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Abstract. We report the explicit form of the quantum R matrix in the
fundamental representation for the generalized Toda system associated with
non-exceptional affine Lie algebras.

1. Introduction

It has been known for some time that the Yang—Baxter (YB) equations play a
crucial role in classical and quantum integrable systems (see e.g. [ 1]). The structure
of the classical YB equation is now fairly well understood [2-3]. In ref [3] a
classification of non-degenerate solutions related to simple Lie algebras is given,
subject to the unitarity condition. Unfortunately such classification is yet un-
available in the quantum case. One of the consequences of [3] is that the trigono-
metric solutions, up to certain equivalence, are finite in number, and that they
allow a neat description in terms of Dynkin diagrams. An immediate question
would be whether it is possible to quantize all these solutions. The most typical
ones among them are the classical solutions associated with the generalized Toda
system (GTS). In this paper we report on the corresponding quantum solutions for
the case of non-exceptional affine Lie algebras.

To be more specific, we consider the solutions #(x) of the classical YB equation

[rt2(x), r3xep) ] + [r'2(x), 12 0) ] + [ 2(xy), r23()1 = 0 (1.1)

for the GTS of type A, BV, CM, DV, AQ), A%, and D{?) |, as given in Eq.(2.3),
(3.1-4). Here the notations are standard: 7(x) is a ® ® ®-valued rational function, ®
being a finite dimensional simple Lie algebra, and r*2(x) = r(x) ® I, etc. The problem
is to find an R(x)= R(x,#%) containing an arbitrary parameter #, such that (i) it
satisfies the quantum YB equation

R (x)R™3(xy)R*(y) = R?*(y)R"*(xy)R**(x), (1.2)

and (ii) as A0, R(x, h) = k(x, h)(I + hr(x) + ) (1.3)

holds with some scalar x(x,#). In contrast to the classical case (1.1), the quantum
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Eq. (1.2) is formulated for a function R(x) with values in U(®) ® U(G), where U(G)
denotes the universal enveloping algebra of ®. Existence of such a solution would
imply that for any finite dimensional representation V; (i=1,2,3) of ® there
correspond matrices R¥(x)eEnd(V;® V) satisfying (1.2)[4]. The main result of the
present article is the explicit construction of R(x)eEnd(V® V), taking V, =V, =
V=V to be the fundamental representation. Construction of the “universal”
(= U(6) ® U(®)-valued) solution is an interesting future problem (cf. [4, 5]).

The method of construction is described in Sect. 2. The line of arguments
essentially follows that of ref. [5] (except for the examination of the sufficiency part).
In Sect. 3 explicit forms of solutions are presented. The solutions for the type A{V[6]
and A$[7] have been known. The quantum “spin” Hamiltonians obtained as the
first log derivative of the transfer matrix are also given.

2. The GTS and the YB Equation

First let us recall the formulation of the GTS and the corresponding classical r-
matrix. Let ® be an affine Lie algebra, and ) be a Cartan subalgebra thereof. The
GTS associated with @ is the following equation for a h-valued function g = g(¢) [8]:

du=—V,U, U=} >,
aen
Here 7 denotes the set of simple roots of ®. It is known to be representable in the
Lax form L, = [A4, L]. In terms of the standard Chevalley basis {e,, f,, h,}, Land A
are given by [8§]

L=p + e 4 ¢~ %4,

d ~ad
A= —e"Ye 4 ™%,

where p=g,eh,e= Y e, and f=Y f,.

AET aemn

In order to describe the corresponding classical r-matrix, we employ the
homogeneous picture of  (cf. [9]). We find it simpler than the principal picture
adopted in [3], for then the degree of the rational function r(x) will become
independent of the rank of . Thus let & be a complex finite-dimensional simple Lie
algebra, and let o be its diagram automorphism of order k(= 1,2,3). Put ;=
{Xe®/o(X) = w’X}, where w is a primitive k™ root of unity. Let ;= @ G, , be

ae Aj
its root space decomposition with respect to a Cartin subalgebra #, of ®,. Fixing an
invariant bilinear form (,) on ®, we choose X;,€®; ,, and normalize them as
(X X_j-)=1. We write E,= X, ,, F,= X, _, (x€n), Eqg= X, and Fyo=
X _, ¢, Where 7, is the set of simple roots of ®, and 6 denotes the highest weight
of ®, in & _,. As is well known [10], if ® is of type Xy, then the loop algebra

GO, A7 "] = P, 0a, gives a realization of the affine Lie algebra of type X§

@.1)

jed
modulo the center. In this picture the Chevalley basis is given by
eo=AEg, fo=A""Fo,e,=E,, [o=F, (xem). (22)

(With the above normalization the diagonal of the Cartan matrix is (o, «).) For an
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orthonormal basis {I,} of ®, we set
k—1
t=)1,®I,= Y t,(c®1);= 't
© ji=0

Set further
ro= Y sgnoX,,®X, _,.

ae Ao

The classical r-matrix for the GTS of type X is then given by the formula
2 k-
1— Xk j=

1
HX)=ry—to+ xIt;. (2.3)
0
This r-matrix is related to the L-operator of (2.1) through the fundamental
Poisson bracket relation

{LA)Q LW} = [r(A/u), LA® 1 + 1 ® L()]. (2.4)

Here the A-dependence of L is explicitly exhibited, regarding ®® 1 and 1 ® G as
realized in G [, 1]® 1 and 1 ® G® [, u™ '], respectively. In the left-hand side
of (2.4) the Poisson bracket is introduced by letting p and g be canonically conjugate;
namely, writing p =) p,H,, q = ) q,H, for an orthonormal basis {H Jof by, one has
{Puq;} =0y

To find the corresponding quantum R matrix, we quantize the relation (2.4)
following the line of ref. [5]. Let now p and g denote b),-valued operators acting on
some Hilbert space satisfying the Heisenberg commutation relations [p;,q;] = ho,j,
where # is an arbitrary parameter. We introduce further the elements E,, F, of U(®)
(or more precisely its completion) with the properties

[(H.E]=oH)E, [HF]=-oH)PF, (Heby), (2.5)
[E,, Fﬂ] = d,48inh (2hH ,)/sinh (2h), (2.6)
E,~E, F,—»F, as h—0. 2.7

Here H, denotes the image of @b under the identification b ~} via the bilinear
form ( , ). Eventually we shall restrict to the fundamental representation of & and
identify E,, F, with E,, F,. However the following arguments go through under
(2.5-7). Define é,, 7, asin (2.2) and put ¢ = Y ¢,, f= Y 7. In place of the classical L-
operator (2.1) we use (cf. [5])

L(A) = e?(1 + &(e“¢ + e ~“%f ') Je?

= (1 +&), @K ¢, + e‘“"”Kafa))ezp’

AET

where K, = exp(hH,). In the second line the operators are normal-ordered (g to the
left, p to the right). For the quantum R matrix we require the relation

R(A/m)L1(A)Lo(p) = Ly(WL(AR(A/w) mod &2,
Li(A=LA®1, Lyu)=1® L(y).
Reducing the expressions L, (4)L,(u), L,(x)L,(4) into the normal-ordered form and

(2.8)
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comparing the coefficients of e*@e**?, we find that (2.8) is equivalent to

[Rx)L,HR®1+1®H]=0 (Hely), (29)
Rx)(6,@K, '+ K,®8,)=(,®K,+ K; ' ®¢,)R(x), (2.10)
ROX)([,®K; ' + K, ®f) =(f.®K, + K. ' ®F)R(x). (2.11)

Here x = A/u (recall that the 1 or u dependence enters through é,® 1 = AE,®1,
1®é,=1® uE,, etc.). Below we shall discuss the uniqueness of solutions of the
system (2.9-11) and its sufficiency for the validity of the YB Eq. (1.2). In the sequel we
fix finite-dimensional irreducible representation spaces V(i = 1,2) of ® and consider
(2.9-11) in End(V, ® V).

Proposition 1. For a general value of h, the dimension of the solution space of the linear
system (2.10) is at most 1.

Proof. It suffices to show that the dimension is 1 for the special value # = 0. In this
case the proof reduces to the following lemma, which we formulate in a slightly more
general way. Let V,(i=1,...,N) b_e finite dimensional irreducible ®-modules. For

Xe® we write X?=1® -1®X®1---®1. Consider the linear equations for
ReEnd(V,® - @ Vy),

[RED+- -+ EMN]=0 (xen), [RALEP+-+IEP]=0. (212
Lemma. For general values of A;, the only solution of (2.12) is R = const I.

Proof of Lemma. First we note that [ APX @Y 2rY@] =% Am*"[X,Y]®. Since E,
is the lowest weight vector of the ad irreducible ®,-module ®, [10], (2.12) implies
that [R, 4, X + - 4 Ay X™] =0 for any Xe®,. Hence we have

[RAXD 4+ XM =0 (2.13)

for any Xel[%,,[Z,,....[%,-1,¥,]...]1], where ¥, denotes either &, or
@ CE,, and G, appears j times in the sequence {.Z,}. It can be checked that such

ae Mo

eléments generate ®;,,.44. Takingj to bej,j + k,j + 2k,...in (2.13), we conclude that
[R,X?]=0 holds for any i and Xe®,. In other words R commutes with
U(B)® - @ U(®). The lemma now follows from the fact that, for an irreducible
V,, W(®) spans End (V).

Corollary. If (2.10) admits a non-trivial solution, it has the form R =1+ hR, + ---up
to constant multiple. In particular detR £0, tr R # 0.

Proposition 2. A4 solution of (2.10) satisfies both (2.9) and 2.11).

Proof. It is enough to consider the case of a non-trivial solution R(x). Using (2.5)
and (2.6), one checks that R, =[R,LH® 1+ 1®H] (Hebh,), R, =R(/,® K ' +
K,®f)—(f.®K,+K;'®f,)R both solve (2.10). It follows that R; = x;R with
some scalar k;. Taking the trace of R,R™!, we find x; =0.

Proposition 3. Assume that (2.10) admits non-trivial solutions R”(x)eEnd(V,® V)
for (i,j) =(1,2), (1,3), (2,3). Then the YB Eq. (1.2) is satisfied.
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Proof. Put Q; = R**(x)R"3(xy)R**(y), Q, = R*(y)R'3(xy)R'*(x), where x =i/u
and y = p/v. The relation (2.8) implies that both Q,(i = 1,2) have the intertwining
property,

Q:L;(AL,(W)L3(v) = L3(v)Lo(w)L;(A)Q: modé”.
Hence their ratio Q = Q7 Q, should satisfy
[Q,HY + H® + H®]=0 (Heb,), (2.14)
[Q.K:'®K;'®¢,+K; ' ®6,0K; +6,®K'®K;'T=0,

and those obtained by replacing é,<f,. Arguing similarly as above, one can show
that (2.14) has the only solution Q = const I for a general 4.
Comparing the determinant we have

R ()R (xy)R**(y) = (R**(y) R (xy) R *(x),
where { is a root of unity. Letting #— 0 we find that { = 1.

Thus the YB equation is reduced to solving the homogeneous linear Egs. (2.10) for
R(x). In the next section we give the result by taking V, =V, =7V to be the
fundamental representation of G and é,=¢,, f,=f,.

3. Quantum R Matrix (Main Results)

In the sequel we adopt the following realization of classical Lie algebras: sl(n)
={XeMat(n)|trX =0}, o(n)={Xesl(n)|X = —S'XS}, sp(2n) = {Xesl(2n)| X =

— 8§ 1:x8), where S=(,,4,- $i<ap<n a0d S= . Diagram automorph-

-5 0
isms of order 2 are given by a(X)= — S’XS for sl(n) and ¢(X)= TXT ! for o(2n)

with
1 |

1
0]1
T=
1
1
_ 1]

By convention the indices o, f run over 1, 2,...,N, where N is the size of the matrix:
N=n+12n+1,2n2n2n+1,2n2n+2for =AY, BY, CV, DV, A%, AZ)_,,
D@ ,. We put o' = N + 1 —o. E,; will denote the matrix (,,0;4). Let further ¢, =
11Zagn), =—1(n+1<a<2n) for & =CP and ¢, = 1 in the remaining cases.

Under these notations the classical r-matrix (2.3) reads as follows:
6= A

(1 —x)r(x)=(1 +x)<ZEaa®EW—%I>+2< Yo4+x) )Eaﬂ@)Eﬁu, (3.1
a>p

a<p
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1 1 1).
& =BY, C, DY:

(1 - x)r(x) = (1 + X)Z(Eaa® Eaa - Eaa® Ea’a’)
+ 2( Y +x 2 > E®Ep, —¢e&sE Q@ E, ),
a<p
@ = A(27;‘)’ A(Zzn)— 1:
4x

(1 - xz)r(x) = (1 + X)ZZE(M@ Eaa - (1 - X)ZZE(M® Ea’a‘ - 'N"I

+2(1 +x)< Y +x Y )Ea,,@E,,u
a<p a>p
l—x)( Z +xz>Eaﬂ®Ea’B”

a<p a>f

2) .
®=D$n31-

(1 — xz)r(x) = (1 + x2) z (Eaa® Eaa - Eaa® Ea’a’)

a#En+1n+2

+2X(Eys1m+1— En+2,042) @ Ens 1041 — Eyi2n+2)

+ 2( Y +x2 y )(Ea,,®E,,a ~E,®E,;)
a<BofFEn+in+2 a>pofFEn+in+2

+(1 +x)< Y +x > )(Ea,,®E,,a
a<n+1,f=n+1,n+2 a>n+2,=n+1,n+2

Eyy®Eyp+Epy ®Eyp — Egy ®Ep,)

+(1—x)< Y - X

a<n+1,f=n+1,n+2 a>n+2,ﬁ=n+1,n+2>

~Eyy®E s~ Epy @ Egy+ Egy ® Eyg).

(Eaﬂ ® Eﬂ’a

(32)

(3.3)

(3.4)

Corresponding quantum R-matrices are given by the following formulas (k = ¢ 2"

denotes an arbitrary parameter).
G =AL:

R(x)=(x—k»)Y E,,@E,+k(x —1) Y E,,®Eg,

a#f
(g ea
a<p

— R (1) (1) (2) 2) .
6*‘Bn ’ Cn ’ Dn ’ AZn’ Azn—1-

Rx)=(x—k*)(x =) ). Efy®E,+k(x—1)(x—&) ) E,Q®Eg

aFa a5

—(k? = 1)(x — < Y 4+x Y >Eaﬂ®Eﬂa

a<pa#f a>Ba¥xp

+ Zaaﬂ(x)EaB ® Ea'ﬂ"

(3.5)

(3.6)
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where
(k*x — &)(x— 1) (
ay(x) ={ K= O =D+ (€= D(k* — 1)x (@=Boa=ao
“ (k> — 1)(e,8pEK" P(x — 1) = S,pdx — &) (
(k7 = Dx(e,8gk™ Px — 1) = S4p (x — ) (
Here ¢ and & are given respectively by
f=k2"_1, k2"+2, k2n—2’ —k2"+1, _k2n

1 2 2 .
fOI' @ = Bs,l), Cf,l), Df. )’ A(Zn)y A(Zn)—D

for & = C(", and

1
o+3 <1§a<—j—>
2
- oc—N+1
a={a = 2
N+1
SR CEI

in the remaining cases.

=p@ .
6 =D,

aFn+1,n+2 aF

RX)=(x*=k)(x*~&%) ¥ Eu®E,+k(x*-1)(x*-&) 3
B.B
aorf#FEn+1

n+2

a<pB,aFp’ a>f,aF pr
aofFEn+1,n+2 a,fFEn+1,n+2

'Em®EM—(k2—1)(x2—52)< > o+xr ¥ )Ew®Eaa

— 30— (2 — 42)((x + 1>< Y 4x

a<n+1,f=n+1,n+2 a>n+2,ﬁ=n+1,n+2>

(Eyy®Eg, + Egy ®Eyp)+(x— 1)(— Y +x

a<n+1,=n+1,n+2 a>n+2,ﬂ=n+1,n+2>

(Epy®Eg,+Egy® Ea,ﬁ)> + Y Af(X)Ey® Eyp + % y

af#n+1ln+2 axn+ln+2f=n+1n+2

(bg NEy®Eyp + Epy @ Epg) + by ()(Eyy® Eyp+ Egy ® Epy))

+ Z (c+(X)Eaa®Ea’a’ +C—(X)Eua®Eaa

a=n+1,n+2

+ d+(x)Eaa’ ® Ea’a + d_(x)Eauz’ ® Eaa')’ (37)
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where for o, f#n+1,n+2
(k*x* = E)(x* - 1) (@=p)
aaﬂ(x) ={

(k? — D(E2KF(x2 = 1) = 5o (x* — E)) (2 < PB)
(k2 — Dx2(k*F(x2 — 1) = 5,5 (x* — £)) (2> P),

b () = +k2H2 D)2 - )(x+E) (a<n+1)

<) = {k"“"‘s/z(k2 D2 =Dx(x+¢&) (a>n+2)

c*(x) = £ 5(k2 — D& + Dx(x F 1)(x £ &) + k(x> — 1)(x* = &),
d*(x) = +3(k* = 1)(¢ — Dx(x £ D(x £ &),

and =k g=a+l(la<n+1),=n+320=n+1,n+2),=0—{a>n+2).
Among these, the solutions for A% [6] and 4% [7] have been known. In
the case AV, R(x) splits into a direct sum of copies of 1 x 1 and 2 x 2 elementary

blocks,
kx—1) —(K*—1)
(x— k), <——(k2- Dx  k(x— 1))'

Likewise (3.6) consists of blocks

k(x—1) —(k*—1)

((x — k*)(x — &), ( —(K2=1Dx  k(x—1)

) x(x—9&) (3.83)

and an N x N piece (a,45(x)). In the case D{?; the elementary blocks are (3.8)
(with x, ¢ replaced by x? and ¢2), 4 x 4 pieces

k(x> — 1) 0 e —Dx—1) —32—Dx+1)
0 Ki—1) =R -DE+D) MR -DE-D |
- Dx(x—1) —3R—Dx(x+1) kP —1) 0 X8
3R Dx(x+1) — 3k = Dx(x—1) 0 k(x? — 1)

and an (N + 2) x (N + 2) piece. They are all subject to the symmetry

[Rx),H®1+1®H]=0 (Heb,),
PR(x)P =(S®S)R(x)(S® S) = 'R(x), (3.9)
R(x™H k™) = p(x,k) "1 R(x, k),

with y(x, k)= —k2x(6 = AL), =k*ex(G =BP, CO, DV, AP, AP, =

k2E2x*(® =D ,). Aside from these symmetries, they have the following
properties.

(i) inversion relation

R(x)R(x~Y) = p(x)I, (3.10)
(x —kH)(x~'—k?) (6 =4Y)
p(x) ={(x — k) (x—&xT =k (x" =) (6 =BY,..., 4% _,),
(x* = k) x* =) (x 2 —kH)(x"2 =& (6=D@,

where we have set R(x) = PR(x).
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(i) As k-1,
R(x, k) =k (x)(I + (k — 1)(r(x) + x,(x)I) + )

for appropriate scalars x;(x).
(i) As x—1,

R(x, k) = & (R)(I + (x — D)(s(k) + Ry (k)) + ),
with some scalars (k). Here the tensor s(k) is given by
& = A

s(k) =3(1 — k?) Z,; sgn(f —a)E,,® Egy

af
+ %(1 + kz)ZEaa ® Eaa + k Z Eaﬂ ® Eﬂa>
o o F B

G=B",...,A®_,:

s(k) =3(1 —k*)(1 = ) ;ﬂ sgn (B~ 0)E,®Ejg

+31+k)(1=8) ) E,®E,

aFa

+ k(1 = &) = 3(1 —=k*)(1 +£) Y 00 Eau ®

+ k(l - é) Z Eaﬂ®Eﬁa + (k2 - é) Z Eaa’®Ea’a
aF B,p aFa

545

(3.11)

- ——k2)< Y ek Pe+ Y aaspk‘f“ﬂ>Ea,ﬂ®Eap,, (3.12)
a>f

a<f
2) .
G =D3,:

s(k) = (1 —k*)(1 = &%) > sgn(f — WE,, ® Ey

afp,a,fFn+1,n+2

+3(1-k%)(1 - &) ) sg(f — )((Eqe + Er) ® Egy

a=n+1n+2f#n+1,n+2
+ E[}’B’ ® (Ea’a’ + Eaa’))
+ (1 + kZ)(l - 62) Z Eazaz® Eaa

afn+1i,n+2

+ 2k(1 - 52) Z (Eaa ®Eaa + Eaa' ® Ea’a)
+1,n+2

a=n

~%(1 _kz) Z 2((1 - é)z(Eaa®Eaa+ Eaa’®Eaa’)

a=n+1,n+

+ (1 + é)z(Eaa’ ® Ea’a + Eaa® Ea’a’))

+ 2k(1 — &2) Y EyQFE;+2(k*—&%) Y  EWQ®E,,

atp,p’ afn+1,n+2
aorfFn+1,n+2

—2(1— kZ)( Z ézk&—ft’+ Z k&Aﬂ)
a<fB,a,fFn+1,n+2 a>p,a,fFn+1,n+2
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Eup@Ey —(1- kz)((l + f)( > ek k

a<n+1,=n+1,n+2

+ Y k°"‘5>(Ew QE.p + Epy ® Ey.y)

a>n+2,p=n+1,n+2

+(1 ~é)( - ¥y &t ¥ w)
a<n+1,=n+1,n+2 a>n+2,=n+1,n+2
'(Ea’[i®Eu[3 + Eﬂa’ ®Eﬁu))'

Remark 1. It can be shown that under the first condition of (3.9), R'(x) = (D(x) ® I)
R(x)(D(x)®I)~ !, where D(x)eexp by, D(xy)=D(x)D(y), is again a solution to the YB
equation. Choosing an appropriate D(x) one obtains the R matrix in the principal
picture.

Remark 2. Except for the case ®&=D®,, our R matrix satisfies [R(x),
R(»)1=0 so that R(x) is diagonalizable independently of x. This is
a consequence of (3.10), R(1)oc I and that deg R(x) < 2.

It is well known that a quantum R matrix gives rise to an integrable vertex
model in statistical mechanics, whose transfer matrices

T(x) = try (R°* (x)R%?(x)... R%¥(x))eEnd(V, ® - ® Vy)

commute among themselves: [T(x), T(y)] = 0. Hence their log derivatives provide
a mutually commuting family of “spin” Hamiltonians. The first one is given by
aT N dRit1 N
T === )= 3+ 1(k) + const I.
)7 0= 3 5= 3 1)
In our case the tensors s(k)eEnd(V® V) are given by (3.11-13).

Acknowledgement. The author is indebted to stimulating discussions with Prof. T. Miwa and Prof. M,
Hashizume.
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