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We construct explicitly, using the generalized Weierstrass rep-
resentation, a complete embedded minimal surface M g in-
variant under a rotation of order k + 1 and a screw motion of
angle 26 about the same axis, where k > 0 is any integer and
0 is any angle with |f] < 7/(k + 1). The existence of such
surfaces was proved in [Callahan et al. 1990], but no practical
procedure for constructing them was given there.

We also show that the same problem for § = £m/(k+1) does
not have a solution enjoying reflective symmetry; the question
of the existence of a solution without such symmetry is left
open.

INTRODUCTION

In [Callahan et al. 1989], two of the authors and
W. Meeks found examples of translation-invariant,
embedded minimal surfaces with an infinite num-
ber of topologlcal ends. For each k > 0, a surface
M, was constructed that is invariant with respect
to a translation parallel to the z3-axis and under a
rotation of order k + 1 around the z3-axis.

The method of construction was generalized in
[Callahan et al. 1990] to obtain the first known ex-
amples of embedded singly periodic minimal sur-
faces with an infinite number of topological ends
and invariant under screw motions (with a nontriv-
ial rotational component). For each integer k > 0
and each angle 6 with |8 < 7/(k + 1), there exists
an embedded surface M, whose orientation-pre-
serving Ssymmetry group contains a rotation of or-
der k+1 around the z;-axis and a screw motion—a
unit translation in the x3-direction, followed by a
26 rotation around it. Examples of such surfaces,
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0 = 10.5° 0 = 30°

0 = 40° 0 = 60°

FIGURE 1. Surfaces My g for k = 1 and increasing values of 6 (approximate). See also Section 5, especially
Figure 11.
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constructed using the techniques described in the
present article, are shown in Figure 1.

Although the surfaces My were conceived as
smooth deformations of the singly periodic exam-
ples M, the proof in [Callahan et al. 1990] did not
construct these deformations. In fact, it left open
the following questions:

1. Do the M; ¢ depend smoothly on 6?7 If so, are
they deformations of M7

2. Are the surfaces My ¢ unique?

3. Is there a surface My /x+1)?7 To be more pre-
cise: the symmetry groups of the M ¢ have a
single limit as § — +m/(k+1). This limit group
contains a translation but is different from the
symmetries of My . Is there a surface with this
symmetry group and obvious properties gener-
alizing the Mkyg?

A more down-to-earth question concerned the ap-
pearance of these surfaces. The existence proof
in [Callahan et al. 1990] used a minimax argu-
ment involving unstable minimal annuli spanning
a fixed boundary. This technique provided no pro-
cedure for producing a fair numerical approxima-
tion (see Section 2.1). In [Callahan et al. 1989,
the conjugate surface method was used to con-
struct the translation-invariant examples M (see
Section 2.2). This technique, however, requires re-
flective symmetries, which the surfaces My 4 do not
possess in general. Among the methods currently
in use, only the Weierstrass representation is left.
This paper explains, among other things, how we
were able to make pictures such as those shown in
Figure 1.

The use of this method in computations that
support and guide theoretical investigations in the
study of embedded minimal surfaces is well doc-
umented [Callahan et al. 1988; Hoffman 1987a,b;
Hoffman and Karcher; Hoffman and Meeks 1985a,
1985b, 1987, 1990; Karcher 1988, 1989b; Wohlge-
muth 1991]. However, for the surfaces My 4, we
were faced with a computational problem of greater
difficulty, for two reasons. First, while the Gauss
map g of a translation-invariant minimal surface

descends to a meromorphic function on the quo-
tient surface, the quotient by a screw motion only
allows dg/g to descend. To produce a Gauss map
on the quotient, suitable for integration in a gen-
eralized Weierstrass representation, one has to in-
tegrate the form

dg
poi= =
g

and then use the multivalued function § = exp [ p.
This adds another level of complexity to the com-
putational problem, and makes the associated pe-
riod problem more difficult. Secondly, even though
the generalized Weierstrass representation has been
known for some years [Karcher 1988; Meeks and
Rosenberg 1994], it has not been used frequently
to compute examples. It was not clear, a priori,
that everything would work; complications and ob-
stacles could arise that would require significant
modification of our computational techniques.

One of our goals was to expand our computa-
tional techniques to include regular use of the gen-
eralized Weierstrass representation of the surfaces
My 9. There are other situations in which the ex-
istence of surfaces with very few symmetries is not
known; this representation, coupled with numeri-
cal searches and exploratory graphics, could con-
tribute a great deal to theoretical understanding.
The current situation seemed like a good first test
case for our experimental methods because we had
very simple, regular end behavior (all ends are pla-
nar) and we had an existence proof in hand. Thus
we were not likely to encounter unexpected theo-
retical difficulties, and, assuming we did, we were
likely to actually find some examples. Of course
we would also get computer-generated images of
the surfaces themselves. In this paper, we describe
these computations and present some of the calcu-
lated images of the surfaces My 4.

We conclude this introduction with an outline of
the paper. In Section 1, we give a quick survey of
the known singly periodic embedded minimal sur-
faces. In Section 2, we discuss the techniques used
in their construction. Section 3 is devoted to the
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generalized Weierstrass representation for minimal
surfaces invariant under a screw motion and having
only planar ends. In Section 4 we derive the rep-
resentation for the surfaces Myy. The numerical
computations are described in Section 5.

In regard to question 1, our work confirms be-
yond reasonable doubt that there is a smooth fam-
ily of embedded, singly periodic minimal surfaces
that deform the surface M, and are invariant un-
der a screw motion. (We have not carried out the
details of a degree-theory proof showing that the
period problem can be solved.)
~ In regard to question 2, the numerical evidence
suggests that there is only one surface for each 6
and that, in fact, the parameters describing the
surfaces are monotonic in §. We note that, al-
though embeddedness of the surfaces My comes
free with the minimax method of [Callahan et al.
1990], we do not know a priori that the surfaces
computed here are the same ones, and so we must
also prove embeddedness. A continuity argument
from [Hoffman et al.] can be used to do this. (In
any case the figures leave virtually no doubt.)

Question 3 is considered in Section 6. Here we
must report that we were initially misled by nu-
merical results and computer graphics. For val-
ues of 6 very near to +n/(k + 1), we were able to
solve the period problem numerically. This seemed
to give evidence for the existence of My r/(k+1).
The computed M /x+1) appeared to have verti-
cal planes of symmetry. If one assumes the exis-

tence of such symmetries, there is a much simpler -

parametrization using the traditional Weierstrass
representation (that is, one where g is well-defined
on the quotient). The period problem here is one-
dimensional, with one free parameter, and the pe-
riod is much easier to compute. The computations
suggested that the period did not change sign, but
did approach zero asymptotically for large values
of the parameter. In fact, it turns out that we can
prove that the period problem is not solvable. We
do this in Section 6. The question of the existence
of a surface My /(1) without reflective symmetry
is still open.

1. SINGLY PERIODIC EMBEDDED MINIMAL
SURFACES

1.1. The Three Types

Singly periodic embedded minimal surfaces S in R3
are naturally classified by their behavior at infinity,
that is, by their number of topological ends. There
are three possibilities: one, two, or infinitely many
ends. - '

A typical example with one topological end is
Scherk’s singly periodic surface, which is invari-
ant under a translation (Figure 2). Another, even
older, example with one topological end is the he-
licoid, which is invariant under a one-parameter
group of screw motions. (To see that these sur-
faces have one end, just observe that the portion of
the complete surface not drawn is connected; this
is true for the complement of any compact portion
of the surface.) This class of single-ended, singly
periodic, properly embedded minimal surfaces has
been studied a great deal recently and many new
examples have been found [Hoffman et al. 1993,
1994; Karcher 1988, 1989a; Meeks and Rosenberg
1994]. . For every such example, there is a trans-
lation or a screw motion that leaves the surface
invariant and that generates a subgroup of finite
index in the total symmetry group of the surface.
(Here we explicitly exclude embedded doubly pe-
riodic surfaces, which are invariant under a lattice
of translations.)

There is but one embedded minimal surface with
two topological ends that is invariant under an infi-
nite symmetry group: the catenoid [Schoen 1983].
It is well known that the catenoid is the only non-
planar minimal surface of rotation (see, for exam-
ple, [do Carmo 1976; Hoffman and Meeks 1990;
Osserman 1986])).

The third class, the one that will concern us here,
is the class of properly embedded, singly periodic
minimal surfaces having more than two ends (or,
if you like, having more than one end and distinct
from the catenoid). The basic appearance of such
surfaces is governed by the following structure the-
orem:



Callahan, Hoffman and Karcher: A Family of Singly Periodic Minimal Surfaces Invariant under a Screw Motion 161

FIGURE 2.
by Karcher and Pitts.

Theorem 1.1 [Callahan et al. 1990]. Suppose S is a
properly embedded minimal surface in R® with an
infinite symmetry group and more than one topo-
logical end. Then, if S is not the catenoid:

(a) The symmetry group of S contains an infinite
cyclic subgroup of finite index, generated by a
screw motion s.

(b) M has an infinite number of ends. Any end
that is topologically annular is planar, that is,
asymptotic to the exterior of a compact set in a
flat plane. If the screw motion s has nontrivial
rotational part, the translation is orthogonal to
the planar ends.

(c) The quotient ¥ = S/s has finite total curvature
if and only if ¥ has finite topology, in which case
¥ is conformally a compact Riemann surface &
punctured at a finite number r of points, and the
total curvature is

/KdA = 21(x(Z) — 7).

Scherk’s singly periodic surface, which has one topological end, and a twisted deformation found

1.2. Riemann’s Examples

The classical examples of surfaces satisfying the
conditions of Theorem 1.1, and for many years the
only ones known, were the surfaces R of Riemann
(Figure 3), which form a one-parameter family.
Each R is fibered by round circles: its intersec-
tion with any plane parallel to a planar end is a
round circle, the only exception being those planes
actually asymptotic to the ends, which intersect R
in straight lines. All these lines are parallel and lie
in a single plane P. The surfaces possess a single
vertical plane of symmetry V. The subgroup of the
symmetry group consisting of orientation-preserv-
ing translations is generated by a vector ¢ in the
direction of P NV, whose length is twice the dis-
tance between successive lines on R. (Translation
by 1t reverses the orientation of the surface.)

By the Schwarz reflection principle, a minimal
surface that contains a line is symmetric under
180° rotation about that line. Rotation about two
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FIGURE 3. A Riemann example and its symmetry. Dark lines lie in the surface and alternate with light lines,
normal to the surface, about which the surface rotates into itself.

FIGURE 4. The surface M; and its symmetry lines and planes.
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FIGURE 5. Hoffman-Wohlgemuth examples constructed by adding Neovius handles to the M.

successive lines generates t. Together with reflec-
tion in V/, this gives all the evident symmetries of
R. However, there is one additional type of sym-
metry. The lines in P parallel to the lines in PNR
and halfway between them meet R orthogonally,
and 180° rotation about these normal symmetry
lines is a symmetry of R.

The quotient of R by the translation ¢ is a genus-
one surface with two ends. By Theorem 1.1(c),
R/t must be, conformally, a torus punctured in
two points. Because of all its inherited reflective
symmetry, it is a rectangular torus.

1.3. Modern Translation-Invariant Examples

For over one hundred years, Riemann’s examples
were the only ones known. Recently [Callahan et
al. 1989], an infinite sequence Mj of new examples
was constructed (Figure 4), each of which, after
normalization, is invariant under a vertical trans-
lation t of length 1. They share the following ad-
ditional properties:

(a) Each M, has flat ends asymptotic to horizontal
planes at integral and half-integral heights.

(b) Horizontal planes intersect M; in closed Jor-
dan curves, except for those at integral or half-
integral height, which instead meet My in k+ 1
lines. These lines intersect in a single point and
make equal angles there. This implies that M
is invariant under rotations of order k+1 around
the x3-axis.

(c) In each plane at quarter- and three-quarter-
integral height, there are k + 1 equally spaced
normal symmetry lines.

(d) M, possesses k + 1 vertical planes of reflective
symmetry.

(e) Horizontal planes at quarter or three-quarter
integral height are planes of reflective symmetry
of Mk'

(f) The quotient surface M;/t has genus 2k + 1
and two planar ends.

These examples have been generalized [Hoffman
and Wohlgemuth] by the insertion of “Neovius han-
dles” at the half-integral levels (Figure 5). The re-
sulting surfaces share properties (a)-(e) above with
the M,. Their quotient by t is a surface of genus
4k + 1 with two planar ends.
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No other examples—in particular, no even-genus
examples at all—of singly periodic, embedded min-
imal surfaces with more than one end were known
until the recent discovery [Wei 1991, 1992; Wei] of
a family with genus-two quotients that generalizes
the surfaces R of Riemann. Morphologically, these
surfaces look like Riemann’s, but they have alter-
nating interplanar distances, and, in the narrower
of the two slabs, the tube grows a handle as in the
Hoffman—Wohlgemuth examples of Figure 5.

2. THE METHODS OF CONSTRUCTION

The surfaces M can be constructed in three ways:
by a minimax procedure using a sequence of least-
area annuli; by solving the Plateau problem for
an appropriate polygonal boundary; and by the
Weierstrass representation theorem. In [Callahan
et al. 1989], all these methods are discussed.

" In [Callahan et al. 1990] the existence of the M; ¢
is established:

Theorem 2.0 [Callahan et al. 1990). For every positive
integer k and angle § with 0 < 0] < n/(k + 1),
there exists a properly embedded minimal surface
M, 4 invariant under the screw motion s given by

T ‘ cos2f —sin28 O T, 0
stz | =| sin26 cos20 O zz |+| 0
T3 0 0 1 T3 1

and satisfying properties (a)-(c) in Section 1.3.

2.1. The Minimax Procedure

Theorem 2.0 was proved by a minimax procedure,
generalizing the one used. for the surfaces M. The
idea is to produce a properly immersed minimal an-
nulus bounded by k + 1 straight lines in the planes
I3 = 0 and T3 = %

Lemma 2.1. Let Ly, for k > 1, be a set of k + 1
lines contained in the (z.,x)-plane and meeting
in equal angles at the origin. Let Lyy denote the
image of L, under the composition of a rotation
around the x3-axis by 6 and a vertical translation

by (0,0,3). Then Ly U Liy is the boundary of a
properly immersed minimal annulus Ay g such that

(a) Ak — {(0,0,0),(0,0,2)} is an embedded sur-
face in the'slab 0 < z3 < 3,

(b) Ag,e is invariant under rotation around the -
azis by 2n/(k+ 1), and

(c) Axp is invariant by 180° rotation around the
lines obtained from L by first rotating around
the z3-azis by w/(k+1)+16 and then translating
vertically by (0,0, 1).

The desired surface My g is produced from A ¢ by
Schwarz reflection around its line boundaries.

The proof of the lemma involves first finding
least-area annuli bounded by “bowties” of the sort
shown in Figure 6 separated by a distance ¢ > 0.
This solution is then rescaled so that its maximum
Gauss curvature is 1 in absolute value. In this fam-
ily it is shown that one can choose a sequence of so-
lutions with t; — 0, as well as rescaling and trans-
lation factors, so that there is a subsequence that
converges to the desired surface Ay g.

FIGURE 6. Boundary of approximant of A (see
Lemma 2.1, and compare Figure 11).

This method proves existence, but provides no
help in establishing uniqueness. Also, the smooth
dependence of Ak (and hence My ) on 6 has not
been proved, although it would follow from unique-

-ness of the Ay 4. One of our motivations in carrying

out the numerical experiments described below is
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to demonstrate experimentally the smooth depen-
dence of M4 on 8.

Moreover, the method gives no means of pro-
ducing an image of Axe. While it is possible to
solve numerically the boundary value problem for
the bowties in Figure 6, and then let the size of
the bowtie expand, this is not the procedure of
the proof, and the limit surface is not Axg. Thus,
these solutions are not close to the desired surface.
In fact, it is not hard to show that the limit surface
extends by Schwarz reflection to the surface in Fig-
ure 2, which does not even have planar horizontal
ends. A key difference is that the basic building
block obtained by numerically solving the bound-
ary value problem is stable, whereas A ¢ is not.

Remark. The existence proof given in [Callahan et
al. 1990] fails when the twist angle for Ay ¢ is equal
to w/(k + 1) in absolute value. For this and other
reasons, we believed that the surface My »/x+1) did
not exist and that, as |6| approaches w/(k+1), the
surfaces M, ¢ drift off to some degenerate limit.
The computations described in Section 5 were in-
conclusive, but did suggest that, if the surface ex-
isted in the family we constructed, it would regain
reflective symmetry. In Section 6, we prove that a
limit with reflective symmetry cannot exist.

2.2. The Conjugate Surface Method

Because the translation-invariant surfaces M; pos-
sess many reflective symmetry planes, it is pos-
sible to decompose them into simply connected
pieces, bounded by planar geodesic principal cur-
vature lines. This means that the conjugate sur-
face to the basic piece is bounded by line segments
and rays (Figure 7). By solving the Plateau prob-
lem with this conjugate boundary, it is possible to
prove the existence of the surfaces M, and such
a method could be used to produce images of M,
[Callahan et al. 1989; Hoffman and Meeks 1990].
For the twisted surfaces Mg, with 0 < |0] <
7/(k + 1), there are no planes of reflective symme-
try and this process cannot even be started. More-
over, the symmetries of My ¢ cannot be used to find

a subdomain that is stable and that will produce
the surface by Euclidean motions.

2.3. The Weierstrass Representation

In subsequent sections we will develop the the-
ory for a generalized Weierstrass representation for
singly periodic minimal surfaces with planar ends
and invariant under a screw motion (Section 3),
describe how to apply this theory to the surfaces
M, ¢ (Section 4), and describe the techniques and
results of our numerical experiments (Section 5).
As necessary background for this, we will briefly
review the standard theory as applied to the un-
twisted examples M,.

Recall that the Weierstrass data for a minimal
immersion are a parametrizing Riemann surface
and, on this surface, a meromorphic function g
(conceived of as the stereographic projection of
the Gauss map) and a holomorphic one-form dh
(whose real part is the differential of the height
function). We turn to the conditions that these
data must satisfy in order to give a surface M.

We can work with the quotient M/t C R3/t,
since both the Gauss map and the differential of
the height function are translation-invariant, and
so pass to the quotient. By Theorem 1.1(c), M/t
can be compactified by adding a finite number of
punctures, one for each end. Thus we suppose we
have a compact Riemann surface ¥, an even num-
ber of points & = {ey,...,e,} C £, a meromorphic
function g and a holomorphic one-form dh on I,
satisfying the following properties:

(i) g has a zero of order m; > 2 at ¢;, for i < r
odd, and a pole of order m; > 2 at e;, for i <r
even;

(ii) dh has a zero of order m; — 2 at e; if m; > 2;
it has a zero of order |n| wherever g has a pole
or zero of order n on ¥ = £ — €; and is regular

everywhere else.

We set @ = (3(g7 — g) dh, 3i(g™" + g)dh, dh).
Then

X(p) = Re/:<I>
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FIGURE?7.

A basic piece of the surface M; of Figure 4, bounded by curves lying in planes of reflective symmetry,

and its conjugate surface, bounded by line segments and rays.

defines a conformal, minimal, multivalued immer-
sion of ¥ into R®>—that is, a conformal, minimal
immersion of the universal cover ¥ of ¥ into R3.

To recover M;, we would like this map X to
descend to a particular covering

¥ ->X=%/T,

where T is some infinite cyclic group of confor-
mal diffeomorphisms acting freely on ¥’ (this cor-
responds, of course, to the action of the translation
t on Mjy). Such a covering can be specified by giv-
ing an element A in H*(X, Z), that is, a homomor-
phism H;(X,Z) — Z. Here, if « is a closed curve
in ¥, the endpoints of a lift of & to ¥’ are related
by TAUeD | where T is a generator of T. In fact,
since the action of the translations on M), extends
to the compactification of M}, obtained by filling in
points at the ends, we require that ¥’ — ¥ extend
to a covering ¥’ — %, where T again acts freely on
3. Hence the covering is specified by an element
A in H(Z,Z). For ¥’ to be connected, A must be
primitive.
The map X defines a homomorphism

6X : Hi(%,Z) — R?,

whose image is a group of translational symme-
tries of the minimal surface X (). We want X to
descend to ¥’, where the deck transformations of
the covering ¥/ — ¥ are generated by a vertical

translation. Hence the translational symmetries of
X (2) should be just those we desire X (2') to have,
and no others. That is, if « is a closed curve in &
and o a lift to 3, we require that the endpoints of
X (o) differ by a vertical translation by the vector
(0,0,A([e])). In symbols,

6X = (0,0,A). (2.3.1)

In fact, this is nothing more than a restatement
of the Weierstrass—Osserman representation theo-
rem for complete minimal surfaces of finite total
curvature, with one assumption and one modifica-
tion. The assumption is that all the ends of the
quotient surface in R®/T are flat. The modifica-
tion is the requirement that, instead of all peri-
ods of ® being zero, there is one vertical period.
For details and proofs, see [Hoffman and Karcher;
Lawson 1971; Osserman 1986]. Because we wish
to produce an embedded surface with planar ends,
the orientation of the ends must alternate and g
must be branched at the ends. This is condition
(i) on the previous page. Condition (ii) is the same
as in the case of finite total curvature.

In the next section, we will develop this repre-
sentation in the more general setting of a surface
invariant under a screw motion. Here we have de-
scribed the special case when the screw motion is
just a translation. The critical difference—and the
one that creates all the difficulty—is that, for a
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minimal surface invariant under a screw motion
with nontrivial twist, the Gauss map g is not well-
defined on the quotient. Thus, we cannot specify
a meromorphic function to be integrated as in the
case of M, k- ‘

However, dg/g does descend to the quotient as a
meromorphic one-form, which we will label u. We
can then try to reproduce S as a multivalued map
from the quotient by using § := exp [ x in place of
g. However, § is itself multivalued and subJect to
period problems.

3. THE GENERALIZED WEIERSTRASS
REPRESENTATION FOR SURFACES INVARIANT
UNDER A SCREW MOTION

Suppose that S is a complete minimal surface in
R3 invariant under the screw motion s defined in
Theorem 2.0 (which has nontrivial twist). We will
condense our notation, writing a point p € R? as
p = (2,x3), with z = z; + iz, so that

8(z,x3) = (€22, z3 + 1).

Suppose S is embedded. Then, by Theorem 1.1,
the quotient ¥ = S/s has finite topology if and
only if it has finite total curvature, and then ¥ is
conformally a compact Riemann surface £ punc-
tured in a finite number of points & = {e;,...,e,}.
If we assume further that S has more than one
topological end, then all the annular ends of S,
and therefore of ¥ C R3/s, are planar. A planar
end is conformally a punctured disk, asymptotic to
a plane z; = c, and representable as a graph of the
form
a T, +bx,

W + o(|(z1, 22)|*).

The fact that the limit tangent plane is horizontal
follows from Theorem 1.1(b), since s has a vertical
translational component- and a nonzero rotational
component. (Note that if s were a translation, the
planar ends would not have to be orthogonal to s,
as the examples of Riemann show: see Figure 3
and [Callahan et al. 1989].)

In contrast with what happens for minimal sur-
faces invariant under a translation; the Gauss map
of S does not in general descend to the compacti-
fied quotient £. However, certain properties of the
Gauss map on S persist in the quotient. For exam-
ple, if the Gauss map g is vertical at a point g € S,
then g(g) = 0 or oo, and likewise for g(s*p) for all
i € Z. Hence we may speak of points of > as hav-
ing a vertical normal, even though the Gauss map
does not descend to ¥ as a map to 2. We will de-
note by V C I the collection of such vertical points.
(Note that the points of & = £ — T also have ver-
tical normal.) Similarly, we may speak about the
order of g at a point of X.

The Gauss map g is meromorphic on S and must
be branched at a planar end. Let m; be the branch-
ing order at e; € £. We will use the convention that
the order of g is positive at a zero and negative at a
pole. Because S is embedded, g must alternate be-
tween 0 and oo on the ends of S, ordered by height
in R3. Therefore, the number of ends of £ is even
and the ends can be ordered so that m,,...,m,
alternate in sign. Because

g9(s*p) = e¥*°g(p)

on S, for all k£ € Z, the form p := dg/g is well-
defined on £. At vertical points of £, the mero-
morphic form g has simple:poles. The rwldue of u
is the order of the pole or zero of g. At a branch
point of g on X, the form p has a zero whose or-
der is equal to the absolute value of the branching
order of g at the point in question.

The height function z; on S is harmonic and
its complex differential dh is holomorphic. (By the
complex differential of a real-valued harmonic func-
tion f we mean df +idf*, where f* is the harmonic
conjugate of f; although f* is only defined locally,
df* is globally defined.) The complex differential
dh has zeros precisely at the vertical points p € S,
of order equal to n, where +n is the order of the
zero or pole of g at p. At a planar end, dh has a
zero of order |m| — 2, where m is the order of the
zero or pole of g there. The one-form dh is clearly
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invariant under the action of s and hence defines a
holomorphic one-form on ¥ with zeros at the ver-
tical points V C X, of order |n;|, and zeros at ends
e; € € of order |m;| — 2.

To summarize the story so far:

Theorem 3.1. Let S be a complete embedded min-
imal surface with more than one topological end,
and invariant under a screw motion s having verti-
cal translational component (of length 1) and non-
trivial twist (of angle 20). Assume moreover that
¥ = S/s has finite topology.

Then all the ends of S are planar (asymptotically
horizontal), and & = £ — €, where £ is a compact
Riemann surface and € = {e,,...,e.} i3 a finite
set, which we indez (cyclically) in order of increas-
ing height of the corresponding ends of S.
~ Let g : S — CU{oo} be the stereographic pro-
jection of the Gauss map of S, and z3 the height
function on S. Then u = dg/g is a meromorphic
one-form, and dh = dxs + idz} is a holomorphic
one-form on S. They descend to a meromorphic
and a holomorphic one-form on X, satisfying the
Sollowing conditions:

(a) All poles of i on T are simple and have integer
residues. They fall into two groups: the points
e, for i,...,r, with residues m; that alternate
in sign; and other points vy,...,v, € X, called
vertical points, whose residues we denote by n;,
forji=1,...,s.

(b) The one-form dh is holomorphic on £ and its
zeros on ¥ are precisely the vertical points v,f,
for j =1,...,8, and have order |n;|. The re-
maining zeros of dh are the points e; € € where
|mi| > 2, and have order |m;| — 2.

The total curvature of ¥ is —4m(k +r — 1), where
k is the genus of X, and we have

8

Z |n;| + }: |m;| =2(r + k—1). (3.1)

1

This last formula is simply the Euler characteristic
of ¥, computed by summing the zeros of dh.

Because the translational part of s has length 1,
the integral of dh along a closed curve a on ¥ must
be an integer. It is straightforward to verify-that
the vertical displacement map A : H,(X,Z) — Z
given by

A@@;LM (3.2)

is well-defined and an additive homomorphism.
Locally, g = exp [dg/g on S. Suppose « is a
closed curve on ¥. Then

F(a) = exp/ %g_

is the ratio of the values of g at the endpoints of
any lift of o to S. Endpoints are related by the
action of s2U°) 50 F(a) is unitary. Clearly this
gives a multiplicative homomorphism

F:H|(£,Z) - S,
with
F(|a]) = exp(2iA([a))), (3.3)

where 26 is the twist angle of s.
The metric on S is given by

ds = 3(lg] +1gI™) |dh.
The completeness of S is equivalent to the condi-
tion

/a (Ig1+ lg1™) |dh] = oo,

where a is any path in T with lima(t) € £ C z.

The Gauss map g of S may be realized on £ by
§ = exp [ p, which is a multivalued meromorphic
mapping from £ to CU {00}, and may be used to
reconstruct S by the Weierstrass representation.
That is, if we set

® = (3(¢7" — 9)dh, 3i(§™" + §)dh, dh), (3.4)
the mapping defined by
P

X@=m/¢ (3.5)

Po
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is a multivalued conformal minimal embedding and
its image is S. Specifically, if a is a closed curve
on ¥ and o is a lift of & to the universal cover £,
with endpoints py and p;, then

X(py) = s2{eDp,, (3.6)

This relation is analogous to (2.3.1) in the trans-
lational case: it implies that the minimal immer-
sion ¥ — R? descends to a minimal immersion
T’ — R?, where ¥’ is the covering specified by the
cohomology class A.

We can now state the converse of Theorem 3.1:

Theorem 3.2. Suppose one has a compact Riemann
surface L, finite sets E={e,...e,} C X and

V={v1'...v,}c2=f]—8,

integers m; forl<i<randn; for1<j<s,a
meromorphic one-form u on £, a holomorphic one-
Jorm dh on £, a cohomology class A € H'(Z, Z),
and an angle 8, all such that equations (3.1)—(3.3)
and properties (a)—(b) of Theorem 3.1 are satisfied.

Then the multivalued function § = exp [ p yields
a multivalued, conformal, minimal immersion X
by (3.4)—(3.5). That is, it yields a conformal min-
imal immersion & — R3, where m : £ — T is
the universal cover of £. The image S = X(X) is
tnvariant under s, all its annular ends are planar
ends, its vertical points are X (n~1V), and its ends
are m~1€.

If (3.6) holds, X will descend to a proper immer-
sion of the covering X' of L specified by A. This
immersion restricts to an embedding of a small
punctured neighborhood of each point e; € &, hav-
ing as image a planar end of S/s.

Note that, although X is an embedding near the
punctures, it need not be globally one-to-one, so
X(Z') € R? may fail to be embedded.

4. THE GENERALIZED WEIERSTRASS
REPRESENTATION OF THE SURFACES M, ¢

We wish to find the Weierstrass representation for
the surfaces M; having the properties stated in

Theorem 2.0.  For the moment, we assume that the
surface, as described, exists (as indeed it does by
the theorem). We will use its geometric properties
to deduce its Weierstrass representation. Once this
is done, we must verify that this representation,
with an appropriate choice of parameters, actually
produces a surface with the required properties.

4.1. Symmetry and the Underlying Riemann Surface
The screw motion s(z; +izq, z3) = (e%%(z, +iz,),
z3 + 1) acts on the minimal surface My g in such
a way that the quotient is a surface ¥ = Mg/s
of genus 2k + 1, with two planar ends in the space
form R3/s. The surface has further symmetries
that descend to the quotient X:

(i) the rotation p around the zj-axis by an angle
2n/(k + 1);

(i) the 180° rotations around the other (horizon-
tal) normal symmetry lines, of which there are
k+1 at each level halfway between neighboring
ends (at heights : + 22);

(iii) the 180° rotations about the lines on the sur-
face, of which there are k+1 at each half-integer
height (each (k + 1)-tuple of lines meets on the
T3-axis, and these are the only points of the sur-
face on the z;-axis).

The generalized Weierstrass data dg/g and dh are
invariant under the rotations around the zs-axis,
and therefore pass to the quotient £/p. Note that
the Weierstrass representation produces the mini-
mal surface by integration of differential forms; if
these forms are lifts from a quotient surface, we
might as well determine and integrate these forms
on the quotient. This is a simplification, since the
Riemann-Hurwitz formula

2 —2(2k+1) = x(£) = (k+ 1) x(£/p) — 4k

implies that the quotient T := £/p is a torus, inde-
pendent of k. Moreover, this torus is rectangular,
as the following symmetry argument shows.

As stated under (iii) above, My p has k + 1 hor-
izontal straight lines through each point where it
meets the rz-axis. Each such (k + 1)-tuple of lines
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gives one-line in T. The 180° rotations of Mj e
around these lines give an orientation-reversing in-
volution of T'. The vertical points of My ¢ project
to two points on X that are fixed by p, and hence
they project to two points on IT. Therefore, the
lines on My project to two disjoint components
of the fixed-point set of an orientation-reversing
involution of T'. Such an involution only exists on
a rectangular torus, where it can be visualized as
a reflection in, say, two horizontal lines in the fun-
damental rectangle (dashed in Figure 8).-

A
Maf-- == o= R B IEEEE 1
B
M=o b g
A

FIGURES. Portrait of T = £/p, obtained by sym-
metry considerations. The dashed lines form the
fixed-point set of an orientation-reversing involu-
tion of T', coming from the lines of M ¢. The form
dg/g is real on these lines. Its poles are at the ver-
tical points v1,vo and at the ends e;, e;.

Thus, using symmetry considerations alone, we
have greatly narrowed down the possibilities for the
Riemann surfaces on which the Weierstrass forms
are to be constructed. We still have one free real

parameter, the modulus of the torus, which will be

a free parameter in the representation.

On each line in the fixed-point set just discussed
there is a point coming from a vertical point on ¥
and a point coming from a planar end. Together
with the modulus of the rectangular torus, this
would give five real parameters to be determined.
However, additional symmetry considerations will
further reduce this number to three.

Consider rotations around the horizontal normal
symmetry lines at quarter-integral heights 1 + 1Z.
They descend to a single orientation-preserving in-
volution 7 of T that fixes four points and inter-

changes the two dashed lines of Figure 8. This
involution must be 180° rotation about the four
fixed points in the torus, which we can choose,
without loss of generality, to be the half-period
points. Thus the dashed lines must pass through
quarter-period points. Since the involution r inter-
changes the two ends, the position of the end on
one of the dashed lines determines its position on
the other. In other words, the ends are symmet-
rically placed, as indicated in Figure 8. The same
is true of the vertical points. Hence, three inde-
pendent real parameters are sufficient to fix the
conformal structure and the position of the ends
and vertical points.

We observe that, by the Riemann-Hurwitz for-
mula, the torus modulo the involution r is a sphere.
This fact will be important later on.

4.2. The Differential Forms dh and dg/g

The Gauss map of Mj ¢ has order & at the vertical
points and order k + 2 at the planar ends. This
means that dh on £ has zeros of order k at these
points. Since the branching order of & — T is
k + 1 at these points, this shows that dh descends
to a holomorphic form on T. Hence there are no
further choices: dh is a constant multiple of the
translation-invariant, standard differential form on
the torus: dh = cdu, where u € T = C/I' and
¢ is a nonzero complex constant. The magnitude
of ¢ is irrelevant: it merely rescales the surface.
However, the real part of dh must be zero when
applied to tangent vectors of the horizontal lines in
T that correspond to the lines in the surface, since
z3 = Re [ dh. Hence ¢ must be purely imaginary.
Without loss of generality, we assume that ¢ = 1,
that is,

dh = idu. (4.2.1)

We know from Theorem 3.1 that the one-form
dg/g on £ has simple poles at the vertical points
and ends. The residue of dg/g is the order of the
pole or zero of g. In our case, the residue at a ver-
tical point in ¥ is &k and the residue at an end is
+(k+2). As observed in Section 4.1, dg/g passes to
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the quotient T, and there it has simple poles at the
points vy, v2, €1, €2 (Figure 8). Since the branching
order of £ — T is k41 at these points, the residues
become +k/(k + 1) at vy,v. and +(k + 2)/(k + 1)
at e;, e;. Using this information, we will now write
down a formula for dg/g in terms of elliptic func-
tions on T'.

4.3. The elliptic function Z

We remarked at the end of Section 4.1 that T/r is
conformally $2. After we fix an identification of S
with CU{0c}, we may consider the projection T —
T/r = §2 to be an elliptic function Z of degree two.
We will choose this identification as follows. The
projection of the vertex A of the rectangle goes to
oo, and the projection of the midpoint B of the
vertical edge goes to zero. The midpoints M;, M,
between these points project to a single point on
82, which we choose to be —1. Now

Z:T — 8% =CU{oo}

is a well-defined elliptic function.

Consider the symmetries of Z. Denote by R the
reflection in either the horizontal or the vertical
line through B. Then R 