isomorphic. Thus (fitfiΘί2<Z2θ * * * θfyfly) Π ίy+iβy+1 = 0, and this proves our

assertion by induction on . Now, the direct sum ίiβiΘί2β2θ ®hak is

injective and so is a direct summand of M. Put n = max(g"(l), ^(2), . . . , g{k)).

Then Λ^ί f ( 1 ) θί f 2 ) θ '®ίfk) = (ίiaι)
8ίl)θ{ί2a2)

8{2)φ ®{lkak)
g{k) is a direct

summand of {UaL)nΘ (ί 2β 2)nθ θ {ϊkak)
n= {i1a1®ί2a2® * θ h a k ) n and thus

is a direct summand of Mn, which shows that M is completely faithful.

Now, the following theorem gives us a detailed information of the structure

of rings characterized in the preceding theorem:

THEOREM 7. Let A be a ring characterized in Theorem 6. Then (l) the

7 ) The proof given below for this fact is similar to that of Jans [8, Theorem
3.2].
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residue class ring Λ/J modulo the Jacobson radical J of Λ is a semi-simple ring

with minimum condition, (2) A is left as well as right lower distinguished, (3)

A is a finite direct sum of indecomposable right ideals each of which is an essential

extension of a minimal right ideal of A,8) (4) the left socle and the right socle of

A coincide.

Proof. Let A = ίi Θ ί2 Θ Θ is be a decomposition of A into a finite direct

sum of indecomposable left ideals U having minimal left subideals m, , as in

the proof of the preceding theorem, and let 1 -=eι + e2+ +eSt β, et t , be the

decomposition of the identity 1 relative to this direct decomposition. Then eu

e2t . . . , es are pair-wise orthogonal primitive idempotent elements, and each

βi generates U Aei = ί, . Since ί, is an injective envelope of m;, the endomorphism

ring of ί, is a local ring, i.e., the sum of any two non-automorphisms of U

is also non-automorphism, because non-automorphisms are in this case char-

acterized as those endomorphisms which annihilate m/. According to Azumaya

[2, Theorem 1, (i)], there is, for any non-zero idempotent element / of Λ, at

least one U such that Uf is isomorphic to f, and is an indecomposable direct

summand left ideal of A. This implies, since Uf is contained in Λf, there

exists a primitive idempotent element e such that Ae = Uf and e is contained in

/ : fef— e- But since Uf=U, the endomorphism ring eAe of Ae = Uf is isomorphic

to that of U and hence is a local ring. It follows from these that the

set C of those elements c of A for which Ac (or equivalently, cA) contains no

non-zero idempotent element forms a two-sided ideal of A.9) The Jacobson

radical / is contained in C, since / does not contain any non-zero idempotent

element. On the other hand, if we apply [2, Theorem 2, (ii)] to the finite

direct decomposition of A, we can conclude that every element λ of A such that

J Ξ I (mod C) is an inversible element, or what comes to the same, every

element of C is quasi-regular. Thus C is contained in and so is equal to / ' C

= J. Let now e be a primitive idempotent element of A. Let ~e denote the

residue class of e modulo /. Then the left ideal ~Ae of the residue class ring

~J = AIJ is simple. For, let I be any non-zero element of ~Ae, and take a

representative λ of the class I from Ae. Then λ is not in /, so that Aλ con-

tains a non-zero idempotent element/. Since Af^Aλ^Aef Af is a non-zero

8> It is an open question whether A is right self-injective or not.
9> See Azumaya [2, p. 117].
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direct summand of Λe, which implies, since Λe is indecomposable, that Λf = Λe.

Thus Λλ = Λe whence Z I = ~Λe, showing the simplicity of ~Λ~e. In particular,

each Λe~i is a simple left ideal of A , while Ίϊi, £2, . . . , e~s are pair-wise orthogonal

idempotent elements of A whose sum is the identity I Έι + e~2 + + e\ = ϊ.

Thus Z is the direct sum of simple left ideals ~Aeu ~A~e2, . . . , Z<?s, and Z is

a semi-simple ring with minimum condition: Z = Λ ^ i θ Z ^ Θ θZ^s. Let

k and £"(/), z = 1, 2, . . . , k, have the same meanings as in the proof of Theorem

6. Namely, let U = Λeu ί2 = Ae2f . . . , ί* = ̂ ^ are pair-wise non-isomorphic, and

let Λ = (M)*α > θ (Λe2)
gi2) θ θ (Λek)

gik). Then, by taking modulo /, we have

7 ^ ( Z ^ ) g ί l ) θ ( I ^ g ( 2 ) θ @(Aek)
s{k). This implies that any simple left

yl-module is isomorphic to at least one of Z^i's (i<k). On the other hand, the

(unique) minimal left subideals mi, m2, . . . , \r\k of Aei, Λe2, . . . , yl^ are pair-

wise non-isomorphic (since each Aβi is an injective envelope of m, ). Thus, it

follows that the k simple left A -modules ~Aeu ~Aez, . . . , ~Λ~es are pairwise non-

isomorphic and there exists a permutation π- (π(l), π{2), . . . , π(k)) of (1,

2, . . . , k) such that m, = Z^(i) for each i, which means that A is left lower

distinguished.

The remaining part of our theorem can be proved more or less in the

same way as in Azumaya [3, Theorem 3]. Namely, let μbea. non-zero element

of A. Then its left annihilator l(μ) is a proper left ideal and hence there

exists a maximal left ideal ί which contains l(μ). The right annihilator r(ί)

of ί is a right ideal. We take any element v of r(ί). Then the mapping λμ-*

λv, λ<=Λy is well-defined, and this is a /ί-homomorphism: Aμ-*A. Since A is

left self-injective, there should exists an element λ1 of A such that μλ' = v.

Thus we have μAΏrφ. On the other hand, if ί is any maximal left ideal

then A contains, since it is left lower distinguished, an isomorphic image of the

simple left Λ-module All, which means that r(ί) #0. If moreover we take μ any

non-zero element of r{ί) in this case then ί (is contained in whence) coincides

with l(μ) and therefore μA = r(ί). These facts together imply that the right

annihilator r{l) of any maximal left ideal ί is a simple right ideal, conversely

any simple right ideal is expressed as the right annihilator r(ί) of some maximal

left ideal ί, and besides any non-zero right ideal of A contains a simple right

ideal. The right socle of A is therefore equal to the sum of all those r(ί)'s.

However, this is originally the left socle, because if μ(#0) is any element of
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r(ί) then Aμ is a simple left ideal isomorphic to Λ/I, while if m is a simple

left ideal and μ(*0) any element of m then the left annihilator ί of μ is, since

Λ/ί is isomorphic to Λμ = m, a maximal left ideal and μ is in r{i). Thus the

right socle and the left socle coincide, which we shall denote by S. On the

other hand, since A/J is a semi-simple ring with minimum condition, the right

annihilator r(J) of the radical / (not only contains but also) coincides with

the (left) socle S, because r{J) is regarded as a left Λ//-module and so is

completely reducible: r(J) =S. (Similarly, the left annihilator /(/) coincides

with S.) Now, consider a primitive idempotent et1 l<i<k. Since Ztf/ΘZ

( ! - ? , ) = J , it follows that Aei = ~A/A{ϊ -ed =Λ/(Λ(1 - ed + / ) , which shows

that Λ(l - ed + / is a maximal left ideal of A. Therefore its right annihilator

r{A(l - ed + / ) - r(l - ed Π r(/) = β, Λ Π S1 = e, S must be a simple right ideal.

This means, since S is the right socle of A, that βiΛ Π 5 = βiS is a unique minimal

right subideal of βiA and hence every non-zero right subideal of e%A contains

βiSy that is, βiA is an essential extension of dS. Consider, on the other hand,

the left ideal Ae t. Since it has a unique minimal left subideal m, and since S

is the left socle of At it follows necessarily m/ = Aei Π S = Se%. Now there was

a permutation π of (1, 2, . . . , k) such that \r\i~Sei^~Aen{i) for each i. Hence

it follows eπ{j)Sei*0. But this also implies that the simple right ideal en{i)S

is isomorphic to the simple right A -module eΰί : e^S^eiA. Since this is the

case for all /= 1, 2, . . . , k, it follows that A is right lower distinguished. If

we notice further that the decomposition 1 = βί -f ez 4- + es into orthogonal

primitive idempotent elements eι yields the decomposition A = e\AθezAθ

Θe3A into a direct sum of indecomposable right ideals βiA, we have thus

completed the proof of our theorem.

Remark. Y. Utumi has obtained independently the following theorem which

is virtually the same as our Theorem 6 : In order that every faithful left A-

module be completely faithful it is necessary and sufficient that (i) A be left

self-injective, (ii) A/J be a semi-simple ring with minimum condition, and (iii)

every non-zero left ideal contain a minimal left ideal. His method of the proof

is different from ours, and the writer hopes that he will publish it somewhere.
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Added in proof. After submitting this paper, the writer has found that our

Theorem 5 was already obtained by B. Miiller in Hilfssatz 1 of the first of the

following papers:

Quasi-Frobenius-Erweiterungen, Math. Z. 85 (1964), pp. 345-368,

Quasi-Frobenius-Erweiterungen II, Math. Z. 88 (1965), pp. 380-409.

In this connection, the writer would like to note that Hilfssatz 24 of the second

paper (actually, Auslander-Buchsbaum-Goldman's theorem) can also be proved

by combining our Theorem 1 with the following theorem -

THEOREM 8. Let A be commutative and M a finitely generated, faithful Λ-module.

Then M is upper distinguished.

Proof. Let uu uiy . . . , un be generators of M. Let p be a maximal ideal

of Λ. Then pM^M. For, if pM = M then there exist, for each i- 1,2, . . . , n,
n

elements aa^p such that m = *ΣaijUj. This implies that the characteristic
.7 = 1

polynomial det (fiij ~~ ciij) of the n x n matrix (0,7) annihilates each m whence

M. Since M is faithful it follows det(5,7 — βij) = 0, while since every an is in

p it follows άet{δij - aij) =detdij= 1 (mod p), which contradicts to the assump-
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tion that lΦp. Thus pM^M, and so MlpM is regarded as a non-zero vector

space over the residue class field Alp. Alp is therefore a homomorphic image

of MlpM whence of M.
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