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Abstract. Let P be a symplectic manifold whose symplectic form, integrated
over the spheres in P, is proportional to its first Chern class. On the loop space
of P, we consider the variational theory of the symplectic action function
perturbed by a Hamiltonian term. In particular, we associate to each isolated
invariant set of its gradient flow an Abelian group with a cyclic grading. It is
shown to have properties similar to the homology of the Conley index in locally
compact spaces. As an application, we show that if the fixed point set of an
exact diffeomorphism on P is nondegenerate, then it satisfies the Morse in-
equalities on P. We also discuss fixed point estimates for general exact
diffeomorphisms.
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1. Introduction

la. Hamiltonian Systems and the Arnold Conjecture. A symplectic structure on a
smooth manifold P is a closed 2-form ω which for each xeP defines a nondegenerate
bilinear form on TXP. Due to the latter condition, ω provides a 1-1 correspondence
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between vector fields X and 1 -forms α on P by α = ω(X, •)• Then closedness of ω
implies that X preserves the symplectic structure if and only if α is closed. In this
case, X is called symplectic. Moreover, it is called exact iϊu = dH for some function
Ή o n P .

We are interested in the dynamics associated with a (time dependent) exact
vector field on P. Therefore let H(t, x) = Ht(x) be a smooth real valued function
on R x P and let XHt be defined by ω(XHtt) = dHt. Then the ordinary differential
equation

is called the Hamiltonian equation associated with the "Hamiltonian" H. It defines
a family ψH tt of diffeomorphisms of P such that x(ί) = ψH>t(x) solves (1) for every
xeP. The set

& = {ιl/Hίί\HeC00(U X P, R)}

of all diffeomorphisms arising in this way is called the set of exact diffeomorphisms.
It is proved in [B] to be the commutator subgroup of the group of diffeomorphisms
ψ satisfying ψ*ω = ω, and to be a proper subgroup unless H1(P, U) = 0. Considered
as dynamical systems, exact diffeomorphisms should have interesting special
properties. At present, most research concentrates around the simplest object of
dynamical theory, the fixed point set of \l/ε<$. Here, it was conjectured by V. I.
Arnold that the Lefschetz fixed point theory, which applies to general diffeo-
morphisms, should be replaced by a Morse-type theory. This is obviously the case
if the Hamiltonian H is time independent, since then every critical point of H is
a fixed point of ψH t for any ίelR. Moreover it was proved in [Al] and [Wl] that
every exact diffeomorphism which is C1 small has at least as many fixed points
as a smooth function on P has critical points. The question was raised in [A2]
(see also [Al] for the case of the torus P — T2n) whether this is a purely perturbation
result, or holds for more general exact diffeomorphisms. In the general case, it
does not seem possible to actually reduce the problem to a function on P, so that
the statement has to be specified. We will restrict ourselves here to the following
homological estimates: If the fixed point set F(φ) of φ is nondegenerate, then we
say that it satisfies the Morse inequalities with respect to a ring R if there exists
a homomorphism 9: F^ -» F^ on the free jR-module over F(ψ) with dd = 0 and
ker δ/Im d = H^(P, R}. For a general ψ, we say that F(ψ) satisfies the cuplength
estimate with respect to R if its cardinality is larger than the cuplength c/(P, R),
which is the maximal integer k such that there exist classes α : •• α / c_1e//*(P, R)
of positive dimension with α 1 u u αk _ ^ ^ 0.

We want to prove statements of this type under the following topological
assumption on (P, ω): Note that ω defines not only a (DeRham-) cohomology class
[ω]eΉ2(P, U) but also a class c^H2(P, Z) as the unique first Chern class of TP
with respect to a complex structure "compatible" with ω (see Sect. Ib). Consider
the resulting homomorphisms
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Theorem 1. Let (P, ω) be a compact symplectίc manifold. Iflω and Ic are proportional,
then the fixed point set of every exact diffeomorphism of (P, ω) satisfies the Morse
inequalities with respect to any coefficient ring whenever it is nondegenerate. More-
over, if Iω — Ic = 0, then the fixed point set of any exact diffeomorphism of (P, ω)
satisfies the cuplength-estimate with respect to any coefficient ring.

We will call (P, ω) monotone if it satisfies the hypothesis of Theorem 1. For
example, the symplectic product S2 X ••• X S2 of 2-spheres is monotone if and
only if each factor has the same volume. At the end of Sect. Ib, we will discuss
the significance of this hypothesis and the technical problems arising in the general
case.

Our methods do not yield cuplength estimates for F(\l/} for general monotone
manifolds. (We tend to believe that there are more than technical reasons for this.)
However, they do provide a method to estimate F(ψ) in certain cases (see below
and Sect. Ic). An example of the type of result obtained is the following extension
of a result by Fortune [Fo]:

Theorem 2. For any n > 1, consider on CP""1 the standard symplectic structure ω
such that ω[u] = nfor a generator u of H2(CPn~1). Then the number of fixed points
of a symplectic diffeomorphism on a product

k

p= x CP"'"1

i=l

is greater than or equal to the greatest common divisor ofn1 - nk.
In the following, we outline the history of Theorems 1 and 2, the method of

the proof, and possible generalizations. Note first that as yet, the fixed point problem
is the only dynamical problem for elements of Q) for which there exist satisfactory
conjectures and results (even though the problem of periodic solutions has also
been addressed by some authors, see [Z] and [CZ3]). This is not surprising if
one compares the principal strategies of a proof of the Lefschetz fixed point theorem
and the Arnold conjecture. While the first follows from a finite dimensional
geometric argument, the second involves a variational problem on the "infinite
dimensional" loop space CGO(S'1, P), which we will describe next.

Assume that ψ = ψHΛ, where H as in (1) is 1-periodic. Consider the 2-disc D2

and identify dD2 = S' = IR/Z. Let z:D2-+P be a smooth function with boundary
values z. Then since dω = 0, the integral

^H(z) - f z*ω + { Ht(z(t))dt (la.3)
D2 S1

depends only on z and the homotopy type of z with fixed boundary. In fact, aH

is well defined on the loop space if and only if Iω = 0. In any case, we can calculate
the derivative

(z(ί), ξ(t)) + dH,(z(t))ξ(t)}dt, (la.4)

in the direction of smooth vector fields ξ over z. It clearly vanishes for all ξ if and
only if z satisfies (1), i.e. if z(0) is a fixed point of φ.

This variational formulation, directly obtained from the principle of least action,
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was used in 1982 by Conley and Zehnder [CZ1] to prove the Arnold conjecture
on the torus T2n with the standard symplectic structure. Note that π2(T2") = 0
and hence Iω = 0. Their proof made use of the Conley index applied to the set of
bounded trajectories of the gradient flow of aH. Although in spirit, this approach
applied to all manifolds at least if Iω = 0, considerable analytical problems were
involved. For example, the application of the Conley index theory as in [C] made
it necessary to reduce the variational problem to finite dimensions. In subsequent
years the Conley-Zehnder result was generalized (again through finite dimensional
reductions of (3)) by Sikorav [SI] and the present author [Fl] to certain other
quotients of U2n. In a C°-neighborhood of the identity, it was proved for general
P by Weinstein [W]. A slightly different point of view was taken in [Ch]: Since
the fixed point set of ψ is the intersection of the graph of ψ with the diagonal in
P x P, one can reduce the fixed point theory of ψ to an intersection theory of
"Lagrangian" submanifolds L, L' of a symplectic manifold. (In the same way, the
Lefschetz fixed point theorem reduces to cohomological intersection theory of
general manifolds.) This intersection theory also has a variational formulation,
where the loop space has to be replaced by the space of paths connecting L and
L. Important results in Lagrangian intersection theory were obtained by Hofer
[Hoi], see also [LS].

In 1985, Gromov [G] introduced into symplectic geometry a new set of methods
based on the analysis of holomorphic curves. One of the implications was the
existence of at least one fixed point for any exact diffeomorphism provided that
Iω = 0. Gromov used the framework of Lagrangian intersections, which he reduced
one step further to the self-intersections of one Lagrangian submanifold L of a
symplectic manifold Q. He then studied spaces of "holomorphic discs" in Q with
boundaries in L. The final argument was indirect, but similar methods were used
in [F3-7] to prove the Arnold conjecture in the case Iω = 0. (Here, the coefficients
were restricted to R = Z2 ) Working in the framework of Lagrangian intersections,
[F3-7] used as a principal tool the space of holomorphic discs whose boundaries
lie to equal parts in the two Lagrangians. On the surface, this represents a minor
modification to [G]. However, these "cornered" holomorphic discs also have a
variational interpretation as the trajectories of the gradient flow of the "Lagrangian"
action function. In fact, the proof of [F3-7] fits squarely into the framework of
the original approach of [CZ1], representing a new approach to the Conley index
which does not require a finite dimensional reduction.

The aim of the present paper is to extend the methods of [F3-7] to cover the
case of diffeomorphisms of P where Iω / 0. (Here, the Lagrangian framework does
not seem appropriate since it is certainly not possible to remove the toplogical
restrictions on Lc P in [F3-7].) The isolated result so far is Fortune's proof [Fo]
that every exact deformation on CP""1 has at least cl(CPn~1) = n fixed points.
(For CP1 = S2, this result was proved in [Ni] and [Si].) Fortune's proof uses a
modification of the variational problem (3) which in turn relies on the fact that
CP""1 is a symplectic quotient (see [MW]) of C". It has so far withstood all
attempts to generalize it even e.g. to other symplectic quotients of CΠ.

Viewed from the variational problem, Fortune's result comes rather as a surprise.
If the image of Iω is cyclic, then the action is a well defined function on the loop
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space taking values in the circles S1 = (R/α Z for some real number a. In finite
dimensional Morse theory, one cannot expect such a function to satisfy the Morse
inequalities on the quotient; the "correct" statement in this case is given by the
Novikov inequalities ([No], see also [S2]). However, Novikov's theory does not
apply here, because not only the function, but also the Morse index of a critical
point is "ill defined" along loops in the loop space. Of course, this statement does
not make any sense in finite dimensions. It is ultimately related to the fact that
the usual definition of the Morse index of ΛH gives an infinite value and that a finite
value can only be obtained by comparing two critical points "along" a connecting
path, see [V], [F5], or the next section. The indeterminacy in this case is measured
by 7C. In this sense, Theorem 1 states that ambiguity in aH does not effect the Morse
inequalities as long as it is proportional to the ambiguity in the Morse index. For
more details, we refer to Sect. Ib.

The proof of Theorem 1 uses the abstract Conley index of [F3-7]. Here, the
link between the Morse theoretic approach of [CZ1] and the geometric approach
of [G] is provided by a "geometric Morse theory" which is implicitly contained
in [SI] but received little attention until it was rediscovered in [Wi] (see also
[F] for a brief review). In Sect. Ib, we give a self contained exposition of the
abstract Conley index for (3), formulated as much as possible along the lines
of standard Conley index theory (see [C] and [Z2]). The proof of Theorem 2 is
given in Sect. Ic. Roughly speaking, we use an analogue of the "refinement" of the
Conley index of [F2], which appears here as an operation of tensors in H*(P) on
the (abstract) Conley Index. For Iω = 0, this operation is defined by the topology
of P above. It was shown in [F7] that it yields information about the homology
of the underlying invariant set and hence about fixed points. (For a different
approach to this problem, see [Ho2]). In general, however, the "refinement" also
reflects topological properties of the space of holomorphic spheres in P. In fact,
it is an interesting example of a symplectic invariant arising from Gromov's theory.
For this reason, we have to restrict general fixed point estimates as in Theorem
2 to symplectic manifolds possessing (almost) complex structures for which the
holomorphic spheres are known.

The idea of the homological Conley index applies in principle to other problems
involving the symplectic action. For example, it is possible to obtain an equivariant
version by means of the Borel construction. (Here one uses the fact that the
classifying space of a compact Lie group can be approximated by finite dimensional
manifolds, which in turn can be added to Ω without changing the analytic properties
of the variational problem essentially.) A difficult problem is often its calculation;
e.g. in the case of the Weinstein conjecture on a general contact manifold which
cannot be "deformed" to a standard case. (See however [FHV], where the technique
of holomorphic curves is used to prove the existence of a closed orbit in a special
case. Although [FHV] does not use this notion, it suggests that the (equivariant)
homological Conley index is nontrivial in the situation considered.) Another
possible application of an equivariant index is the problem of periodic orbits,
which must essentially satisfy Morse inequalities in a /p-equivariant theory.

Applications of the homological index to variational problems other than the
symplectic action are rare. While we believe that most variational problems arising
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in differential equations can in principle be formulated by studying trajectory
spaces, the strong special features encountered in the next section seem to be
limited to those functions whose second derivative is of first order (hence indefinite),
and whose nonlinearity is of "borderline" type (in the sense of Palais-Smale, see
[Ps]). The only other case meeting these requirements (besides the cubic Dirac
equation on surfaces, which looks a little bit like a "constructed" example) is the
Chern-Simons function on connections on a 3-dimensional closed manifold, see
[F8]. Here, the gradient flow is defined by the selfdual Yang Mills equation on
the infinite cylinder IR X M. The motivation in this case is reversed: Rather than
proving the existence of critical points (which are the flat connections and therefore
have an algebraic interpretation as representations of the fundamental group), one
wants to gain information about the original manifold. Despite this difference, the
two problems have strikingly similar analytic properties, as we tried to demonstrate
in the setup of [F8] and the present paper. Moreover, beyond the variational
problem discussed here, the relationship between instantons and holomorphic
curves (see also [A2-4]) might indicate a tie between low dimensional and symplec-
tic geometry which has yet to be explored.

Ib. The Homological Conley Index. The function aH of (la.3) is well defined on
the Sobolev space Ω = Lj^S1, P), see e.g. [Kl], for fe > l/p. Ω is a smooth Banach
manifold whose charts are given in Sect. 2a. In order to do Morse theory on Ω,
we define the gradient flow of a,H as follows. Let J be a smooth almost complex
structure on P so that g = ω(J',') is a metric, i.e. a positive symmetric form, on
TP. We will call J an almost Kahler structure and denote the space of all such J
by / . Then trajectories of the gradient flow of aH are defined as solutions
u: IR X S1 ->P of the partial differential equation

(dj H(u))(τ, t):= - + J(u(τ, t)) + VjHt(u(τ, 0) = 0. (lb.1)
oτ ct

Here, V / is the gradient with respect to the metric g. We sometimes use the short
notation

SJHu = u' + Jύ + VH(u),

where u' and ύ denote the τ- and ί-derivatives, respectively. The last two terms
can be considered as a "vector field" ^(z) = Jz + VH(z) on Ω evaluated at u(τ). It
is the L2-gradient of s/H in the sense that for ξeTzΩ,

DaH(z)ξ = <0(z), ξy = $g(Jz(t) + VHt(t, z(t))ξ(t))dt (lb.2)
o

by (la.5). In this way, (1) is the gradient flow equation u'(τ) = #(u(τ)). On the other
hand, note that the first two terms in (2) define the Cauchy -Riemann operator
dju = u' + Jύ for maps from the complex manifold (R x Sl = C/i Z into the almost
complex manifold (P, J). Hence up to a term of "lower order," the trajectory
equation is just the Cauchy Riemann equation, whose solutions are holomorphic
maps. Such maps (on compact Riemann surfaces) were first applied to symplectic
geometry in [G].

We define the set of paths in Ω by ^loc = L^loc((R X S\P) which embeds in
C°([R X S1, P). Since the initial value problem is ill posed for the differential equation
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(2) we define the flow by its "graph,"

& = ^J,H = {ue&ιoc(P, M)\dJtH(u) = 0}, (lb.3)

rather than by a family of maps on a subset of Ω. Note that aH decreases along
trajectories in ̂ JtH. (This statement makes sense even though ΛH is only locally
well defined.) In fact, we have for

π(u(τ))=- \\?f,H(u(τ))\\2=- I I "'W

Hence the trajectories ue^JιH for which

I2(u)= I \\u'(τ}\\2

2dτ=\\u'\\l (lb.4)
UxS1

is finite are precisely those along which aH is bounded. Now the central notion
of our approach can be formulated as follows:

Definition Ib.l. For any (J, H)e/ x ffl and for any closed set °U c: Ω, we define the
Morse complex in fy, as the set of bounded trajectories

'JtH(<%) = < ue^j^H u(τ)eW for all τ and J j dtdτ < oo

Moreover, let ί\^]u-^Ω be defined by iu = u(0). Then we define the maximal
invariant set in tfl as

We call ^JtH(^ί) isolated if its closure is contained in the interior of <%. In this case,
% is called an isolating neighborhood.

In most applications, U will simply be the space contained in a given closed
subset of P. The reader who does not feel comfortable with the notion of isolated
invariant sets is invited to set U equal to the total loop space of P through-
out this paper, since this will suffice for the proof of the theorems of Sect. la.

For continuous (local semi-) flows, this notion was developed by Conley [C].
(The parts of Conley's theory to be discussed here are also contained in [CZ2].
However, we do not assume that the reader is familiar with Conley's theory.) The
general idea is that certain properties of the flow near an isolated invariant set do
not change under continuous deformations of the flow as long as the invariant
set remains isolated. These properties can be described by means of homotopy
theory. However, Conley's original approach as in [C] and [CZ2] was restricted
to the case of compact invariant sets in locally compact spaces. (We will simply
refer to this as the finite dimensional case.) In a general infinite dimensional
situation, homotopy theory tends to become more difficult in the application and
weaker in its assertions. This problem is of course well known also in traditional
Morse theory. However, it is overcome more easily since Morse theory only
attempts a description of the critical set in terms of the total domain of the function,
whereas Conley's theory attempts explicit statements about trajectories joining
such critical points. Since the principal tool in either case is the same (the homo-
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topies defined by the flow), the difference might be rather technical. In fact, Conley's
theory has been extended, with considerable time delay, to cover many applications
in which ordinary Morse theory works (see [RZ]). Indefinite functions like the
symplectic action however remained tricky in either approach. In fact, they were
hardly considered a useful tool for (nonperturbative) existence results until it was
used by Rabinowitz [R] and Weinstein [W] to obtain periodic solutions (for
time independent Hamiltonians) on the linear space R2". The purpose of this
section is to develop a "Conley theory" in this case, with quite different methods,
though with remarkably similar results.

To gain a heuristic understanding of our construction, recall the basic idea of
[R]. Since the infinite dimensional situation did not contain topologically useful
information, Rabinowitz restricted the function (la. 3) to the finite dimensional
subspaces Ev c Ω(U2n) defined by Fourier analysis. For each N he obtained (by
a "mountain pass" argument) a critical point XN. Since (roughly speaking) the
Hamiltonian perturbation compared with the symplectic action becomes less and
less significant for high Fourier coefficients, this sequence converges to a critical
point of (la.3), i.e. to a solution of the Hamiltonian equation. The crucial observa-
tion is that topologically, increasing N amounts to a suspension, which does not
change the situation essentially. In fact, even though the infinite suspension of a
topological space may be contractible, the limit of repeated suspensions is topo-
logically meaningful. For example, its homology changes only by a dimensional
shift. It was essentially this idea which was applied to the Conley index in [CZ1].
Generalized to other manifolds, it would produce a "stable Conley index," contain-
ing the desired homological information. However, it was clear from [Fl] that a
"global Fourier analysis" on manifolds faces serious obstructions. A definite limit
to this approach was set by Gromov's "discovery" of holomorphic spheres: The
Fredholm and compactness theory of [G] suggested changes in the variational
picture which must in principle elude any finite dimensional approximation (see
Sects. 2 and 3). It therdby focused the present author's attention on the new
approach of (3), which will be used here to define a "homological" Conley index.

Let us say that an invariant set £f = ^jίH(^) is bounded if the evaluation map
£f x S1 ->P has precompact image. For example, the reader may assume that ̂
itself is the set of all loops taking values in some compact subset of P. In this case,
the elliptic nature of the flow equation implies the following result:

Theorems. (1) If P is monotone and if^jίH(^} ιs bounded and isolated in tfί, then
for all (J'9 H')e/ x 3tf dose enough to (J, H) in the C™ -topology, &].#>(<%) is isolated
in W.

(2) Assume in addition that Iω = 0. Then the map i restricted to Λ/ί j H is a
homomorphism between the local topology on ^lok and the induced topology on Ω
for arbitrary Sobolev coefficients. In particular, ̂  restricts to a continuous flow on

^J,H

Proof. (1) Assume the contrary, i.e. assume that there exists a sequence (Jα,Hα)
converging to (J,H) in / x 2tf so that yΛ\=^j is not isolated in %. This
means that there exists a sequence uαe^α so that wα(0) = *(wα) is contained in ̂
but not in its interior. On the other hand, Proposition 3b implies that ua -> uεJ£JtH
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locally in G°(U x S^P) for a finite set x in P, so that uΛ(0)^u(0)E^JtH. This
contradicts the assumption.

(2) Note that i is injective on all of ^JtH due to Arondzajn's theorem
[An] applied to the "square" (Dd)+(u)d of the Cauchy Riemann operator (see
also [McD]). The second assertion is again an immediate consequence of
Proposition 3b: Since / is obviously continuous, it essentially states that if u,
uΛ€JtJtH and Mα(0)->M(0) in Ω, then uα->w on a neighborhood of {0} x S1. Now
use the same indirect argument as in the proof of (1).

The appropriate equivalence relation for isolated invariant sets is given by the
notion of continuation. Denote by / the set of smooth families J = (J Jλeto,!]
of almost Kahler structures. Moreover, denote by $ the set of smooth functions

on [0,1] x S1 x P.

Definition lb.2. If (J,H)e/x^ and if there exists ^cί2x[p,j.] so that
^λ:=^JλHλ(^λ) is bounded and isolated for all λe[0,l], then (S,J,H) defines a
bounded continuation between ^Q and <9V

To a compact isolated invariant set of a continuous flow φ on a locally compact
space X, one assigns its Conley Index, which is defined as follows: For any compact
isolating neighborhood of U of X, there exist compact sets A a U — S satisfying

(11) If xeA and ψ [ 0 f t ] ( x ) c U for any t > 0, then φ[0ίΐ](x) <= A,
(12) If xeU and ψt(x)eU for some t > 0, then ψ[0it](x) intersects A.

Such a set A is called an exit set for U. The pointed homotopy type of the
topological quotient U/A with base point (A) is independent of the particular
choice of U and A and is called the Conley index I(S) of S. Moreover, any conti-
nuation as in Definition lb.3 between two compact isolated invariant sets S0

and S1 defines a pointed homotopy equivalence between /(S0) and 1(5^. The
aim of this paper is to recover parts of the Conley index theory for ^J)jf irflows
on Ω. A direct topological generalization (as given in [#] and \_RZ~] in certain
infinite dimensional situations) does not seem promising in this case. However,
for gradient-like flows ψ on finite dimensional manifolds X, there exists an interest-
ing geometric construction of the homology H^(I(S)) of the Conley index, which
can be generalized to our situation. Roughly speaking, if ψ is of "Morse Smale
type," then H^(I(S}} can be obtained from the free Abelian group Z^ over the
fixed points of ψ and from a boundary operator d:Z^->Z^, where d is defined
by trajectories of ψ connecting fixed points, see [F6]. This is a simple generalization
of a property of gradient flows on compact manifolds proved essentially by Smale
[SI], see also Witten [Wi]. The construction of d relies on the following two
properties of "generic" (i.e. Morse-Smale) flows:

(51) The space of trajectories connecting two given fixed points x and y is a smooth
manifold M (x, y).

(52) For any (u,v)eM(x9y) x M(y,z), there exists a family u#pv, pe[R + , in M(x,z)
converging geometrically to u and v as p-> oo. Otherwise, M(x,z) is compact.

We will refer to these properties as "transversality" and "transitivity," respectively.
The crucial observation is that even though the space Ω of our variational problem
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is infinite dimensional, the analysis of the spaces of trajectories connecting two
critical points does not differ much from the finite dimensional case. This is
summarized in the following result: Let us define Jί(x + , x _ ) as the set of trajectories
u in Ji such that u(τ)^>x+ in Ω for τ-> ± oo. Moreover, let us define the set
Jίk(x,y) of k-trajectories from x to y as the set of all k-tuples ul" uk so that
uίE^(xi- L ) Xι\ where x0 = x, xk = y.

Proposition Ib. For a dense set in / x 3C the zero set ̂  of ^ is nondegenerate and
Jt decomposes into smooth oriented manifolds Jί(x,y) of trajectories connecting
x,ye&. If ΓaZ denotes the set of integrals of the first Chern class of(TP,J) on
π2(P\ then there exists a map μ:Z->//2/" so that

dimJf(x9y) = μ(x)-μ(y) mod2Γ. (lb.5)

Moreover, let Jt(x, y) = Jί(x, y)/U denote the quotient by the translational symmetry.
Then if ̂  — iJt is isolated, there exist local diffeomorphism

#: k(x, y) x (Rk

+~ : ̂  0

which are oriented if the left-hand side is oriented as Jίk(x^ x2) X IR+ X Jt(x,^ x2)
X IR + . . . 5 and which satisfy the following properties:

(Tl) 0 is an open subset such that for each compact K^Jίk(x,y), there exists
ρ(K)eU + with K X \_p(K\ oo) ID 0.

(T2) For each i= 1, . . . , k, there exists a lifting #t of# to Jί(x, y) such that the family
of maps

zp:J
k(x, y}xUxS1^P, *p(u, τ, t) = #(u, p)(τ, ί)

converges to the function w-»w t (τ, ί) in the local C°° -topology for pb pί+1 -> oo.
(T3) IfJί is bounded and isolated, then the 0- and 1 -dimensional part ofJ?(x, y) are

compact up to the image of it-

Proof . The assertions about the local structure of JP(x, y) in itself follow from the
Propositions in Sect. 2a-2c together with the assumption that Jί is isolated in
some closed set U. The transitivity map is constructed in Sect. 2d. Properties (1)
and (2) follow directly from Proposition 2d.l. Property (3) follows from Proposition
3b.2.

Parameters J,H satisfying the conclusion of Proposition Ib will be called
regular. We denote the dimension of Jί(x, y) at u by μ(u). This number is defined
by the "spectral flow" of the family D^(u(τ)} through the imaginary axis. (In finite
dimensions, it would be equal to μ(x) — μ(y\ where μ(x) is the dimension of the
negative spectral subspace of D^(x) g, i.e. the Morse index). The ambiguity in μ
was calculated in [F5], see also [V]. A related problem is that the compactness
properties of (S2) can only be partially recovered in the infinite dimensional mani-
fold Ω, since there exists an additional source of noncompactness. A sequence in
J^(x, y) may, like a sequence of holomorphic curves in [G], diverge by splitting
off a "holomorphic sphere." (In the related case of harmonic maps from a surface
to a Riemannian manifold, this phenomenon was discovered in [SU].) The crucial
observation is that in the generic situation, such a splitting can only occur on
trajectory spaces Jt of dimension at least 2. On the other hand, the construction
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of the homological Conley index will depend only on the zero dimensional
components of .M which we call isolated trajectories.

Theorem 4. Let (P, ω) be monotone and let (J, H) be as in Proposition Ib. Let ̂  =
iJί be bounded and isolated. Then there are only finitely many isolated trajectories u
in Jί . Moreover, let #(u) = ± 1 denote the orientation ofu and let <δx, y> denote the
sum of #(u) over all isolated trajectories in Jί(x,y). Let Z^ denote the free abelian
group over ^ , graded by the Morse index μ. Then the homomorphism

satisfies dd = 0. If we define the Z/2Γ -graded homology

I*(y9 J, H):= ker δ/im 3, (lb.6)

then for every bounded continuation (5 ,̂ J, H) which is regular at the ends there
exists an isomorphism

It is functional with respect to compositions of continuations and invariant under
continuous deformations of(^,J9H) within the set of continuations.

Proof It follows from Proposition Ib that the zero dimensional part of Jί is
compact and hence finite. This proves the first assertion. To prove the second
assertion, note that the matrix elements

yeZ

correspond to the sum of the product signs &2(u, v) = #(u)#(v) over the zero
dimensional part of ^2(x, z). Now note that by property (T3) of the gluing map,
the ends of the 1 -dimensional part of Jί(x, z) are in oriented 1-1 correspondence
with (Jί2(x, z), ^2). This proves that (7) vanishes.

The other assertions are proved by a very similar construction applied to families
of parameter values (J, H). Rather than stating these properties in the form of
Proposition Ib, we assume that the reader is familiar with chapters 2 and 3 of this
paper. To construct the homomorphism h, consider the continuation (tf , H, J)
as a smooth family (&*λ, Hλ, Jλ)/eU which is constant in λ outside [0, 1]. For
critical points x in ̂ 0 and x in ̂  ̂  the solution set ̂ ε(x, xf) of the equation

*Xτ, 0) = + jj + VH«Wτ, t)) (lb.8)

with asymptotics x and x' have the same analytical properties as the set Jί in
Proposition Ib, except for translational invariance. In fact, the proofs of smothness
for the section δJ>H, of the Fredholm property in Sect. 2b, and of the transversality
property in Sect. 2c do not make use of the translational invariance, as long as
H, J is constant outside a compact interval. Hence we only have to make sure
that M does not touch the boundary of ̂  (see Definition lb.3). This may only
be true in the "adiabatic limit," i.e. we may have to choose ε small in (8). The
proof proceeds indirectly: If we assume that for a family of real numbers ε accu-
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mulating at zero there exists uε satisfying dε(u) = 0 and that some u(τε) is contained
in <% but not in its interior, then Proposition 3a would produce a trajectory in
Jί ' λ for some λ which is contained in the closure of ^U ' λ but not in ^U λ. This would
violate the assumption that Jt ' λ is isolated in Uλ for all λ.

The construction of Sect. 2d applied to this case yields orientation preserving
maps

#:J(x,x'} X R + X J(x',y')vJ(x,y) X IR_ X Jϊ(y,y'}^ (9

with 0 as in (Tl) of Proposition Ib. The global compactness theory of Sect. 3,
suitably modified, implies again that the 0- and 1 -dimensional part of Jl is compact
up to the image of #. In algebraic terms, this means that the dimensional part of Jl
defines a homomorphism

h#(<?9 J, H): C* -> c;

which commutes with d and d'.
Now let (&9 J, H) be a continuation from S1 to S2 so that Jί has the same

properties as Jϊ above. If we combine it with (̂ , J, H) to a continuation (&9 J, H)
with a sufficiently large constant interval in between; then restricted to the zero order
parts, we have a bijection

#:J(x,x') X J(x',x"}^J(x,x"} (lb.10)

through another variant of the gluing procedure of Proposition 2d. (The "gluing
parameter" here is the length of the separating interval and therefore does not
appear in (10).) This proves that h# is functional with respect to "regular"
continuations.

The next step is to show that h# does not depend on the generic perturbations
involved in the above construction. In fact, if the continuation in turn is deformed
continuously depending on a parameter ve[0, 1], then one can show that (h0)# and
(/ijg are chain homotopic. To see this, choose first ε small enough so that M^
is "isolated" in U for all ve[0, 1]. This is possible for a compact interval. Then
consider

Jί(x, x') = {(v, w)| ve[0, 1] and ueJίv(x, x')}.

The theory of Sects. Ib-lc is easily modified to incorporate the additional
parameters v, so that we can assume that JF(x, x') is a smooth finite dimensional
manifold. The analog of Proposition Id yields maps of type (G2), which again
parametrizes all ends of Jί in dimensions less than 2. Algebraically, this means
that the zero dimensional part defines a homomorphism y: C^ -> C'^ with

(Λι)# - (Λ0)# = 3γ- yd'.

This proves that h0 and hl induce the same homomorphism in homology.
Now consider the composition of & with its inverse. It can be deformed

(through continuations) to the trivial continuation. Since the latter clearly induces
the identity on 7^, this completes the proof of Theorem 4.

Together with Theorem 3, this justifies the following notation: Π

Definition lb.3. For any bounded isolated invariant set & of ̂ j H on Ω, we define
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the homological Conley index /JS, J, H) by applying (6) to a regular perturbation
o f H .

Of course, this definition does not provide a method to calculate /„.. However,
the invariance property allows us in some situations to deform the problem into
one which can be reduced to finite dimensions. For example, we have

Theorem 5. (1) J/P is monotone and ̂  = ̂ j H(Ω) is the maximal bounded invariant
set, then /#(^) is isomorphic as an Abelian group to H#(P).

(2) Consider on the symplectic product P = P X P' a product complex structure
J = J x J' and a Hamiltonian of the form H(x, x') = H(x) + H'(xr). Then for bounded
invariant sets ^ in Ω and &" in ΩP', we have

Proof. We know from Theorem 3 of [F6] that there exists J so that if #eC°°(P, (R)
is C2-small, then all critical loops are constant and every ueJίj H(x, y) with l(u)
small enough consists of constant loops, i.e. u(τ, t) = u(τ). In this case, ΰ is a
trajectory of the gradient flow of H with respect to g = ω(J , •). We conclude that
all ve^(x9 y) which are not of this form must be topologically obtained from some
path of constant loops by the connected sum with a sphere w with ω[w] > 0. We
show that for monotone P, such trajectories do not contribute to the matrix
elements. Theorem 5 then follows from Lemma 4.3 of [M], see also [Wi] and
Theorem 1 of [F6].

The basic reason why trajectories of nonconstant loops do not contribute to
d is that because of the additional S^-symmetry of loop rotations, such trajectories
always come in at least two dimensional families. However, we have to make sure
that these families belong to regular Morse cells Jί(x9 y) in the sense of Proposition
Ib. In order not to destroy the S1 -invariance, we do not use the abstract perturba-
tions of Proposition Ib, but a perturbation of J as in [McD]. It follows in the
same way as in Lemma 9.9 of [McD] that for "generic" almost Kahler structures
J, all simple trajectories in Jί(x9 y\ i.e. all trajectories which are not of the form
vk(τ, t) = v(kτ9 kt) for some k> 1, are regular. Hence due to the rotational symmetry,
their index is at least 2, so that they do not contribute to d. Now we claim that
since P is monotone, we have μ(vk) ^ μ(V). In fact, as we noted before, v is topo-
logically equivalent to the connected sum u φ w of a trajectory w on P and a sphere
w in P with ω[w] > 0, and hence c:[w] > 0. Then vk is topologically equivalent to
u^k'W. Now let μH(x) denote the Morse index of x as a critical point of H. Then
the above claim follows from the following formula of [F], see also Theorem 3 of
[F5]:

μ(u#w] = μa(x) - μH(y) + 2cί(w). Π

In the following, we want to summarize the three points in the above construc-
tion where we used the monotonicity assumption, and discuss possible adaptations
for general symplectic manifolds. We will assume that °U is the full loop space Ω.
First, note that in the general case, the set ^(x, y) of paths in Ω joining two critical
points may have infinitely many components of index 1 but of unbounded length.
In principle, this might allow the matrix elements < x, dy > to become infinite while
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in the monotone case, the bound on the action bounds the "complexity" of the
homotopy class of trajectories. For example, let x and y be two solutions of (la.l)
in S2 X μS2, joined by a trajectory of index 1. Then the flow equation would have
index 1 on all spaces &n(x, y) of trajectories homotopic to trajectories obtained
from μ0 by connected sum with n copies of the antidiagonal. The length of a
trajectory in g?n(x, y) would satisfy l(u) = I(u0) + n(\ — μ). One may be able to prove
that only finitely many of the sets Jί n ^n(x, y) count algebraically. However, if
no such argument can be found generally, one will have to consider the canonical
covering Ω of Ω with covering group Γ = Im (/ω) c IR and the chain complex

^* ~ { Σ αi^ilf° r ea°h βoe^> only finitely many z^e J^ satisfy a(zt) < a0
(i=l

It is a free module over 2£ of the "weighted" group ring 7"̂  consisting of linear
combinations which are finite above each level in Iω. The coboundary property
and the invariance of the index should hold.

However, the proof has to be refined slightly, due to a second (and this time
seemingly technical) point in this paper where the monotonicity assumption came
in. Recall that in the proof of Proposition lc.1, we argued that in passing to a
"weak limit" in Jί, the index decreases by multiples of 2 since all holomorphic
spheres (which necessarily have positive Iω) have positive Ic. Without the mono-
tonicity property, there may actually exist holomorphic spheres of nonpositive
Chern number. A family of trajectories splitting off such a sphere would converge
weakly to a trajectory of the same or even larger index. As long as the set of
holomorphic spheres is regular, i.e. as long as the dimension of the space of
holomorphic spheres does not exceed the dimension predicted by the index formula
(see Proposition lc.1 below), such splittings can be excluded by a trans versality
argument. This is for example the case for (products of) complex projective spaces
with the standard complex (but arbitrary symplectic) structure, see also the next
section. In general, however, transversality is not necessarily a generic property
for such holomorphic spheres which factor through branched coverings of S2, see
[McDl]. To define the matrix elements in this case requires therefore a suitable
modification of the Cauchy Riemann equation in a weak neighborhood of the
"weak closure" of Jί(x, y). We hope to give a general method for such modifications
in the near future.

Monotonicity entered a third time in the calculation of /^ in Theorem 5. We
do not know if the answer is different in general. However, one should point out
that the calculation of /^ depends only on the (almost) complex structure and not
on the symplectic form.
Ic. Cup Products. The cohomology I*(y) of the abstract Conley index is defined
as the homology of the dual complex (Z*, δ) of (Z^, δ). With respect to the canonical
basis 2£ of 2£ \, we can identify Z* with Z^ and have

with <x, δyy = <dx, y>. Of course, if the homologies of two complexes coincide,
then so do their cohomologies. The advantage of the cohomological notation is
that we can define a "cup product" invariant. For the standard Conley index in
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the locally compact case, this is defined as follows. If (U, A) is an index pair for a
compact isolated invariant set S of a flow χ on X, then we have //*(/(£)) = H*(U9 A).
Hence we can define

u: H*(X) ® H*(I(S)) -> H*(I(S))

The proof of the invariance of the Conley index is easily adapted to show that u
is invariant under continuation, see [F2]. An important property of u is that if
aεH*(X) acts nontrivially on H*(I(S)), then it does not vanish under the restriction
to S. This is an immediate consequence of the continuity property of Alexander
Spanier cohomology (see [Sp]) and the fact that we can choose the isolating
neighborhood U of 5 arbitrarily small. It can be used to estimate the cuplength
of £f and hence the number of fixed points of the restricted flow via Ljusternik
Snirelmann theory.

A definition of a similar operation in the loop space could be attempted as
follows. Assume that oίeHp(Ω) is represented by a smooth orientable submanifold
of Ω of codimension p. Let Jl be regular as in Proposition Ib and assume in
addition that α meets each cell of Jl transversally. Then define

αu:Z%7, #)-*£%/»#)
ocuy = Σ x<x,αuj;>,

\eJί

where <x, α u y > is the intersection number of α with Jί(x,y). (Again, we count
only the zero dimensional part of αn^, so that <x, ocuy) = 0 unless μ(x) — μ(y) =
pmod2Γ.) In fact, if we assume that <? is actually compact, i.e. if Jl has no end
splitting off a holomorphic sphere, then we can easily show as in Theorem 4 that
all such intersections are finite. We conjecture that α u commutes with δ( J, //),
thus defining a homomorphίsm u : /ί*(ί2) -> End (7*(5 ;̂ J, H)) which is invariant
under compact continuation. Moreover, we conjecture that u factors through the
restriction homomorphism to H*(£f). In fact, this has been shown in [F7] in a
slightly different case. If £f is merely bounded, then the compactness properties
necessary for the proof of finiteness and invariance of the intersection numbers
<x, αu y> breaks down, since cells of dimension higher than two may have ends
splitting off holomorphic spheres. However, it turns out that a very similar program
can be carried out if we restrict ourselves to the subring of H*(Ω) which is pulled
back from H*(P) by the zero time map

Let us represent cohomology classes αe#%P) by the dual singular cycles α: u ΔM

P. Here |α | = dim(P) - p. Define

αn^ = {μ,w)euzl | α | X

Then dim (α n Jί) = p — dim Jl if Jl is a regular cell and α is transverse to
the zero map
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Hence if dim Jί = p, the matrix elements can be defined as the oriented cardinality
of ocnJί, compactness provided. It turns out that the noncompactness can be
controlled in the following "generic" situation.

Proposition lc.1. Assume that the space ZfAj of holomorphίc spheres decomposes
into smooth manifolds of dimension

dimu y&3 = 2cι(u) + dim P

such that the map χ o f ( l ) and the evaluation map on ̂ Aj meet transυer sally. Moreover,
let U£HP(P) be represented by a smooth singular cycle which is transverse to the
map ίc'.M^P X E and the evaluation map ϊfAj X S2 -> P. Then if ^ = iJt is
bounded and isolated, the zero and one dimensional part of ur\Jl is compact up to
the image of the map # of Proposition Ib.

Proof. For any sequence (wα, /tα)eαn^(α, b) we can (by compactness of Zi |α |)
choose a subsequence such that λΛ^λ in Zl |α | and M->(M, v)EJ^^(a, b). By the
properties of weak convergence (see Definition 3a.3), we must have we^nα for
some ueu, or some VGV must intersect α. However, since all these intersections
were assumed to be transverse, we can determine their dimensions and find that
they are nonnegative only if the index of (wα, λa) in α n Jt is at least 2. Π

Note that this proof applies only the cohomology classes in P and not to general
cohomology classes in Ω. The hypothesis of Proposition lc.1 is satisfied trivially
if /ω = 0. As long as we can avoid holomorphic maps u:S2^P which factor through
a branched covering of S2, it is actually a generic property of J, see [McDl].
However, to obtain the compactness property of Proposition lc.1, we need control
over the full space ϊSAj. According to the discussion at the end of the preceding
section, this is an entirely technical point, so that the following algebraic invariants
should be well defined in all situations where we can define 7^, and should be
independent of J.

Theorem 6. Let Jί 'j H and ^A3 be regular and transverse in the sense of Proposition
lc.1. Assume in addition that ^ is bounded and isolated and let <x, α u _ y > denote
the (oriented) intersection number of α and Jί(x, y}. Then the homomorphism α u
on Z* defined by these matrix elements commutes with δ. The map

u:#*(P)-+ End (/*(£)),

obtained by perturbation as in Definition lb.3 is well defined. Moreover, if h is the
dual of the isomorphism of Theorem 4 corresponding to a bounded continuation
between bounded invariant sets ̂  and ̂ 0 keeping J fixed, and if u0 and u t

denote the corresponding operations, then for all αe//*(P) and yel*(ϊf\ we have

Proof. Finiteness of <x, α u _ y > follows directly from Proposition lc.1. To prove
that αu commutes with δ, consider any |α | + 1-cell N in Jί\x, z) and the 1-dimen-
sional manifold α n N. By the above, its ends are contained in the image of the
gluing map # of Proposition Ib. In fact, due to the (^-approximation property of #,
they are in 1-1 correspondence to pairs (u, υ)ε(u.r\Jί X Jί\ where the first
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component has necessarily index | α | and hence the second component is an isolated
trajectory. It follows that the oriented sum over such pairs vanishes. On the other
hand this sum is by definition of δ equal to <x, (αu<S — (Sαu)y>.

Now assume that u = dβ for some singular (p + l)-chain β. Then we claim that
αu =(5/?u + /?U£>. This is done in the same way as above by considering the
one-dimensional intersection set βr^N for any α|-cell N. Π

If Iω = 0, so that in particular y is compact, u has properties very similar to
the u -operation in finite dimensional Conley index theory. In particular, one can
show using the methods of [F7] that with %:S^>P as in (3), we have ^*a^0
whenever auis nontrivial.

Theorem 7. // P is compact with Iω = 0 and if ̂  — ^JίH(Ω\ then the operation
[P] u of the top class [P]e//2"(P) on I*(^) ~ H*(P) corresponds to the cup product
in H*P. Moreover, we have ^*[P]=0 in H2n(^\ and in general an injective
homomorphism

Proof. Note that the last assertion follows from #*[P] ̂ 0 by Poincare duality.
Now the proof is the same as the proof of Propositions 2.2 and 2.5 of [CE] except
that we can use integer coefficients by virtue of the orientations given in Proposition
lb. Π

Injectivity of (4) was simultaneously proved by Hofer [Ho2] by a far simpler
method which does not involve the homological Conley index. The idea in [Ho2]
is to consider the set Jίp of maps u from the closed manifold

s2

into P satisfying d(u)(τ, t) = VH(u(τ, t)) for τ | ̂  p and du = 0 on the caps. Denote
by £f p c Ω the restrictions of all u^Jίp to the equator {0} X S1. Since the equation
defining Jί p is homotopic to the standard Cauchy Riemann equation for
contractible maps S2-+P, whose solutions are just the constant maps, one can
show tht z*:#*(P)->/f*(^p) is injective. On the other hand, £fp is contained in
any neighborhood ^ of ̂  for p large enough. Injectivity of (4) therefore follows
from the continuity property of Alexander Spanier cohomology.

One can use this result to obtain estimates on the number of fixed points in
y via Ljusternik-Snirelman theory. However, there also exists a direct geometric
way to obtain such estimates. If Iω = 0, then it follows immediately from the
construction that if £fJM contains only k critical points for some J and H, then
for any classes α x •• α/cef/*(P) of positive dimension, the operation α^ α^u
vanishes on /*(^). On the other hand, there is reason to believe that if Iω = 0, the
operation u is "associative" with respect to the cup product on H*(P). This would
immediately imply the cuplength estimates in Theorem 1. However, in view of the
results of [F7] and [Ho2], we will not pursue this question here.

On the other hand, if Iω / 0, then this geometric method is the only way of
estimating the number of degenerate fixed points. We will restrict ourselves here
to the following illustrative examples: Let P = CP""1. It is a matter of fact that
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for the standard complex structure J on P, Chj satisfies the hypothesis of
Proposition lc.1. By Theorem 5, we have an isomorphism /* ~//*(CP" ~ *). Since
the generator u of π2(CP"-1) has first Chern number n, the index is Z2w-graded
with one generator in each even dimension.

Theorem 8. The cup operation of the generator α of H2(CPn~1) is an isomorphism
Ik^Ik + 2 for each /ceZ2n. Moreover, the cup operation is multiplicative with respect
to (2) of Theorem 5.

Proof. We use a canonical Morse function for which the cells Jί(x,y) can be
determined explicitly. For xeC", the quadratic function

n

defines a function on CP""1 =S2n~1/S1 with nondegenerate critical points Zt =
[ej. The gradient flow of ΛH with respect to the standard complex structure is
the projection of the linear flow on the loop space of C" = 0 to CP"~ *. For 1 ̂  i < n,
the two dimensional component oϊJί(zb zi+1) consists of trajectories of the gradient
flow of H and interests the generator u of //2(P, Z) exactly once. The two dimen-
sional component of M(zw z x) is one orbit under the combined translational and
rotational group, and also intersect u once. Π

The phenomenon is most easily understood for n = 2 and for H = ε(Ax,xy
with ε small. Then «^(zl5z2) is the two-dimensional cell of trajectories on S2

connecting the maximum with the minimum of//, and Jί(z2, zj "bifurcates" from
the two dimensional set of holomorphic maps from S2 to S2 fixing the poles. Both
sets have a unique intersection with the generator oϊH2(S2, Z), which is represented
by any point in S2.

Now an obvious indirect argument proves Theorem 2. (Note that the group
Γ = c1(π2(P)) c Z of covering transformations is generated by the greatest common
divisor of the integers n^ - nk.) For CPW~1, this result was first obtained by Fortune
[Fo]. Although Fortune uses very different methods (first converting the problem
into an Sl-invariant variational problem on the loop space on C"), the structure
of the resulting Morse complex is strikingly similar.

Note that the existence of holomorphic sopheres in CP""1 was necessary to
prove Theorem 8 and hence Theorem 2. On an "exotic" symplectic structure ώ
on CP""1 with an associated almost Kahler structure J so that ^/ij = φ, there
would be no topological obstruction against a deformation of H pushing z± and
zn together. (Though it is not considered very likely that such ώ exist, one cannot
exclude it at this point.) The operation of //2(CP"~1) on /*(S) would then not be
cyclic but nilpotent. In fact, the cup operation on /*(S) is an example of an algebraic
invariant of a symplectic manifold which is derived from £faj(P) but is independent
of J as long as it satisfies the Kahler condition with respect to ω. If this invariant
is independent of the topology of P, then it must be taken into account when
formulating fixed point estimates for exact diffeomorphisms.
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2. Manifolds of Trajectories

2a. Analytic Setup. Let exp: ΓP -> P denote the exponential map with respect to
some metric on P. Then for k > l/p and xεΩ%, we have smooth charts

exp,: TxΩξ = L?(x* ΓP) ̂  Φ -> Ω{

(exp, ξ)(t) = expx(ί) (ξ(t)\ (2a.l)

where ^U = {(ζp, ζE)\ \\ ζ \\ ̂  < r} for r > 0 small enough. The proof of this fact is an
obvious extension of the proof of Theorem 9.9 of [Kl] to two dimensions and to
general Sobolev norms. In the same way, it follows that for any / ̂  0 and q ̂  1
such that l^k and l-l/q^k-l/p, the family Lf (x) = Lf (x? TP) of Banach
spaces defines a smooth Banach space bundle ^(Ωζ) over Ω%. In fact, the
linearization of the chart (1) extends to a smooth set of local trivializations

Dexp: TxΩ
p

k X Lf(x) -

The aim of this section is to extend the above notions to define Banach manifolds
^(x, y) in the set ̂ loc of paths in Ω defined in (la.3) and a bundle if over ^(x, 3;)
in such a way that the flow operator djπ of (lb.1) defines smooth sections of if.
The procedure is largely parallel to Sects. 3 and 4 of [F4], though simpler since
there are no boundary conditions here, and since we do not have to use "exponen-
tially weighted" norms. Let /, q be Sobolev coefficients such that L£(S2, R)
c= L?(S2, R). Then for ue&>ξ, we denote by &?(u) the Sobolev space of sections ξ of the
pullback bundle u* TP with norm || ξ \\ qj = \\ξ\\q+ \\ Vlξ \\ q. Here, we use an arbitrary
metric and connection. We apply this in particular to the constant path x(τ, ί) = x(ί).

Definition 2a.L Let p > 2/k. For arbitrary x, yeΩ, define

&>ξ(x,y) = {MG^OC| there exist ξeL?(x) and ζeLf(j)) such
that for p large enough, u(τ, f) = expx ξ(τ, t) for τ < — p
and u(τ) = expy ζ(τ) for τ > p}.

Proposition 2a.l. For any x, yeΩ and for p > 2/k, the set &%(x, y) of Definition 2a.l
is a smooth Banach manifold with tangent spaces Tu^ζ(x9 y} = <^k(u) and smooth
charts

expu: Jiff (M) -* ̂  expw(ξ)(τ, t) = expu(τ?ί) ξ(τ, ί).

Moreover, for /e[0, fe] βnί/ p ̂  ̂  ̂  1 50 ί/iaί / — 2/g ̂  1 — 2/p, the Banach spaces
LI{U) are fibres of smooth Banach space bundles ̂  over &p

δ with smooth trivializations

u(ξ, C) = Ό expM(tiί)K(τ, ί))C(τ, t).

The family exp of trivializations allows us to define for any section 0 of 5f\ a family of
functions o[u]: Tu0>ξ^>L?(u) by

= (expuξ, d(expttξ)). (2a.2)
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By definition, 0 is Cr if and only if the function ό[u\ is Cr for all u. Moreover, we can
define the 'covariant derivative..

Let us now restrict our attention to 0>:= 2P\ and & = J^Q.

Proposition 2a.2. For J,He/ X 2tf and for x, ye 3? J>H, formula (lb.1) defines a
smooth section of <£ over &. Moreover, in the first order expansion

Sj,H(u) + DdJtB(u)ξ + N(ξ\ (2a.3)

the nonlinear part satisfies the estimates

|| N(ξ) - N(0 I I , ̂  C(u)( || ξ || l f j, + I I C I I !,,) I I ξ - C I I !,„ (2a.4)

C(W) | |αL| |ξ | l ι,p. (2a.5)

e, C(u) is bounded in terms of | |Dw| | 3 and the C2-norm of J and H.
The proof of smoothness for the transition maps of the charts expu and the

trivializations expw is the same as the proof of the corresponding property in
Proposition 3.1 of [F4]. To prove Proposition 2a.2, we first show that the function

is well defined. Since dj HveLfoc(v) for all t e^, it suffices to show that for all

defines an element of Lp(x\ (Here, we have extended the notation of (2) to
sections on Ω.) But this follows from the estimate

To prove differentiability, we can treat the sections dj and VH separately. Even
if djU and VH(u) do not decay at the ends, their derivatives define continuous
operators in Hom(T^, JSf). The first is given by the formula

(Ddj(uP)ξ)(τ, f) = (Vt + J(u(τ, ί))Vt)ξ(τ, ί) + (Vξ(τ,t}J)(u(τ, t))ύ(τ, t).

This is a smooth Banach-space bundle homomorphism between T0*(x, y) and 3?
as in Proposition 3.1 of [F4]. For the perturbation, the linear operator is a matrix
operator which even defines a smooth endomorphism of T0*(x, y). The nonlinear
estimates can be treated separately for dj and VH, too. We obtain an estimate
for the δj-part through Lemma 3.2 of [F4]. The estimate on the Hamiltonian
part follows from a C2-bound on H. Π

2b. Fredholm Theory. In this section, we examine the relation between the spectrum
σ(Dx) of the operator Dx = D^JίH(x) for xeΩ and the linear part Du = DdJH(u) of
(2a.3) for we^(x, y). First note that σ(Dx) is always a discrete subset of (R, since Dx

is self adjoint on L2(x*T^) and since for each αelR, Dx — a-id is a Fredholm
operator of degree 0.
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Proposition 2b. For any x,yeΩ% and for ue&ζ(x9y)9 Du extends to a Fredholm
operator Du: Lf (u) -> Lf_ ± for any l^k if and only if Dx and Dy have no purely
imaginary eigenvalues. To each nondegenerate xti JH in the universal covering of
Ω, we can assign an integer μ(x) such that for

Index (Dd(u)) = μ(x) - μ(y\ (2b. 1)

If c^oήfor αeπ2(P) denotes the first Chern numbers of α*ΓP, then

μ(x) + 2cί(θL). (2b.2)

Proof. The statements concerning the Fredholm properties of Du follow essentially
from Theorem 1.3 of [LM], see also [Ko] and [MP]: By standard Fredholm
theory of elliptic operators on compact manifolds (see e.g. [H], Theorem 20.1.2),
one can reduce the Fredholm assertion to the case of arbitrarily small paths in
0>(x,x) for xeΩ. Moreover, since the set of Fredholm operators is open in the
operator topology, we only have to consider the case of the constant path x. Since
x is nondegenerate, there exists for every Λe(R a resolvent

Rλ = (Dx + ίλΓ1:Lp(x)^C-

which is bounded independently of λ. Define

Then

satisfies D.ζ = ξ. As in [MP], Theorem 4.1 (see also [Ko] for the case p = 2), we
now conclude that CeLξ(x), so that D :. L\(x) -> Lp(x) is bijective with

\\p. (2b.3)

Let us now write Du in the form

~

Then the Fredholm index of Du is given by the "spectral flow" μ(u) of the operator
family Dτ through the imaginary axis. Note that Dτ is self adjoint on L2 for all
τe(R if Du = Dd(u) is defined as in (2a.2) with respect to the torsion-free metric
connection on P. If the parametrized spectrum σ(u) = {(τ, a)\aeσ(Dτ}} decomposes
into a smooth family of eigenvalues of multiplicity one, then μ(u) is the number
of families crossing zero. A more precise and more general definition of this integer
quantity is given as follows: Choose τ0 < - < τN and λ1 - - λN in (R so that λίφσ(Dτ)
for T f _ ! ̂  τ ̂  τ f and so that the same is true for λ0:= 0 for τ ̂  τ0 and for λN + 1 := 0
for τ ̂  τN. For 0 ̂  i ̂  N we define the integer nt as the dimension of the eigenspace
of Dτι corresponding to [λί + 1, AJ in C if λi+1 g λt. Otherwise, we define it to be
the negative of the dimension of the eigenspace of [_λhλi + 1]. We claim that

Index Du(δ) = £ n,:= μ(x9 y). (2b.4)
i = 0



596 A. Floer

This will also prove that the right-hand side is independent of the construction
and that it is continuous in u. To prove the claim, consider for each pe[R the
operator D(ρ) = (d/dτ) + D^(τ), where βp(τ) = β(τ - p)τ + (1 - β(τ - p))ρ. Then we
can apply the Fredholm theory described above to D(p), In fact, we can extend it
to Sobolev norms weighted by a function max(l,eλτ). By Theorem 1.3 of [LM],
D(τt) is a Fredholm operator with respect to the weight λi as well as λi+l for
1 ̂  ί ̂  N. By Theorem 1.4 of [LM], the difference of the Fredholm indices in the
first and the second case is given by nt (see also Lemma 2e.2 below). On the other
hand, D(τ) is Fredholm with respect to the weight λi for τi,l ^ p ̂  τί? so that its
Fredholm index remains constant through this deformation. Finally, it follows
from the above that for large negative p, D(p) is an isomorphism for the weight 0.
This proves (4).

Since the spectral flow is obviously additive with respect to composition of
paths, we obtain the Morse index of (1). Formula (2) for the topological change
of the index of Du is given in Theorem 3 of [F5]. Π

2c. Transversality. The aim of this section is to prove the density of regular para-
meters (J,H)ε/ X ffl of Theorem 5. Since the method depends crucially on the
Sard-Smale theorem, we need to restrict the parameter space ffl to a Banach
manifold. Following [F4], define for a Riemannian manifold M and for every
positive sequence ε = (ε^)ιeN the Banach space

where

By Lemma 5.1 of [F4], we can make ε small enough so that C§(M) is dense in
ί/(M, IR) for p < oo. For such ε, J7 = C^S1 X P X £). Now recall that a subset of a
Banach space is said to be of first category if it is a countable intersection of open and
dense sets. It is then always dense by Baire's Theorem. We are now ready to state the
main results of this section.

Proposition 2c.l. For every (J9 H)ε/ X Jff9 the set J4?reg(J, H) of all HεH + $ for
which 3£ 3£ is nondegenerate is of first category.

Proof. Consider for some Je/ the smooth section

where we identify J5? with its pullback under the projection $ X Ω -» Ω. Denote by
$£ the zero set of ̂ . By construction of Jf7, the derivative of ̂  with respect to the first
factor has a dense image. On the other hand, the derivative of ̂  with respect to the
second factor is Fredholm, so that its image is closed with finite codimension. We
conclude that D£ is surjective for all (H, x)e JP, and hence that j? is a Cr-submanifold
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of $ X Ω, so that the projection $ X Ω -» $ induces a smooth map p\$ζ ^&.
The derivatives of p are Fredholm with index zero. In fact, for each HeJ^, we have
p ~ l [ ί f ] = &J,H+H Hence p is also sigma proper, so that by the Sard Smale Theorem
[S3], see also [Q], the set of regular values of p is of first category in $ '. Π

Let us now call JίJίH regular if for all ueJίJfH(x,y), the linearization Du =
Ddjπ(u) is surjective. Of course, this implies by the implicit function theorem that
all these sets are smooth manifolds with dimensions given by (2b.l).

Proposition 2c.2. For any (J, H}<Ξ/ X Jf, the set of all πeπ + Π for which Jlj,H

is regular is of first category.

Proof. We consider the section

d: ̂  X & -> JSf d(H, u) = dJtH+β(u).

Again, one easily proves that the zero set Jί of d is regular. In fact, D2d(H, u) =
Ddj H+H(u) is Fredholm for the values of δ which we consider. Its finite dimensional
cokernel can be removed by means of D^//, M). Now Proposition 2c.2 follows
as Proposition 2c.l from the Sard Smale Theorem. Π

2d. Transitivity. Let /?: IR -» [0, 1] be a smooth function with β(τ) = 0 for τ g 0 and
β ( τ ) = l for τ Ξ > l . Consider χ = (u9v9p)e^(x9y) X Jf(y,z) X IR + . If p is large
enough so that u(τ) = exp^ ξ(τ) for τ ̂  p and ι (τ) = exp^ ζ(τ) for τ ̂  — p, then we
define

ί
u(τ + p) for τ ̂  — 1

GXpy(β(-τ)ξ(τ + p) + β(τ)ζ(τ-p)) for τ | g l . (2d.l)

v(τ — p) for τ ̂  1

More generally, recall the set ^jπ(x, y) of /c-trajectories joining x and y, i.e. the
set of fe-tuples u = (ul" uk) with u^Jtj^i- 1, xf), where x = x0 and j; = xk. Then
we can extend the above construction to a map

#: Jk(x, y)XUk

+^KX [pK9 oo)*"1 ̂

as long as X is compact and pκ is large enough, see Theorem 3b.l below. Moreover,
it follows from Theorem 3b.l that there exists CKzU+ so that

\\dJπ(wχ)\\p^Σ*~CκPl (2d.2)

Proposition 2d.l. For αnj; compact set K c= ̂ k(x, 37) contained in the regular set, there
exist positive real numbers pκ, Cκ and a map

k

with || ξ || 1>p ̂  ̂  e~CκPl. Moreover, # satisfies (1) of Theorem 4.
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The proof of Proposition 2d.l uses an iterative procedure known as Picard's
method, which was first applied to partial differential equations by C. Taubes. It can
be summarized as follows:

Lemma 2d.l. Let f:E-*F be a Cl-map between Banach space E and F. Assume
that in the first order expansion

D/(0) has a finite dimensional kernel and a right inverse G so that for ζ,ζeE

\\GN(ξ)-GN(ζ)\\EZC(\\ξ\\E+U\\E)\\ξ-ζh

for some constant C. Set ε = (5C)~ 1. Then if\\ G/(0) || E ^ ε/2, there exists a C1 -function

φ:Kε:={ξekerDf(0)\ \\ξ\\E<ε}^GF

with f(ξ + φ(ζ)) = 0 for all ζeKε. Moreover, we have estimates

\\Dφ(0)ζ\\EZ&\\Gf(Q)\\E\\ζ\\E

The proof of Lemma 2d.l is an elementary application of the contraction
principle. We apply it here to the function

see Proposition 2a.2. The absolute and the nonlinear parts satisfy the estimates
(2a.4) and (2) with constants that depend only on K. Hence Lemma 2d.l yields
the desired map if we can invert Dχ in a uniform way. Of course, since Index (Dχ) =
μ(x) — μ(y) > 0, we want to factor out a finite dimensional subspace of Lξ (w^). We
therefore consider the linear analogue of (1): For ξeL^u) and £eLξ(ι;) we define

by

-1^-^ for τ = l (2d3)
_τ-l) ί (τ + rt for τ s i (2d'3)

Again, we can extend this to a linear map

#:L£(Wl) X - X Lffa^Lttu^. ^uά

for k = 0, 1. Now define L^ as the L2-orthogonal complement of ker DMl # - - # ker DUk

in L?(wχ). (This subset is in L2(wχ) by Proposition 3c.) Then we have

Lemma 2d.2. There exist constants Cκ and pκ such that ifχeK X [pκ, oo)^"1, then
there exists a continuous right inverse Gχ: L

p(wχ) ->• L^ ciL^w^) of Dχ with
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Proof. In a slightly different case and for only two trajectories, this is Lemma 4.3
of [F3]. The proof given here follows the same lines. Since the Fredholm index
of Dχ restricted to L^ is zero, it suffices to show that for all ξeL^, \\ζ\\ιtp^
C\\Dχξ\\p with C depending only on K. This is done indirectly. Assume that there
exists a sequence χp = (up,pp)εK X [p, oo)^1 for pef^J and ζpeL^ satisfying

II £, II ι.,= l, (2d.4)

lim II/^II^O. (2d.5)
p-> oo P

We will henceforth abbreviate the double index χp to p. We first show that ξp is
small near the gluing points. Choose therefore τ l p τ f c _ l j p so that

wp(τip - Pip] = Mi(0),

i.e. so that wp( - τίp) - ̂ -i#^ on [- £, C]eR. Now define ξip(τ) for τ | ̂  3 by

(2d.6)

where £f is defined so that expx. ζt(τ) = wp(τ) on this interval. Our first aim is to show
that for each i,

ll^-^lli.p-O. (2d.7)

Note therefore that ξip is defined by (6) on increasing intervals Ip^\U. With

β(P)(τ} = )8(τ + « ρ ) β( - τ + ̂ p ) the sequence ]8(p)ξίp is bounded in L?(άf) by (4).
Hence a subsequence converges weakly in this space to a limit ξiao. By weak
continuity of the nonlinear part N of djπ, (see (2a.4) of Proposition 2a.2), we
conclude that ξioo satisfies the translationally invariant equation D^ξioo =
(d/dτ)ξioo + AXιξίao = 0. It follows by (2b.3) that ξiao = 0, so that a compact Sobolev
embedding implies that ξip converges to 0 uniformly on bounded intervals of IR.
With β(τ) = β(τ + 4)β(-4 + τ), we have \\D±βξip) \\p ^ \\D^ξip^^}\\p +

\\β'ζip l i p which converges to zero for large p by the above. Hence (7) follows from
(2b.3).

Now define σjpeU so that wp(τ-σjp) = ujp(τ) for τeljp:= [1 -py_1 ?p7-- 1].
Define the cutoff function βjp = β(τ + pj_1)β(— τ + pj). Then the support of β'jp
corresponds to the bounded set where ξp converges to zero by (7). Hence

\\DUjβjpξjp\\p^\\DUjξjp\\p+\\β'ξjp\\p

converges to zero by (5) and (7). Now there exists a constant Cκ depending only
on K so that if pp denotes the //-projection onto the kernel of Du , we have

II βjpξjp II ι,P ̂  C( || Dujpβjpξjp \\p + \Ppβίpξip\).

This converges to zero by the above and since ξp was in the L2-complement of ker
DUι #-. #keΐDUk , see (1). It follows with (7) that \\ξp\\ ι,p^0 in contradiction to (4).
This completes the proof of Lemma 2d.2. Π

We can now construct the correction term ξ of^ Proposition 2d.l. To prove
that the map # is Cr, note that this is true for the map # from K X [pk, oo) to ^(x, y).
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Hence it suffices to show that # is everywhere transverse to L£. This is the case since
k

one can show that if tteTχ(K X [pfc, oo)) c ©kerDMι, then a' = (D#)(χ)oc satisfies
ί= 1

|| Du α' || p rg εχ || α || ! >p with εχ -> 0 if all pt -> oo. This also proves the estimate on the
inverse of D#(χ). This together with the estimate on Dφ in Lemma 2d.l also proves
the C1 -convergence in (2) of Proposition Ib in the Mk-directions. C°°-conver-
gence in general follows from regularity theory on the elliptic equation

2e. Orientations. To construct the orientations of Proposition Ib, we find it
convenient to rewrite # in the "unreduced" form. Consider therefore the dif-
feomorphism Jt-*Jt X [R, u-*(ύ, <w» given by u = ύ( — <w» for some "slice"
Jί a M. Then with p = Σ < w f > and pt = iK^;) + { w /+ι ))? we can define on some
open subset

#: Jl\x, y) -> ΛT(x, jO; u,# #uk = #(u, p}( - p\ (2e. 1)

In Morse theory on a finite dimensional manifold M, a frame of the normal bundle
of Jί(x, y) is naturally given in terms of frames of the negative subspaces E~ of
the Hessian at the critical points. In fact, they define frames on TWu(x) and on
the normal bundle TλWs(x)9 which in turn define a frame on the
complement of TJt(x,y) = T(Wu(x)n Ws(y)) in the trivial bundle TM|̂ }. Of
course, since the group of linear homeomorphisms of an infinite dimensional
Hubert space is contractible by Kuiper's theorem [Ku], we do not have an invariant
notion of framing on E ~ in the infinite dimensional case. In fact, we will see that
the structure group of TJί(x, y) cannot in general be (stably) reduced to the trivial
group.

Define the manifold Z+ = R+ X ^uD2. Consider xεZj H and the space

^(x) - {weL2

2

;loc(Z + , P)|there exists ξeL^ c),

so that for τ large enough, w(τ, t) = expx ξ(τ, t)}

of one sided paths ending at x, see Definition 2a.l. Clearly, we can give ^(x) a
Banach manifold structure as in Proposition 2a.l. Moreover, as in Proposition
2a.2, we have a smooth section defined by

Sj,H(u)(τ) = dju(τ) + β(τ}VH(u(τ}\

Here, the Cauchy Riemann operator has been extended to Z+ . Recall that β(τ) — 0
for τ ̂  0 and β(τ) =1 for τ ̂  1. Let us denote by D(ύ) the "co variant" derivative
of dJtH with respect to local trivializations of ̂  defined as in Proposition 2a.l.
We extend it to a Fredholm operator L2(V) -> L2(V). It defines a map D:^(x)-> ̂ u,
where ^R is the set of Fredholm operators on the Hubert space homeomorphic
to L\(u) and L2(u). (D is well defined up to homotopy, since as we already
remarked above the group of homeomorphisms of a Hubert space is contractible.)
Let & "c denote the space of Fredholm operators on an infinite dimensional
separable complex Hubert space.
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Lemma 2e.l. There exists a lifting

D~D°ϊ.0>(x)-*^cc:^u.

Proof. Consider for any xeP the space

The linearization of the Cauchy Riemann operator yields an elliptic differential
operator

Dd(u):L2(u*TP)^L2(Hu\ (2e.2)

where Hu is a certain linear bundle over u, see [G]. Given a local chart z =
t + h of S2, Hu can be identified with u*TP. We then have

Dd(u)ξ = Vτξ + JVtξ + Aξ, (2e.3)

where A is a zero order operator which depends on the connection and on the
system of charts with respect to which Dd(u) is defined. If we choose V to be a
Hermitian connection, i.e. if we assume that VJ, Vω, and Vg vanish, then we see
that (2) defines a canonical deformation of Dd(u) into a complex linear operator
DΌ(u) = Vτ + JVt. Hence if we identify the Banach spaces in (3) as complex Banach
spaces, we obtain a map D0:ί2

2P-> J^c.
Now for any C^map x: D2 -> P, so that x dD2 = z and z(0) = x, we obtain a map

fθΓ

u(θ) for

where S2 = SuD2 with dS = dD2 = S1 identified. In fact, ψ is a homotopy equi-
valence, since the E-component of ̂ (x) is contractible. We claim that the diagram

Oj>(y\ D Of
^ V-V - ̂ ^ [R

(2e.4)

is homotopy commutative up to a homotopy equivalence of 2? which changes the
Fredholm index by a constant. To see this, note that the disc x which we used
to construct the homotopy equivalence ψ defines a family xτeΩ connecting x with
x0. We therefore obtain a family ψτ: 0>(x) -> ̂ (xτ) of homotopy equivalences so
that t/f ! = id and ι//0 = ψ, which in turn defines a family of elliptic operators D(τ](u] =
Dd. (Recall from the proof of Proposition 2a.2 that it is not necessary that #JίH(xτ)
vanishes.) Next, by switching off the perturbation, we deform the operator field
D(0)\=D(\l/ιU) into D(— 1) = D0(^1M) which is defined in the same way as D0 in
(4) with S2 replaced by S. Of course, these operators do no remain Fredholm
operators on TP, since the asymptotic operators may develop kernels along
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the deformation. However, using the exponential weights of [LM], which we
already encountered in the proof of Proposition 2b, and the following
Lemma 2e.2, we obtained successive homotopy equivalences between Dd on 0>(u)
and D0 on ^ε(x0) which complete the proof of Lemma 2e.l.

Lemma 2e.2. For AeIR - σ(Dx\ denote by Dλ: 0>(x) -> ̂ R the map D with respect
to the exponential weight λ. Then for every λ < μe(R - σ(Dx) there exists a homotopy
equivalence h\^R-^^R such that the maps Dλ and h°Dμ are homotopic. Moreover, h
increases the Fredholm index by the dimension of the eίgenspace E(λ, μ) of Dx

corresponding to [Λ,, μ].

Proof. It obviously suffices to prove Lemma 2e.2 for the subspace of such UG^(X)
which satisfy u(τ) = x for τ ^ l . Moreover, one can reduce it to the following
statement: Assume that Eu c Lp(u) defines a finite dimensional subbundle E of <£p

so that each ξeEu satisfies ξ(t) = O for τ ^ l . Let π denote the L2-orthogonal
projection onto the L2-complement of E. Then it suffices to show that for all such
E, we have a continuous splitting of bundles ker πd2 = ker πD1 @E(λ,μ) over the
set of uε(0*(x)) so that πD^u) is surjective. This splitting is easily obtained through
the map assigning to each £ekerπD2 the projection of ξ(l) onto E(λ,μ). In fact,
the projection of ξ(l) onto E(λ, oo) must vanish if |£(τ,ί)l ^ e~μτ. Moreover, if ξ(l)
eE(- oo,/), then \ξ(τ,t)\ ^e~μτ. Π

Now recall that J\ and «^"c are the classifying spaces for the orthogonal and
the unitary group, respectively. Hence it follows from Lemma 2e.l and the family's
index theory of [ASI] that &(x) is oriented in the sense that for each we^(x), and for
each finite dimensional subspace E^Lp(u) not annihilated by any element of
cok Dd(u\ the manifold

(with d[u\ as in (2a.2)) has a natural orientation given an orientation of E. To
define the orientations on the Morse complex, we extend the gluing map (1) to
incorporate the spaces JtE. For χ = (u)v, JίE(x) X Jί(x,y) so that for some pglR,
we have u(τ) = expx ξ(τ) for τ ̂  p ana v(τ) = expx ζ(τ) for τ rg p, we define
wχ = u#ve&(y) by wχ = v on Sp- 1 and wχ = u on S — Sp + 1 and wχ(τ) =
expx(β(τ - p)C(τ) + β(-τ- p)ξ(τ)) on Sp + , - Sp_ ,.

Lemma 2e.3. Let E#E' be defined by (2d.3). Then we have a differ entiable map

#JtE(x\E] X JtE{x,y)^JtE#E{y\

ξ, (2e.5)

for some open set U of Jt(x,y). Moreover, we can choose so that | |^| |1 > p becomes
arbitrarily small.

Proof. As in the proof of Proposition 2d, we apply Picard's method (Lemma 2d.l) to
the map ^SJίH[wχ~\, where π1 is the L2-orthogonal projection onto the complement
of E#E.

Now we have as an immediate consequence:
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Proposition 2e.l. For each ueJί(x,y\ define the orientation of Jί(x,y) near u as
the unique orientation for which the map (5) is orientation preserving. Then (1) is
orientation preserving.

3. Compactness

3a. Weak Topologies. Let θ be any surface with or without boundary which is
equipped with a metric. Then for any map weCr(#, P), define

0Γ» = {expuξ\ξεCr(u*TP) and || ξ | |Γ f 0 0 < ε}. (3a.l)

The exponential function exp is defined in Sect. 2a. If w: θ => θ' -» P is another
Cr-function defined on a subset of 0, then we will also say that we$Γjε(w) if
we$r,ε(

w 100- The domain of a map is always clear from the context. If θ= [R X S1 and
UE^(x,y)9 then Φ(u) is a neighborhood of u in 0*(x,y). We want to define certain
"neighborhoods of infinity" in <P(x, y). More precisely, our first aim is to formalize
the notion of "geometric convergence" of trajectory to a fc-trajectory.

Definition 3 a. 1. The ε-neighborhood 0rtS(u) of ueJίk(x,y) in 0*(x9y) is the set
of all ωE^(X j;) such that there exists a covering

with the following property. There exists real numbers τxe/x and τu = Iu such that
if wx(wu) are obtained from w by restricting w to Ix (Iu) and translating by τx(τu\
then wx<ΞΦr^(x) and wMe0Γte(tt).

There are several stronger and weaker versions of convergence, which all turn
out to be equivalent for elements of Jΐ(x9 y). Clearly, the families ua:= #(u, pΛ) of
Proposition Ib converge to u in the sense of Definition 3a.l if and only if pka -» oo for
all fc. One can show (see Proposition 3c below) that if uεJΐk(x, y) is nondegenerate,
then any sequence UΛ converging to u is ultimately contained in the image of the map
# of Proposition Ib. Moreover, from finite dimensional Morse theory, we would
expect that Jt is compact under the convergence of Definition 3a.l as long as ̂  is
compact in Ω. This is in fact the case, as we will see later in this section. If we only
assume ίf to be bounded, we need a weaker notion of convergence. First, we extend
Jik as follows:

Definition 3 'a. ,2. A cusp trajectory (u,v)eJί^k(x,y) is a /c-trajectory ueJίk(x, y)
together with a finite collection v holomorphic maps υ: C ->(P, J) of finite area || Dv \\ 2
labeled by an element w v e x u M U ϋ and a point θv in R X S1 or S2 such that

» 0 0 :=limp(z) = wr(θ0). (3a.2)
|z|->oo

By "removing the singularity" (see [G] and [P]), each VEV is obtained from a
holomorphic map v: S2 -» P by a conformal equivalence. The points in P defined
by (2) are called cusp points. Again, there are many different possible neighborhood
systems which are all equivalent by elliptic regularity. In particular, since locally,
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(P, J) approaches the standard complex space C", the behavior of holomorphic
curves is rather predictable in the neighborhoods of the cusp curves. This motivates
the following approach to "weak topology":

Definition 3a.3. The weak ε-neighborhood ®r,ε(u,v) of (u9v
in ^(x, y) is the set of all WE^(X, y) such that

decomposes into one ubounded component Z0 and one bounded component Zυ for
each VGV such that

(Wl) w ZoetfUu),

(W2) A suitable dilation w0^ of w on Zv is contained on (9r^(v\

(W3) δv(θ(v))eZv.

Note that Definition 3a.3 (as opposed to Definition 3a.l) relies essentially on
the "double nature" of & as a space of paths in Ω and a space of 2-dimensional
maps into P. The inverse images oΐB^v^) in IR X S1 correspond to neighborhoods
of Gromov's "small geodesies," which decompose the Riemann surface Σ in the
general compactness theory of holomorphic maps Σ ->(P, J). Condition (W3) keeps
track of "hierarchy" of cusp points represented by labels. It is not essential in an
application and we might have omitted it along with the labels (w, 0), except that
a "purely geometric" definition of ^Ή might allow for confusingly many different
components in OrtE(u, v).

3b. Local Convergence. For any interval / c (R, we define ̂  = Ll(I X S\P).
We also write ^α = ̂ £|[_αα] The purpose of this section is to prove the
following result:

Proposition 3b. Let Mαe^ζα, αeN, be a sequence which takes values in some compact
subset of P. Assume that l(ua) is bounded and that Jα, HΛ-+J,H is a convergent
sequence in / jffl such that lim \\dj M uΛ\\ktp = Q. Then there exists a subsequence

<*->• oo

ua converging in L%+1 to a cusp trajectory (u, vje^ίΉj H. We have

£ <ω,^> + /2(W)^ lim sup/2(ιO. (3b.l)
i= 1 α-» oo

Note in particular that if /2(wα) ̂  / for some / smaller than

/o = min {<ω, υy\vεH2(P, T) and <ω, u> > 0}, (3b.2)

then (1) implies that the set v is empty, i.e. that up converges locally in
LI to u.

Proof of Proposition 3b. The central ingredient of the proof is the following standard
result of elliptic regularity theory on the Cauchy Riemann operator.
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Lemma 3b.l. ([F4], Lemma 2.3). Let U be an open ball in C and let J be a smooth
almost complex structure on P. Then

(1) For any compact set KdJ and lεN there exists a continuous function
C:R2

+^R + so that
l | M | | I , p ^ C ( | | d 7 t t | | / _ l ι p , | | M | | I > P ) .

(2) If ua is a sequence in L%(U9P) with lim \ \ d j U \ \ ι - l t p = Q and if | |wα | | ι , p is
a-> oo

bounded, then there exists a subsequence ua converging in Lf(X,P) to some
holomorphic map u.K^P.

A related result is

Lemma 3b.2. For every open I c !R and for every bounded sequence {up} in 0*\j
satisfying

II^H>-)llp->o
with (Jp9 Hp) -> (J, H) in / X ffl , there exists a subsequence which converges in &\κfor

compact K c / to a solution u of dJίHu = 0.

Now consider as in [F4] the sequence of numbers

εα(X):= inf {ε > 0| there exists θeK X S1 so that \\ DuJ p^θ) = ε2/p}. (3b.3)

If εx is bounded away from zero for some compact interval K c IR, then the hypo-
thesis of Lemma 3b.2 is satisfied, since \\Du^κ\\p is bounded. Hence assume that
εα->0 for a subsequence and choose $αeK X S1 so that \\Dua\\^B ^^ε^/p for
BZ = Bε (θa). Then for any R>0 and for α large enough we have maps

satisfying

\\DvΛ\\%^a9 (3b.4)

\\DvJp,Bl(<»^2, (3b.5)

\\^ΛP,B,(θ}=1 fora11 0eBΛ ̂ (O), (3b.6)

II δi;α - ε*V#α(ιO ||p-»0. (3b.7)

In (4) we have use the fact that || Du \\ 2 is conformally invariant and that therefore

|| Dva | |2 ^ || DuΛ{B || 2 g I2(ua) + εα || Hα || l j ( X,

by the definition of P in (lb.4). Equations (5) and (6) are immediate consequences of
the rescaling. To prove (7), we calculate

dvΛ(τ, t) = εadua(εa((τ, t) - (τα, ία))) - eα πα(wα(εα(τ - τα)))(eα(ί - ία))5

so that

" %Λ"n^ ε? J" H,(u&Λ(τ - τβ)))(cβ(f- tΛ))\'dtdτ
R

R

rgεΓ 1 1 \H,(ua/iεa(τ-τβ)))\\p

Pdτ^Cεξ1-
2\\H.\\1,a
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converges to zero for p > 2. Now it follows from Lemma 3a.l that a subsequence
va converges for any R in L^(J3K, P) to some holomorphic map v: C -* P satisfying
\\Dv\\\ ^ a and 11^11^(0) =^2"- The second property implies that v is non-
constant, whereas the first implies by (see [Pu]) that there exists a holomorphic
map ϋ: S2 -» P so that v = v°y, where y C-^2 is the stereographic projection. It
follows in particular that || Dv \\ 2 is bounded from below by a positive constant
depending only on the (finitely generated) homology group H2(P) and on ω.

We now repeat this procedure on KΛ = U X Sl - Ua with UΛ = B^θ). That
is, we consider the numbers ε'σ defined by (EK) with UΛ removed from K. If ε^O,
then the corresponding reparametrized sequence v'Λ converges as before to a non-
trivial holomorphic mapS2->P. To see that Iimsupl2(wα) must be at least the

α~* oo

sum of the actions of v and v', note that θ'a tends to infinity in the reparametrized
chart around ΘΛ, since dist(θα,θά)^εί/2 If a^so dist(θα, θ'Λ)/ε'a-*co9 then the
converse is also true, so that there exist disjoint neighborhoods Va of ΘΛ and V'a
of Θ'Λ so that ||Z)wα|ί/ I I 2 . and | |^Mα |/ |li approach the actions of v and v'9
respectively. On the other hand, if dist(θasθ

f

Λ)/ε'Λ is bounded, the ε^/εα-»oo, and
we can choose VΛ and V'Λ so that ||£wα|KJ|2 and ||0Mα |^_F J?, approach the
actions of v and vf. Either way, we conclude that I2 ^ <ω, t;> + <ω, ι/>. Since
<ω, ι;> ̂  /o for any nonconstant holomorphic curve, this process terminates after
finitely many steps. This completes the proof of Proposition 3b. Π

3c. Global Convergence. In this section, we conclude the proof of Proposition Ib
by proving

Proposition 3c. (1) For each ueJίJπ there exist x,ye&Jπ such that lim u(τ) = x
τ-» — oo

and lim w(τ) = y in Ω. In fact, if x and y are nondegenerate, then the set of such
τ-> oo

trajectories with the local topology is homeomorphic to Jt(x, y).
(2) Let (Jα, //α)->(J, H) be convergent sequences in / X 3tf and let (xα, yα)£

^j ,H converge to (x,y)£&H in Ω. Then for any sequence uaeJtJH(xΛ9ya) with
constant index Index (ua) = /, there exists a subsequence converging to some
(v, w)eJ^^kj^H(x, y) for some k ̂  0. Moreover, we have

Ifw is trivial, i.e. ifua converges to v_eJtk

Jn, then for every ε > 0 there exists an N > 0 so
that for p > N, ua is contained in the ε-tube

®s(v) = {expMτ)(£)| \\ξ\\ao<e,l£i£k, and τe^}.

// υ_eJί\x, y) is regular, then there exists ε > 0 so that all trajectories in
Jί(x, y) which are fully contained in Wε(v) are in the image of the map # of
Proposition 2d.
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Proof of Proposition 3c. (1) To prove the first assertion, we assume the contrary,
i.e. we assume that there exists a sequence τα -» oo so that w(τα) does not accumulate
at 2£. Then the sequence wα(τ) = u(τ - τα) on [- τα/2, τα/2] satisfies the hypothesis
of Proposition 3b with lim l(ua] -» 0. Hence wα converges locally to some constant

p-» oo

trajectory, which contradicts the above assumption.
In the same way we prove that for every ε > 0 there exists r > 0 so that u = expx ξ

on [r, oo) with ||^[pp+1]||1 p <ε for all p ̂  r. To prove exponential decay, we
proceed in a similar way as in the proof of Theorem 4 of [F4]: Define βσ(τ) =
β(τ — σ + 1) β(— τ + σ) and consider the function f(σ) = \\ βσξ \\ \. Then if for some
μ > 0, we have

it follows e.g. from the maximum principle that / decays exponentially. To prove (1),
we calculate with #(ξ) = ?Jπ[x](ξ)

= j β2(τ) { || Xί(τ)) || \ + < ξ(τ), D?(ξ(τ))?(ξ(τ))y } dτ. (3c.2)

To estimate the second term, note that with Dτ = D^(ξ(τ)) and expanding ̂  around x,

where N is the nonlinear term in the first order expansion of ^ around x. Since
Dτ has no purely imaginary eigenvalues, the first term is positive. The nonlinear
term can be estimated as follows,

<Dτ

+ ξ(τ\ N(ξ(τ))y ^ C || Dτ

+ ξ(τ) || 2 || ξ(τ) || „ || «τ) || 1>2

with lim ε(r) = 0. Since x is nondegenerate zero of ,̂ we have || <?(ξ) || 2 ̂
r-> oo

7 I I ί II 1,2 = 7 I I ζ II 1,2 f°r some y > 0. Hence for τ large enough, the nonlinear term
is small compared with the first term of (2). This implies (1) and hence exponential
decay of /(τ).

Using (2b.3) we can improve this result to conclude that lim | | j8σξ| |1 > 1, = 0.
a-* oo

Now define βrR(τ) = β(—τ — r)β(τ — R) and consider the expansion (2a.3) around x,

Then by (2a.5) and (2b.3),

|| β,Rξ ||1Λ4 ̂  C I I D/r^ ||p ̂  C ||

^ε(r)\\βrRξ\\ ,,„ + €,

with lim ε(r) = 0 by the above. For r large enough, this yields an estimate on
n—> oo

\\βrRξ\\ίp.δ which does not depend on R. This proves that UE^(X, y). The same
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method can be used to compare the topology on ^(x, y) with the local topology
on J((x, y). Π

Proof of Proposition 3c. (2) The first assertion follows from a simple iterative
argument applying (1) and Proposition 3b to suitably rescaled sequences. The
index formula follows from (2b.l) and (2b.2). The last assertion is proved indirectly:
Assume that there exists ε>0 and subsequence ua such that uΛ(τΛ)φ^ε(v) for
some ταe(R. Then by Proposition 3b, there exists a subsequence converging to
some holomorphic curve which is not identical with any of the vi9 in contradiction
to the assumption. For more details, see [F4], Sect. 2.

It remains to prove that for regular υ and ε small enough, each wεJί(x, y) which
is contained in tftε(y) is in the image of #. By the uniqueness property of Picard's
method, it suffices to prove that it is L^-close to the image of #. Define therefore
numbers st so that ^(vvfo )) = ^(yj for 0 < i < k. By Proposition 3b, we have for ε
small enough w = expyι(η) on It — [sf — 1, st + 1] with

H/Jlι,^Φι(4 (3c.3)

Here and in the following, φa\ R -> IR denotes a continuous map which is independent
of w and satisfies φΛ(0) = 0. For 1 ̂  i ̂  fc, we can define ^e^(yt _ 1? yt ) by

for τ ̂  s £ _ ! + 1
for τ ̂  Sί - 1
otherwise

Now define τteU by

Then for jH(τM ;i(sf + sί + 1)), we have w-exp^f with \\ξ\\itp^φ2(ε),
so that it remains to show that each τ,-*^ is close enough to u{. (Here, we identify
ueJ/(x, y) c ̂ (x, y) by the condition ^(w(0))^(Xx) + ^(.y)).) From Proposition 3b
it follows again that τ^W; = expwξ I with || ξf || 1>00 ^ 03(ε). To obtain IP-estimates,
we expand as in (3a.3)

Since vt is regular and since on the finite dimensional kernel of DVι all norms
are equivalent, we have

\\p+ |

Note that | |£/ | | p <oo, since v^v^^x^^x^. Now we have Hc^H^ 04(ε) by
(3c.3). Moreover, by (2a.4),

This together with the previous estimate proves that lim | |ξ ί | | 1 > j p = 0 for
ε-+0

all i. This completes the proof of Proposition 3c. Π
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