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Abstract. A (non-commutative) generalization of the classical moment problem is formulated on
arbitrary *-algebras with units. This is used to produce a C*-algebra associated with the space of test
functions for quantum fields. This C* -algebra plays a role in theories of bounded localized observ-
ables in Hubert space which is similar to that of the space of test functions in quantum field theories
(namely it is represented in Hubert space). The case of local quantum fields which satisfy a slight
generalization of the growth condition is investigated.

1. Introduction and Notations

This paper deals with a sort of non-commutative generalization of measure
theory and of the classical moment problem on arbitrary *-algebras. The con-
nexion between the classical moment problem and the hermitian representations
(in the sense of Powers [1]) of the algebras of polynomials is well known. The
generalization given here has some similar connexions with hermitian represen-
tations of *-algebras.

In the usual one dimensional classical moment problem [2, 3], one starts with
a sequence of numbers Sn (n^O) and a closed subset S of 1R and one asks the
following question: Is there a positive measure μ supported by S such that

Sn = I tn dμ(t) , for any integer n > 0 ?

Remembering that there is a bijection (Sn)t->φ(Sn) from <CN on the set of all the
linear forms on the *-algebra C[Z] of complex polynomials with respect to an
indeterminate X,

The classical moment problem may be put in the following form. Let φ be a
linear form on <C[X] and S be a closed subset of 1R, is there a positive measure μ
on S such that,

φ(P(X))=SP(t)dμ(t),

In the generalization given in this paper: <C[X] is replaced by an arbitrary
*-algebra with unit 21, φ is a linear form on 9ί, μ is replaced by a positive linear
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form on an adapted C*-algebra (associated with 21) and we give a substitute for
the above integration formula. Of course a main part of this paper deals with the
construction (and the description) of various auxiliary spaces and algebras needed
for the formulation of the problem. This part is possibly of some interest in itself
since it describes a sort of non-commutative functional analysis. Roughly speaking,
these spaces are generated by an abstract formulation of continuous functions of
hermitian elements of 21.

The first step needed to understand the construction is to remark that all the
concepts which enter in the formulation of the classical moment problem may be
constructed in a purely algebraic way from the algebra of the polynomials <C[X].
Indeed, the Stone-Weierstrass theorem implies that the polynomials are dense in
the C*-algebra of all continuous functions on a compact subset of R (identified
with the set of all characters on C[^]). On the other hand, the suρ(|. |) over
compact subsets of 1R are exactly all the C*-semi-norms on the *-algebra <C[3Γ|.
It follows, for instance, that the *-algebra of all continuous functions on IRequipped
with the topology of compact convergence may be identified with the completion
of (C[̂ ί] for the topology (locally convex) generated by all its C*-semi-norms.
If we are interested in the continuous functions on some closed real subset S, it
is sufficient to select the corresponding directed set of C*-semi-norms. Then, it
is not very hard to construct positive continuous functions, polynomially bounded
continuous functions, continuous functions vanishing at infinity, positive linear
forms on polynomially bounded continuous functions (= rapidly decreasing
positive measures), etc It is the direct generalization of this algebraic con-
struction that we describe in this paper. Then, we use it to produce a C*-algebra
associated with the space of test functions of quantum field theory which is,
roughly speaking, generated by an "abstract formulation" of continuous functions
vanishing at infinity of "general field variables"

In Section 2 we study the completions of *-algebras for locally convex to-
pologies generated by C*-semi-norms. Besides the fact that we want to generalize
the classical moment problem with given supports, there is another reason to
consider sets of C*-semi-norms (instead of all C*-semi-norms). Namely that, in
a forthcoming paper we shall be interested in topological *-algebras, and then it
is natural to restrict our attention on continuous C*-semi-norms.

In Section 3, we introduce the notions of positivity (strong positivity) which
are relevant for the problem and we describe an extension theorem for the linear
forms which satisfy these strong positivity conditions. Finally, it is pointed out
that there are *-algebras where no non-trivial strongly positive linear form exists
at all. However, any *-algebra with unit is a quotient of a tensor algebra over an
appropriate involutive space and it is proved in Section 4 that any positive linear
form on a tensor algebra over an involutive space is strongly positive so one may
always "lift" the problem to an appropriate tensor algebra.

In Section 5, we identify the notions introduced in the Sections 2 and 3 in the
case when our *-algebra is a polynomials algebra and we discuss some aspects
of the classical moment problem. In connexion with this, we prove that any
positive linear form on the algebra of all polynomially bounded continuous func-
tions on ΪRn is a rapidly decreasing measure. This result is certainly a classical
one; we give the proof of it just because we will use it very currently in what follows.



Generalization of the Classical Moment Problem 227

In Section 6, we describe the functional calculus on the completions of ^alge-
bras for locally convex topologies generated by C*-semi-norms. We define the
corresponding associated C*-algebras (they are generated by the continuous
functions vanishing at infinity of the hermitian elements of our *-algebras).

In Section 7, we give the formulation of our generalization of the classical
moment problem. It is worth noticing here that this formulation has been sug-
gested to us by the special theorem for self-adjoint operators in Hubert space.

In the end of Section 7, and in Section 8, we begin the study of this moment
problem.

In Section 9, we introduce a C*-algebra associated with the test functions for
quantum fields; we call it the quasi-localizable C*-algebra. For any bounded
open subset & in space-time, we consider the C*-subalgebra associated with the
test functions with supports in & and we define the localizable algebra as the
*-algebra generated by these C*-algebras (its norm-closure is the quasi-localizable
C* -algebra). We show that there is a group-homo mo rphism from the group of
diffeomorphisms of space-time into the group of automorphisms of the localizable
algebra and that the corresponding automorphisms permute the C*-algebras
associated with the bounded open subsets of space-time. The case of a local
quantum (neutral scalar) field with a quasi-analytic vacuum is investigated. We
show that the result of Borchers and Zimmermann remains true for this slight
extension of the growth condition [4]. Moreover, (and this is the important point)
in this case we show that the moment problem for the Wightman functional is
determined on the localizable algebra and that the corresponding representation
of the localizable algebra generates the local rings associated to the field.

Let us say a few words on our notations. In this paper, an involutive vector
space is a complex vector space equipped with an anti-linear involution. A
*-algebra is a complex associative algebra 91 equipped with an antilinear involu-
tion χκ>χ* such that (xy)* = y*x* for any x,ye 91. Such an algebra is, in a
natural way, a preordered vector space [5] with positive cone 91+ = convex hull
of the set {x*x |xe 91}. Therefore, a positive linear form φ on 91 is defined to be
a linear form on 91 such that φ(x* x) ̂  0 for any element x of 91.

Let 91 be a *-algebra with a unit, 1, and let φ be a positive linear form on 9ί.
The set 3φ = {x \ x e 9ί and φ(x* x) = 0} is a left ideal in 91. The positive sesquilinear
form (x9y)^-φ(x*y)1 pass to the quotient from 9ί to 9I/3φ and we denote the
corresponding Hausdorff prehilbertian space by Dφ. Let ξ)φ be the Hubert space
obtained by completion of Dφ and let Ψφ be the canonical mapping of 9ί in ξ>φ

(on Dφcξ>φ). Let πφ be the cyclic ^-representation [1] of 91 in ξ>φ with dense
domain Dφ and cyclic vector Ωφ = Ψφ (U) defined by: πφ(x) Ψφ(y) = Ψφ(xy).

Then (πφ, ξ>φ9 Dφ, Ωφ) is unique up to unitary equivalence under the conditions:

(Ωφ\πφ(x)Ωφ) = φ(x) Vxe9I, Dφ = πφ(W)Ωφ = dom(πφ).

We refer to this construction as Gelfand-Naimark-Segal construction (G.N.S.
construction), [6].

We use the Hahn-Banach theorem in the following form (see Dunford and
Schwartz, p. 62, [7]).

1 We use the physicist convention for sesquilinear form (linearity in the right variable!).
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Let the realfunction p on the real vector space E satisfy

p(ρx) = ρp(x), V x e £ and V ρ ^ O .

Let φ be a (real) linear form on a subspace M of E with φ(x) ^p(x), Vx 6 M.
Then there is a (real) linear form φ on E for which φ(x) = φ(x\ Vx e M; φ(x) ^ p(x),
Vxe£.

Let 21 be a *-algebra with a unit. A C*-semi-norm on 2ί is a semi-norm p for
which p(xj ) ̂  p(x) p(y\ Vx, j; e 21; p(x* x) = p(x)2, Vx e 21; p(ί) - 1.

2. Topologies Generated by C* -Semi-Norms on *-Algebras

Let 21 be a *-algebra with a unit, t e 21, and let Γ be a directed set of C*-semi-
norms on 21 such that the locally convex topology on 21 generated by Γ, έΓΓ, is
a Hausdorff topology (in other words: p(x) = 0, VpeΓ=>x = 0).

The involution of 21, XH»X*, is ^-continuous and the product of 21 is jointly
^-continuous [continuous from (2ί, ^V) x (21, &~Γ) into (2l,5"Γ)]. It follows that
the completion of 21 for 2ΓΓ is canonically a locally convex *-algebra with con-
tinuous involution and jointly continuous product; this complete topological
*-algebra will be denoted by <s/(2I, Γ) or simply by ̂  when no confusion arises.

Let PO be a C*-semi-norm on 21; p0 induces a norm on 2I/p0~
1(0) and the

Banach space obtained by completion is canonically a C*-algebra which will be
denoted by 33po. If p0 is ^7-continuous then there is a unique continuous *-homo-
morphism πpo from j/ into 23po which is an extension of the canonical projection
from 21 on 2ί/po 1(0) (πpo is in fact surjective as we shall see below). Since Γ is
directed, for any ^-continuous C*-semi-norm p0, there is a positive constant K
and a C*-semi-norm p e Γ such that: p0(x)^Xp(x), Vxe2I. The canonical
mapping, πpθ9p : 33p->23po, is a *-homomorphism with dense image. It follows
(since 93p and 33po are C*-algebras) that πpop is norm-decreasing and surjective:
\\πpop(x)\\ g ||x|| and πpop(%p) = %po. This implies that we have :p0(x)^p(x),Vxe 21.

The mapping x^(πp(x))peΓ from #f into the locally convex *-algebra Π®P
peΓ

is a topological *-isomorphism from ^ on its image (here and in the following
lemma 23p denotes the underlying normable space of S3p). We may identify ̂
and its image under this mapping; with this convention we have:

Lemma 1. si is the projective limit of the family (Sp)per wz'ί/z respect to the
mappings πptp> (peΓ, p' E Γ and p^p') In other words, s$ is the closed subspace
of the topological product f] 93p defined by:

peΓ

lίm(93p) = {(xp)p6Γ I xp e 95p, xp = πpίp,(xp,) p^pf in Γ} .

Proof. The proof of this lemma is standard [5].

Let us first remark that we have :

V p l 9 p 2 e Γ with p^p2

> vPι^2?P3eΓ with p^p2^p3.

It follows that we have: ̂  C lim(95p).
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Conversely, let (xp)peΓ be an element of lim(93p). Consider the family (Sp>ε)peΓ>ε> 0

of subset in j/ defined by:

Sptε = π-l({y\ye^p and \\y-xp\\£ε}).

These subsets are not empty since πp(j/) is dense in 23p, Vp e Γ. We have

Spi.εi nSp2,ε2 3
 sp,ε> VP ^p1? p2, Vβ ̂  ε1? ε2 .

Furthermore, we have : Vp e Γ, Vε > 0, Spj£/2 -SpfE/2CVp>£ = { x \ x E s / and p(x) ̂  ε}.
It follows that (Sp>ε) is a Cauchy filter base in stf which converges to an
since j/ is complete. By construction we have πp(x) = xp, Vp e Γ, so x — (xp)p

D

Remark i. It follows from above that the set Γ of all ^-continuous C*-semi-
norms on 9ί is directed and that in all the discussion we may replace Γ by Γ or
by any cofinal subset of Γ. In particular we have: ja/(9ϊ, Γ) = j/(5I, Γ') for any
cofinal subset Γ' in Γ.

Lemma 2. Let x be an element of <$/; then x has an inverse in <$$ if and only if,
for any peΓ, πp(x) has an inverse in 93p.

Proof. Suppose that x e ̂  has an inverse x"1 e ja/; then πp(x-1) is clearly an
inverse for πp(x) e 93p.

Conversely, suppose that x e stf is such that πp(x) has an inverse π^x)"1 e 93p,
Vp e Γ; then (πp(x)~1)peΓ is an inverse of x in Y[ 93p. On the other hand, if p l5 p2 e Γ

peΓ
satisfy px ^p2, we have: [by (1) and since πp l > p 2 is a homomorphism]

Si.^ί^W"1) πpl(x) = πpljp2(ί) = 1 ,

SιW πpl,p2(π | l2(x)-1) = π1>lfp2(l) = l,

and therefore: πpl ,p2(πp2(x)~1) = πpl(x)~1. Applying Lemma 1, it follows that

It follows from this lemma that if x e j/, the spectrum of x in j/, Sp(x), is the
union of the spectrums of πp(x) in 93p5 Sp(πp(x)), when p runs over Γ

(2) Sp(x)= USp(πp(x)), Vxe^ .
peΓ

In particular, if h E jtf is hermitian (h* = h), its spectrum is real : Sp (h) C 1R, V/z e J3/ .̂

Lemma 3. Z,£ί /z fo^ an element of <$/. The following conditions are equivalent :
a) h = x2 w/ί/z x = x* E jtf,
b) /z = x* x w/ί/z x e j</,
c) Sp(/z)ClR+ = {ρ|ρeIRfl^ρ^O},
d) π^/OeS*, VpeΓ, where %5p denotes the set of all the positive elements in

the C*-algebra 95p, [8].
Moreover, the set £/+ of all the hestf satisfying these conditions is a closed

convex cone in j/ and we have: j/+n( — j/ + ) = {0}.

Proof. a)=>b) is obvious; b)=>d) since πp is a *-homomorphism; c)^>d)
follows from (2).
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Suppose that d) is satisfied. Then, \Jp e Γ, there is a unique ]/np(h) e 93 p such
that (]/πp(h))2 = πp(h\ [9]. If we have Pι,p 2

e^ with Pι=P2> then we have:
π

Pl>P2(l/π

P2(
/Z))6^+l aΠd (πpl,P2(l/πp2W))2 = πpl,p2(

πp2(Ό) = π

Pί (Ό> S° W

πpl?p2(|/πp2(/z)) = |/πpl(/z), V^ ^p2£ Γ. This implies, by Lemma 1, that

is an element of stf and we have a) with x = |//z.
93 + is a closed convex cone in 93p with 93+n(-93 + ) = {0}, VpeΓ. It follows

that intersection of \\ 93 + with the closed subspace si C f| 93P is a closed convex
peΓ peΓ

proper cone in stf\ by d), this cone is just j/+. This completes the proof of
Lemma 3. Π

Notice that we have ^A = ̂ + — j t f + as for any *-algebra with a unit
(h = (ί. + ±h)2-(t-%h)2). Remembering that if 93 is a C*-algebra with positive
cone 93 +, for any hermitian he 93, there is a unique decomposition h = h+ — h~
with h± e 93 + and h+ h~ -0. If furthermore /z e 93 + (h = h+), then for an arbi-
trary positive integer n, there is a unique i^/ze93 + such that (^/h)n = h; t(/h is
also denoted by h1/n, [9]. Using this result, Lemma 1 and the fact that npίtp2 are
*-homomorphism, it is not difficult to prove the following lemma.

Lemma 4. a) Let h be an arbitrary hermitian element of s#. Then there is a
unique decomposition h = h+ — /Γ, with h+ E j t f + , h~ e j/+ and h+ h~ = 0.

b) Let h be an element of s/+ and let n be a positive integer. Then there is a
unique element of j/+, ίjy/z, such that (t(/h)n = h.

\fh will be also denoted by hί/n (for h e ^/+). The proof is left to the reader
[proceed as in the proof of Lemma 2, or as in the proof d)=>a) in Lemma 3].

These results will be partially generalized in Section 6 (functional calculus).

Lemma 5. Let 93^ (or 93^(21, Γ)) be the set of all XEJ/ such that p^p(x)
= ||πp(x)|| is bounded on Γ. Then 93^ is a *-subalgebra of si with 1 e 93^ and it is
a C* -algebra for the norm xκ»| |χ| | = sup(||πD(x)||).

peΓ

Let x be an arbitrary element of <$#. Then, for any strictly positive number ε,
ί + εx*x has an inverse in ̂  and xε = x (ί + εx*x)~1 is in 93^. Furthermore we
have in s/:

lim(xε) = x .
ε-»0

Proof. 93^ is the intersection of ̂  with the C*-product of the family (93p)peΓ

ofC*-algebrasin f] 93p.
peΓ

Let x be an element of j/. 1 + εx* x has an inverse in ^/, by Lemma 2. We have
||, VpeΓ. So we have: ||πp(xε)

2

^ sup \ - -I = — . I t follows that x εe 95^, f ||xε|| ̂  — /-I. On the other
^o l ( l + f i i ) J 4ε \ 2]/ε/

hand we have : Vp e Γ,

||πp(x)-π,(xε)|| = ||πp(ε - xx*x - [ί + εx*xΓ1)|| ^ε||πp(x)||2 - ||πp(xε)|| .

It follows that lim[p(x — xε)] =0, VpeΓ; this means limxε = x in j/. Π
ε->0 £-*0
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It follows that 23 ̂  is dense in si and therefore, for any p e Γ, πp(9300) is dense
in 33p. This implies πp^Bco) = ^βp (since πp is a *-homomorphism and 23 ̂  and
23p are C*-algebras) for any p E Γ. So πp is surjective.

3. Strong Positivity for Linear Forms

Let 21 and Γ be as in Section 2, and let us use the same notations (X, 2ΓΓ etc. . . .).
Let 91* (resp. .a/4), be the set of all the hermitian elements of 91, (resp. j/). 9l4,
(resp. j/'1), is a real linear subspace in 2Ϊ, (resp. j/), and 2Γf = 2I+ — 2I+, where
2ί + is the convex cone generated by {x*x|xe2ϊ}.

Let us define 9K*(9l, Γ) C ̂  to be

(3) 9J^(2I,Γ) = {x|xe^ and 3x 1 ? x 2 e2l with XA -x, x- x2 e j/+}

this is a (real) linear subspace of s$^ containing 91̂  which will simply be denoted
by W^ (when no confusion arises). The complex subspace of j/ generated by 9W4

will be denoted by 501(91, Γ), or simply by 9K 9Jί = 501* + i 2R4 C J/. We have :

Finally let S0ί+ be the cone 9Jinj/+. $R is an ordered vector space with positive
cone 9Jl+, and,

(4) 9Jϊ + ={x|xe^ + and 3j;e9l with y-

Lemma 6. We have
a) x* aR + .χc9JΪ + , Vxe9I,
b) x* W.j ;C9K, Vx,j;e9r,

c) wι* = m+ ~w+

. y — x0 e <$/+, x0 e j/+ and ye 5ί=>x*(y — x0) XE^+, X*XOXE <stf+ and
91, Vx e 21. This proves a).

We have: 9JΪ+ -9Pί+ c9Jl^. Conversely, let x be an arbitrary element of 2) ;̂
then there are two elements of 91, x l5 and x2 , such that xί — xε£/+ and x — x2 e jaf +.
XJL and x2 are hermitian elements of 91, so [l±i(xι +Xι)]2 are in 2ί+c90ϊ+.
We have: χ = yi-y29 where, ^ = ̂ -(x - x2) + [1 + |(xx + x2)]2 e 9K+, and,
y2 = i(Xl _ x) + [l _ |(Xl + χ2)]2

 e 9J{+. This proves c).
b) is a consequence of a), c), and of the following polarization identity:

(5) 2x* zy = (x + y)* z(x + y) — i(x + ίy)* z(x + iy) + (i - 1) [x* zx + y* zy] ,

for any x, y and z in j/.
Finally d) follows from the fact that we have : ρi — x e 93 J, Vx = x* e 23^ and

Vρ>| |x | | . D

Let us remark that the closure for the topology ^~Γ of the positive cone 91 +

of 91 is equal to 21 n j/+ and is also the closure of {x*x|x e 91}.

Definition 1-A. Let φ be a linear form on 91. Then, φ will be_called a Γ-strongly
positive linear form on 21 if it is positive on the closure 2I+trr of 21 + for the
topology yr (in 21).
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Then, we have the following theorem.

Theorem 1. Let φ be a linear form on 91. Then the following conditions are
equivalent :

a) φ is Γ -strongly positive ((/>(2In^/ + ) C 1R+),
b) There is a linear form φ on 9JΪ which is positive on 9Jl+ and such that we

have: φ(x) = φ(x\ Vx 6 9ί (φ is an extension of φ).

Proof. b)=>a) since we have: 9ϊ + ̂ r = 9In ts/+=9ln9Jt+. Conversely suppose
that φ is positive on 9ίnSOίϊ+ and define the following real function on the real
vector space 30 :̂

(6) x^p(x) = inf
ye9ί

y — xe<$#

This function satisfies :

p(x± + x2) g p(x1) + p(x2), Vx 1 ? x2

p(ρx) = ρp(χ), Vx e 9K* and Vρ e IR+ .

Furthermore we have: φ(x) = p(x), Vxe9l^. The Hahn-Banach theorem implies
that there is a real linear form φ1 on the real vector space 9K^ satisfying 0! (x) = 0(x),
Vx e 91* and φι(x) ^ p(x), Vx e 901*. The latter inequality implies that φ± is positive
on 9JΪ+. The the following equality defines a positive linear form φ on 9Jί which

/ _

extends φ: φ(x) = φ, I — - — I -M^ ( 2/ 1, V x e 9 W . Π

Any linear form on j/ defines by restriction a linear form on 50ΐ and a linear
form on 9ί. Moreover these restrictions are injective on the topological dual si'
of j/ since 91 is dense in j/. It follows that j3/r may be identified with a linear
subspace of the algebraic dual 9ER* of 9Jί or with a linear subspace of the algebraic
dual 9ί* of 91.

Proposition l.Let SOΐ* (resp. 91*), denote the algebraic dual space of 3DΪ ^resp.
9Iy), equipped with the weak topology σ(9K*, SPΐ) fr^5p. σ(9ί*, 9l)/

a) Tfoe 5 ί̂ o/ α// ί/ze linear forms on SDΪ which are positive on^0l+ is the closure
in SRJ of the convex cone of all continuous positive linear forms on &tf (restricted
toWl).

b) Let K be a set of Γ-strongly positive linear forms on 91 which is closed and
bounded in 9ίJ (o compact). Then the set K of all the positive linear forms on SOΐ
which have restrictions to 91 in K is a compact subset of SDΪ*. // K is convex, then
K is also convex.

Proof, a) 9[R+=9«rW+ is the set {x|xe9ϊί and φ(x)^0, Vφe^' with φ
positive}. Therefore, the set of all positive linear forms on 9JΪ is the bipolar of the
set of the restrictions to ΪR of positive continuous linear forms on j/. This last set
is a convex cone in SPΐ*. This implies a).

b) The restriction to 91 is a continuous linear mapping of SOΪJ into 91*, so K
is closed. K is obviously convex if K is convex. In the algebraic dual E* of a vector
space E, any weakly closed bounded subset is compact (E* is a closed subspace
of <C£), so it remains to prove that K is bounded in 9Jί*. By positivity, linearity
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and by Lemma 6c), it is sufficient to show that for any element x of 9Jl+ the set
{ψ(x)\ψeK} of positive numbers is bounded. But for any xe9K+, there is an
element x1 of 9P^"r with x1 — x e SCR+, and, by the hypothesis K bounded in 91*,
[ψ(xι)} is bounded and therefore sup (ψ(x)} ^ sup {ψ(xι)} = sup {φ(xι)} < oo. Π

ψeR. ψeK φeK

Remark 2. The convex cone of all ^-continuous positive linear forms on 91
is identical with the set of restrictions to 91 of all continuous positive linear forms
on j/; its closure in 91* is the convex cone of all Γ-strongly positive linear forms
on 91. Notice also that any algebraic dual E* is weakly complete, so the convex
cone of all Γ-strongly positive linear forms on 91 is weakly complete. If φ is
Γ-strongly positive, the set of all positive linear forms φ on SOϊ with φ = φ 191 is
weakly compact.

In what follows we shall need the generalization of the theory for arbitrary
*-algebra with unit, 91, and arbitrary directed set of C*-semi-norms on 91, Γ. In
other words, ZΓT will not be supposed to be a Hausdorff topology on 91. Let us
say a few words on this general situation. Notice first that the closure of {0} for
ZΓT is the *-invariant two-sided ideal 3Γ= P| p"1^)- It follows that 9ί/3Γ is again

peΓ

a *-algebra with a unit. Any C*-semi-norm in Γ (and any ^-continuous C*-semi-
norm on 91) induces a C*-semi-norm on 9I/3Γ. The set of these C*-semi-norms
on 9I/3Γ will again be denoted by Γ. This set of C*-semi-norms on 9ί/3Γ generates
the quotient topology of ̂  which will again be denoted by 2ΓY and is now a
Hausdorff topology on 9I/3Γ. With the notations given above we define the
spaces j^(9I,Γ), 9K(9I,Γ), 95^(91,0, j/ + (9ί,Γ) etc.... by;

j/(9l, Γ) - j/(9I/3Γ, Γ), 9JΪ(9I, Γ) - ΪR(9I/3Γ, Γ), etc....

and, we complete Definition 1-A by the following.

Definition 1-B. Let φ be a linear form on 91. Then we say that φ is a Γ-strongly
positive linear form on 91 if φ is positive on the closure 9ί+^r of 91+ for the
topology ^7. If furthermore Γ is the set of all C*-semi-norms on 9ί, φ will simply
be called a strongly positive linear form on 91.

The following lemma is an obvious consequence of this definition.

Lemma 7. Let Γ' be a directed set of C*-semi-norms on 91 such that βΓΓ is
finer than 2ΓΓ. Then any Γ-strongly positive linear form on 91 is Γ'-strongly positive
(and so strongly positive). Furthermore any strongly positive linear form on 91 is
a positive linear form on 9ί.

Remark 3. There are "many" *-algebras on which no non trivial C*-semi-
norm exists: so it may happen that the trivial linear form, χκ>0, is the only strongly
positive linear form. However, we are going to show, in the next section, that
every positive linear form on the tensor algebra T(E) over an involutive vector
space E is strongly positive. It is worth noticing that, if E is an involutive vector
space with dim(£)^2, there are positive linear forms on the symmetric algebra
S(E) over E which are not strongly positive [in spite of the fact that the C*-semi-
norms on S(E) generate a Hausdorff locally convex topology on S(EJ]. This
latter point is connected with the non solubility of Hamburger's moment problem
for positive linear forms on C[^1? X2~\ (^S(<C2)), [3,10].
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Let πr : 9ί->9I/3Γ be the canonical projection of 21 on 9I/3Γ; πr is a *-homo-
morphism with πr(ϊ) = i. For any Γ-strongly positive linear form φ on 9I/3Γ,
φ ° πr is a Γ-strongly positive linear form on 91 and, conversely, any Γ-strongly
positive linear form on 91 is of this form for a unique Γ-strongly positive linear
form φ on 9I/3Γ. Therefore all the results given above are easily translated in
results for the general situation (where έΓΓ is not Hausdorff). So, as long as Γ is
kept fixed, it is not a restriction to assume that ZΓΓ is Hausdorff (replace 9ί by
9l/3Γ); We say in this case that Γ separates 91.

4. The Case of Tensor Algebras over Involutive Vector Spaces

Let E be an involutive vector space. There is a unique involution, XM>X*, on
the tensor algebra T(E) over E such that it extends the involution of £, it is anti-
linear and satisfies :

(xy)*=y*x*9 Vx,j;

Equipped with this involution, T(E) is a *-algebra with a unit. Furthermore any
*-algebra with unit is (in a non unique way), a factor algebra of such a tensor
algebra by a two-sided ^-invariant ideal. Therefore it is important to know what
happens when 91 is the tensor algebra over an involutive vector space E.

Let us define, as usual, an involution, /H-/*, in the dual E* of £ by:

</*,*> = </,**>, V x e £ .

Let us recall that if oq is a linear mapping from E into a *-algebra with unit
9X, such that α1(x*) = α1(x)*5 V x e E; then there is a unique *-homomorphism α
from T(E) into 91 satisfying α(i) = i and α(x) = α1(x), VxeE. In particular if
(fnm)n,m = ι,...,N *s a ^1T^Q family of linear forms on E satisfying /„*, = fmn9 then there
is a unique *-homomorphism, π, from T(E) into the C*-algebra MN(<C) of all com-

plex NxN matrices such that π(ί) = i and π(x) = •' ' * • . V x e E ;

l / N l W - . - ' / N N W /

π will be called a matrix representation and the /WOT its coefficients. Clearly if π is
a matrix representation then y^||π(y)|| is a C*-semi-norm on T(E).

Theorem 2. Let E be an involutive vector space, let E' be a ^-invariant subspace
of the (algebraic) dual space of E and let ΓE, be the set of all C* -semi-norms on
T(E) yt-*\\n(y)\\ where π runs over the matrix representations of T(E) with coef-
ficients in E'. Suppose that E' separates E; then any positive linear form on T(E)
is ΓE,-strongly positive.

Proof. Let ω be a positive linear form on T(E) and let (πω, §ω, Ωω) be the
cyclic ^-representation πω of T(E) in §ω with cyclic vector Ωω associated with ω
by G.N.S. construction.

For any finite set hί9...9hM of hermitian linearly independent elements in E,
choose /! =/!*, .. ?/M = /M in E' such that </fc, hty = δkl9 and let PN be the or-
thogonal projection on the finite dimensional subspace ξ>N of §ω spanned by the
vectors πω(htί) ...πω(hiκ)Ωω, with K^N and i z e {1,2, ...,M} (V/e{l,2,...,X}).
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Define n^>~-hM'>N(x) for xeE by:

π(f};N is a linear mapping from E into JS?(§J satisfying π?);"(x*) = π?);jv(x)*. It
follows that there is a unique *-homomorphism π(h};N from T(£) into the C*-algebra
JSf(SJ such that π(ft);N(ί) = i and π(fc);ΛΓ(x) = π(

1

fl);W(x), V X E £ . §N is invariant by
π(Λ);ΛΓ(T(E)) and the corresponding representation in ξ>N defines, for any hilbertian
basis in ί>N, a matrix representation with coefficients in E'. It follows that the
linear form χt-*ω(h}.N(x) = (Ωω\π(h}'N(x)Ωω) is a 7^,-strongly positive linear form
on T(E). Furthermore, ω(Λ);N(x) = ω(x),

So V x e T(E\ 3(h),N as above such that ω(x) agrees with ωW;N(x). This implies
that ω is ^-strongly positive since the cone of all Γ-strongly positive linear forms
on a *-algebra 21 is weakly closed in the dual space of 91 (for any directed set,
Γ, of C*-semi-norms on 51). Π

Except for the formulation this theorem was proved by Borchers [11] (see the
proof of II. 3.8 in that paper).

Corollary 1. Let E be an involutive vector space. Then any positive linear form
on T(E) is strongly positive.

5. Algebras of Polynomials and the Classical Moment Problem

Let <C[JΓ1? ...,XJ denote the *-algebra of all complex polynomials with
respect to the indeterminates Xί9 ...,Xn. There is a bijection (x1? ..., xn)
from 1R" onto the set of all characters2 on <C[Xί9 ...,^J given by:

(7) χ(Xl,...,;

Any C*-semi-norm on <C[Xl9 ..., X^\ is of the form

19...9XJ)= sup ( \ P ( x l 9 . . . 9 x J \ ) 9
(8)

[for some closed bounded subset B of IRW .

Furthermore Bt->pB is an order preserving bijection from the directed set of all
compact subsets of 1R" (ordered by inclusion) onto the directed set of all C*-semi-
norms on <C[Xί9 ...,Xn~]; (remind that Stone- Weierstrass theorem implies that
polynomials are dense in the C*-algebra ^(K) of all continuous functions on K
for any compact K C 1R", and that, on the other hand, for any compact K C 1R" and
x G 1R"\K, there is a continuous function from 1R" into [0, 1], /, with /(x) = 1 and
f(K) = {0}). We have : B = {(x, , . . . , x J | \P(Xl , . . . , xj| g pB(P(X1 , . . . , Xn)\

1? ..., XJ}, for any compact subset B of IR". The compact B

2 In this paper, a character on a *-algebra with unit 2ί is a *-homomorphism (of *-algebras with
units) from 51 into (C.
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will be called the support of the C* -semi-norm pB and, more generally, for any
directed set Γ of C*-semi-norms on C[^1? ..., X^\ we define the support of Γ to
be the closed set :

(9) Supp (Γ) = UB = closure of the union of the supports of the elements of Γ .
PBeΓ

Let B be an arbitrary bounded subset of IR", then we have:

pB(P(Xl9...,XJ) = sup(\P(x)\) = suZ(\P(x)\)^
xeβ x eβ

(If S is a subset of IR", S denotes its closure in 1R".)
We want now to identify the various things defined in Sections 2 and 3 in the

cases where 2I = C[Xl5 ...,XJ and Γ = Γ(

s

σ) or Γ = Γ(/\ where SCUT and Γ(

s

σ\
Γ(/} are defined by:

ί Γ£σ) = {pB I B runs over the finite subsets of S} ,

I Γ^} = {pB I B runs over the bounded subsets of S} .

It is not difficult to show that we have :

l , . . . , XJ, 7^σ)) = <CS equipped with the product topology ,

1? ..., Xn~], Γ(

s

σ)) = all complex polynomially bounded functions
on S,

...,ΎJ,Γ<σ)) = (R+)s,

Ί, .-. , Xn~], Γsσ}) = C*-algebra of all bounded complex functions
on S (equipped with the sup norm) .

In order to solve the case Γ = Γ(/\ let us remark that all the constructions
given in Sections 2 and 3 do only depend on the set Γ of ^-continuous C*-semi-
norms; Therefore, we may replace Γ by any other directed set of C*-semi-norms
which is cofinal with respect to Γ (<=> generates 3~γ see Section 2). On the other
hand, we have : Γ(

s

β} = Γ^ = Γ$\ where

(10') Γ^τ) = {pB B runs over the compact subsets of S} .

With this in mind, it is easy to prove that we have:

, . . . , ΎJ, Γ^}) = #(S) equipped with the topology of compact
convergence .

, . . . , ZJ, Γ^}) - 0>(S) = {polynomially bounded continuous
functions on 8} ,

(12) \ _
+ ι , . . . , AΓJ, Γ^}) = <g(S£ = {positive valued continuous functions

on S} .

ι, -.., ̂ ,]» Γsβ}}= c*-algebra of bounded continuous complex
__

functions on S equipped with the sup norm ,
s

where %>(S) denotes the set of all complex continuous functions on S.
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Let us remark that for any directed set of C*-semi-norms on <C[̂  , . . . , XJ, Γ,
there is a subset S of IR", namely S= (J Supp(p) (so S = Supp(Γ)), such that

P eΓ

In this sense, the two families Γ£σ) and Γ(/} are extreme cases. We have:

It follows from (11) and (12) that a linear form, φ, on <C[Xl9 ...,*„] is Γ(

s

σ)-
strongly positive if and only if it is positive on the polynomials P such that P(S) C 1R+

and that φ is Γ^-strongly positive if and only if it is positive on the polynomials P
such that P(S)C1R+. However, we have: P(S)C1R+<*P(S)CIR+ since 1R+ is closed
in (C and since (x l 5 ..., xw)h->P(χ1, ...,xπ) is continuous on ΪRM, \/P(Xi, ..., JfJ
e C[̂  , . . . , ZJ. This implies that Γ-strong positivity only depends on Supp (Γ), i.e.

ί φ is Γ-strongly positive oφ is Γ'-strongly positive, if Γ and Γ' are

(such that Supp(Γ) = Supp(Γ'), for φe<ClXl9 ..., XJ* (~CN")

Let </> be a linear form on C[XL, ..., Xn~] and let S be a closed subset of IR".
Then, the S-moment problem for φ is the following problem:

Is there a positive Radon measure, μ, supported by S and such that

= $P(x1,...,xJdμ(x1,...,xa),
S

If the answer is yes, the S-moment problem for φ is said to be soluble and μ is
called a solution. If μ is the unique solution, then the problem is said to be deter-
mined. It is said to be indetermined if there are several solutions. The main
solubility criterion is the following Riesz' criterion.

Riesz' Criterion. The S-moment problem for φ is soluble if and only if
φ(P(Xl9...,XJ)^Ofor any P(Xl9 ..., XJeC^, ..., XJ such that P(x l5 ...,*„)

We know (from the above discussion) that this condition is equivalent to
/"^-strong positivity for φ [<=>Γ-strong positivity for Supp(Γ) = S]. Let us now
give a brief discussion of the proof of this criterion. Remark first, that the con-
dition is obviously necessary. Secondly, suppose that φ is Γ^-strongly positive,
then, it follows from (12) and Theorem 1 that φ has an extension φ to &(S) which
is positive on 0>(S)+ = 0>(S)r\^(S) + . Let μ be the restriction oίφ to the C*-algebra

of all complex continuous functions on S vanishing at infinity,

(Q)(S)); μ is a positive linear form on #(0)(S) with μ(l) = φ(ί). So μ is a
bounded positive Radon measure supported by S, (Supp^cS). The end of the
proof of Riesz' criterion follows from the following lemma.

Lemma 8. Let ψ be a positive linear form on 3?(S) (where S is a closed subset
of]R") and let μ be its restriction to ^(0)(S). Then, any fe £P(S) is μ-integrable and
we have:

ψ ( f ) = S f d μ , Vf
S
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Proof. Let (χk) denote a sequence of continuous function on IR" with values in
[0, 1] and such that χk(x) = ί if ||x|| ^/c and χk(x) = 0 if ||x|| ^ fc+ 1.

For any /e &(S\ χk - f is μ-integrable and /(x) = lim χk(x) /(x), Vx e S, and

|χk/| ̂  |/|. On the other hand |χk/| = χk|/| is an increasing sequence of μ-integrable
functions with sup(&|/|) - |/| e P(S). It follows that v>(&|/|) = J χk|/| dμ^ v(l/D,

k

(Vfc^O), and therefore |/| is μ-integrable and we have (Lebesgue's theorem)

This implies that / is also μ-integrable and,

=Hm $ χ k f d μ .

We have :

(by positivity of ψ). And, there is [for each /e ̂ (S)] a positive X and a positive
integer such that |/(x)| ̂  ̂ 1(1 + ||x|Γ), Vx e 5. It follows that

-NΓ)2 sup

So, we have:

This implies that

D
fc-» oo

We recall that the lR"-moment problem for a linear form on C[^1? ..., Xn~], φ,
is called Hamburger's moment problem for φ. It is well-known that if n = 1, the
Hamburger's moment problem is always soluble for a positive linear form on the
*-algebra <C[X]. But since <C[X] is canonically isomorphic with T((C), this appears
as a specific case of Theorem 2 (the most trivial). On the other hand, there are
positive linear forms on C[^Ί , X2~] which are not positive on the polynomials which
define positive functions on 1R2 (in other words there are positive linear forms on
€[^,^2] which are not strongly positive); the Hamburger's moment problem
is not soluble in these cases.

An important result which will be used in below is the following:

Carleman's Theorem [12]. Let φ be a positive linear form on the *-algebra
such that

then, the Hamburger moment problem for φ is determined.
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6. Functional Calculus and the C*-Algebras 23(91, Γ)

Let again 91 be a *-algebra with unit (1 e 91), Γ be a directed set of C*-semi-
norms on 91 and let us use the previous notations. Let S be a closed subset of IR
and let ls and Ids be the real functions on S defined by:

(15) ls(x) = 1, V x 6 S and Ids(x) = x, V x e S .

ls and Id5 are elements of the *-algebra 3P(S) of all continuous polynomially
bounded complex functions on S.

Theorem 3. Let h be a hermitian element of $tf ana let S be a dosed subset of IR
which contains Sp(/z). Then, there is a unique *-homomorphism, α, from &(S) into j/
such that α(ls) = l and a(lds) = h. Furthermore a is continuous if 0*(S) is equipped
with the topology of compact convergence and, if h e 91, then α(^(S)) C 501.

Proof, a) There is a unique *-homomorphism, α0, from the algebra of poly-
nomials <C[X] into j/ such that α0(l) = l and α0pO = Λ (remind that (C[JΓ| is
isomorphic with the tensor algebra over one dimensional involutive space).
Let p be an element of Γ, then p ° α0 is a C*-semi-norm on <C[X] and the support of
p ° α0 is the spectrum of πp(h) in 93p (remembering that if h0 is a hermitian element
of a C*-algebra with a unit, i, then the C*-subalgebra generated by i and /z0 is
isomorphic with the C*-algebra of all continuous functions on the spectrum of h0).
It follows that there is a unique *-homomorphism, α, from the *-algebra of all
polynomial functions on S (S D Sp(/z) = (J Sp(πp(h))) into si such that α(ls) = 1,

peΓ

α(Ids) = /z and that this *-homomorphism is continuous for the topology of com-
pact convergence on S. On the other hand, polynomial functions are dense in the
set of continuous functions on S, ^(S\ for the topology of compact convergence.
Therefore there is a unique continuous *-homomorphism α :#(S)->j/ satisfying
ά(ls) = i and α(Ids) = h. The restriction α = α I" ̂ (S) has obviously all the proper-
ties mentionned in Theorem 3. It remains to show that α is the unique *-homo-
morphism from 0>(S) into j/ satisfying α(ls) = l, α(Ids) = Λ.

b) 3 We know that α is unique on polynomial functions on S. It follows that
α is also unique on the *-algebra generated by the polynomial functions and the
inverses of polynomial functions inversible in (̂5). In particular we have: Vε >0,
V ρ e I R

and these elements are in the C*-algebra 33^, by Lemma 5. Since *-homo-
morphisms of C*-algebras are continuous and since the functions

~ ^2 ( t e S )2 V

separate strongly S, [13] [and so generate the C*-algebra ^(Q)(S) by Stone-
Weierstrass], it follows that α is unique on the *-algebra generated by the C*-
algebra ^(0)(S) (of continuous functions vanishing at infinity on S) and the poly-
nomial functions. But this *-algebra is just ^(S); indeed /e £?(S)<=>f continuous

This proof of uniqueness has been suggested by H. Epstein.
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and 3 AT, K with \f(t)\ ^ K(l + t2)N V ί e 5, so ίκ> 2 v + 1 is in #(0)(S) and its
2yv

product with the polynomial (1 + t2)N+ ^ is /. Π

Lemma 9. Lei ft, 5, α fee as in Theorem 3.
a) // / is α bounded continuous function on S, ίften α(/) is in the C* -algebra 23 ̂
b) α(#(0)(S)) is the C^- sub algebra of 23 ̂  generated by the set {(ft — ρi)

Proof. Let p be an arbitrary element in Γ, let α be as in the proof of Theorem 3
and let fe #(£). Then we have: πp(α(/)) = f(np(h))9 VpeΓ (in the C*-algebra 23p,
with the usual notation [8,9]), and, ||πp(α(/))|| = Sup (|/(ί)|). Part a) of the

lemma follows from this and from the definition of 23 ̂  Let us consider the

functions t H> -— -y- = f (t) V t e S, 3 ρ e IR with —— -j- Φ 0, and

V ί l s ί 2 e S with f !φί 2 , 3ρeIR with -—}—^—j- Φ -—^—^—2-. It follows that

^(Q)(S) is the C*-algebra generated by these functions (Stone-Weierstrass). On the
other hand, we know that α(/ρ) = (ft - ρi) [1 + (ft - ρi)2] ~ 1. This implies b). Π

Remark 5. Lemma 4 is not an obvious consequence of Theorem 3.
Definition 2. Let ft, *S, α be as in Theorem 3 and let α be the unique continuous

extension of α to %>($). Then, we define /(ft) for

/e<?(S) by: /(ft) = α(/), (V/6*(S)).

Notice that if (ft, 5 l 5 α^ and (ft, S2, oc2) are as above and if Sλ D S2, then, by
uniqueness, we have :

(where /t |" S2 is the restriction of /x to S2). So, Definition 2 is coherent.
Definition 3. Let 91 be a *-algebra with a unit and let Γ be a directed set of

C*-semi-norms on 9ί.
a) If Γ separates 91, 95(21, Γ) is defined to be the C*-subalgebra of 95^(21, Γ)

generated by the set {ft(i + ft2)-1 | f t e 9ί and ft = ft*}. If Γ does not separate 91,
we define 95(21, Γ) to be 95(2I/3r, Γ) (see Section 3 for the notations).

b) If Γ is the set of all C*-semi-norms on 21. Then 93 (91, Γ) will be called the
C* -algebra associated with the * -algebra 9X and will simply be denoted by 23 (9ί).

c) If 91 is a topological *-algebra and if Γ is the set of all continuous C*-semi-
norms on 91, 95(21, Γ) will be called the C*-algebra associated with the topological
*-algebra 91.

Notice that 23(91) is associated with 9ί equipped with its finest locally convex
topology. 95(21, Γ) will simply be denoted by 23Γ (when no confusion arises).

Let 91 be a *-algebra with a unit (1 e 91). If p is a C*-semi-norm on 9ί, the C*-
algebra obtained by completion of 9I/p~1(0) for the norm induced by p is denoted
by 95P(2I) (=95p in Section 2). Let Γ1 and Γ2 be two directed sets of C*-semi-
norms on 91 and suppose that the locally convex topology 2Γτ^ generated by Γv

is finer than the locally convex topology "̂Γ2 generated by Γ2 . Then the identity
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mapping of 91 is continuous from 9ί equipped with e^Γl on 91 equipped with ^>2

therefore, it determines a continuous *-homomorphism πΓ2 Γl from j/(9I, ΓΊ)
into j*(Sl,Γ2). We have πΓ2tΓί(Άao(^9Γ1))c^ao(^9Γ2)9 but 7^(23^(91,̂ )) is
generally a strict C*-subalgebra of 95^(91, Γ2) (see the examples given in Section 5).

Proposition 2. Lei W be a *-algebra with unit, let p be an arbitrary ^-semi-
norm on 91 and let Γ± and Γ2 be two directed sets of C*-semi-norms on 91 such that
&~Γί is finer than ^γ2. We have:

a)
b)

Proof. For any hermitian element h of 9I/p~1(0) and for any ε>0,

~1 is an element of 93(91, {/?}); so we

have a), by Lemma 5. On the other hand, b) follows easily from Definition 3 and
from the fact that any *-homomorphism of C*-algebras with a dense image is a
surjective *-homomorphism. Q

So, 95(31, Γ) is a quotient C*-algebra of 95(31).
In connexion with Definition 3, the following slight lemma is worth noticing.

Lemma 10. Let 91 be a C*-algebra with unit. Then the C*-algebra associated
with 91 considered as a *-algebra is identical with the C*-algebra associated with 91
considered as a topologίcal *-algebra, and both are canonically identical with 91,
(95(31) = 31).

Proof. For any C*-semi-norm on 91, p, the *-homomorphism πp must be a
norm-decreasing surjective *-homomorphism of 91 on 95p. Therefore, any C*-
semi-norm on 91 is continuous; this proves the first statement. The other part of
Lemma 10 follows from the fact that

h = lim/z(i + εh2Γ \ V f t - ft* e 9ί . Π
ε->0

It follows that any positive linear form on a C*-algebra with a unit is strongly
positive but this does not mean that Γ-strong positivity has no interest in this case.
For instance, let 91 be an arbitrary *-algebra with unit and let j/(9I) be j/(9I,
{all C*-semi-norms on 91}), we have: 95(3Ϊ) C «s/(3I). Let Γ be a directed set of
C*-semi-norms on 91; Γ induces a directed set of C*-semi-norms on ja/(9ί) and, by
restriction, a directed set of C*-semi-norms on 23(91) which will again be denoted
by Γ. Then it is not hard to see that we have:

(16) 95(31, Γ) = 95(95(31), Γ) canonically.

7. A Generalization of Classical Moment Problem on *-Algebras

Let 9X be a *-algebra with a unit, (i), and let Γ be a directed set of C*-semi-norms
on 9ί. We suppose that Γ separates 91 (otherwise replace 91 by 3I/3Γ).

For any hermitian element of 91, ft, and for any positive linear form on 93(9ί, Γ),
ω, there is a unique bounded positive Radon measure on IR, μΛ>ω, such that

(17) ω(f(h)) = S f ( t ) d μ h t ω ( t ) , V/ 6 <P(0)(1R).
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Morever, μht(0, is supported by the closure (in IR), Spr(/z), of the spectrum in j/(9I, Γ)
of/i, Spr(/ι):

(18) Supp(μή>ω)cSpΓ(/z).

Indeed, by uniqueness in Theorem 3,/t->/(/z) must factorize as/κ>/ I" sι->/(/z)
[where /H>/ I S is the restriction [ S:̂ (1R)-+^(S)], VScIR closed and such that

Definition 4. Let φ be a linear form on 9ί. Then, we define the m(Γ) -problem
for φ to be the following problem: Is there a positive linear form on 93(91, Γ), ω,
such that

If the answer is yes, we say that the problem is soluble and that ω is a solution.
If Γ is the set of all C*-semi-norms on 91, the m(Γ)-problem for φ will simply be

called the w-problem for φ.
Let / be an arbitrary element of #(0)(IR); then, for any integer n ̂  1, t\->f(tn)

is also an element of #(0)(IR). So, applying the definition (17) of μh >ω, we find :

(19) ω(/(Λ")) = J/(fVμ*.β(t) = J/W/W) .

On the other hand, if ω is a solution of the ra(Γ)-problem for φ we have: ω(ί)
= l l j ^ h . ω l l =f ίΆ ίΛ,ω( ί) = ΦW It follows that if the ra(Γ)-problem for φ is soluble
and if ω is an arbitrary solution, we have :

(20) 0(P(Λ)) = JP(ί)d/ιΛ.ω(ί),VΛ = Λ * e 9 I and

In other words, μft ?ω is a solution of the classical moment problem for the linear
form on <C[X] defined by: P(X)^φ(P(h)\
The generalization of Riesz' criterion is given by the following theorem.

Theorem 4. Let φ be a linear form on 91. Then, the m(Γ)-problem for φ is
soluble if and only if φ is a Γ-strongly positive linear form on 91.

Proof. Suppose that the w(Γ)-problem for φ is soluble and let ω be a solution.
Then, by (18), we have: Supp(μΛ)£0)ClR+, V f c e 9ίn j/+(9ί,Γ) (use Lemma 3);
So φ(Λ)^0, V/z69Inj3/+(9I,Γ) which means that 0 is a Γ-strongly positive
linear form on 9ί.

Conversely, suppose that φ is Γ-strongly positive. Then, by Theorem 1, there
is a linear form on 9W(9I, Γ), 0, which is positive on 9W+ (91, Γ) - 9M(9l, Γ)n ̂ + (91, Γ)
and which is an extension of φ. Let ω denotes the restriction of φ to 93(91, Γ) and
let h be an arbitrary hermitian element of 91. Then, ω is a positive linear form on
93(91, Γ) and μh>ω is, by definition, the restriction to ^(0)0R) of the positive linear
form on ^(IR) defined by: f\->φ(f(h)). Therefore, it follows from Lemma 8, that
we have: 0(/(Λ)) = lf(t)dμh%ω(t\ V/e^(lR), V A = A* 6 91. So ω is a solution of
the m(Γ)-problem for φ. Π

Remark 6. a) Combined with (18) and (20), this theorem means that the
m(Γ)-problem for φ is soluble if and only if, for any hermitian element h of 91,
the Spr(/ι)-moment problem for the linear form P(X)^->φ(P(h)) on <C[X] is soluble.

b) It should be clear that any solution of some m(Γ)-problem is a solution of
the m(Γ)-problem for a unique linear form on 91.
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c) In the proof of the Theorem 4, we construct a solution of the m(Γ)-ρroblem
for a Γ-strongly positive linear form by restriction of a positive linear form on
301(91, Γ). It is not obvious that all the solutions are of this type.

Definition 4' . Let φ be a linear form on 91. The m(Γ)-problem for φ is the
following problem. Is there a positive linear form ω on 23(21, Γ) such that
b = b* e 23(31, Γ) and h - b ε ̂  (9ϊ, Γ) with h ε 91 imply φ(h) ̂  ω(b}Ί

Theorem 5. Let φ be a linear form on 9ί and let ω be a positive linear form on
35(91, Γ). Then ω is solution of the m(Γ)~ problem for φ if and only if there is a
positive linear form ψ on the ordered vector space S0ΐ(9l, Γ) such that φ = ip \ 91
and ω = ψ ϊ 93(21, Γ). Then we have:

and Wι = Λ * e 2 l .

SO the m(Γ)-problem for φ is soluble if and only if φ is Γ-strongly positive and any
solution is a solution of the m(Γ)-problem for φ.

Proof. It is clear (from Definition 4') that if ip is a positive linear form on
9K(9ί, Γ), ψ 1 93(91, Γ) is solution of the m(Γ)-problem for ψ \ 91.

Conversely, let ω be a solution of the m(Γ)-problem for φ; it follows from the
definition that we have :

ω(b)^p(b}= Inf [φ(h)} , Mb = b*e 93(91, Γ).

Applying again Hahn-Banach theorem (see the proof of Theorem 1), we find that
there is a real linear form, ιpl9 on the real subspace 90^ of SCR which is an extension
of ω [restricted to the hermitian elements of 93(21, Γ)] and satisfies:

_

- 1 + *Vι I - : — satisfies the

conditions of the theorem. Π
The last statement in Theorem 5 (which is a direct consequence of lemma 8),

implies that ψ is in fact uniquely determined on the subspace of 9Jl(9ί, Γ) spanned
by {/(h)|fι = fe*e2l,/e^(R)}.

Let 33(21, Γ)'σ be the topological dual space of the C*-algebra 23(21, Γ) equipped
with the weak dual topology σ(93(2l, Γ)', ®(9ί, Γ)). The restriction to 33(2ί, Γ) of
positive linear forms on SPΐ(9ί, Γ) is weakly continuous. Therefore, it follows from
Proposition 1, that Theorem 5 has the following corollary.

Corollary 2. Let φ be a Γ-strongly positive linear form on 9ί; then, the set Sφ of
all the solutions of the m(Γ)-problem for φ is a weakly compact convex subset in
»(sι, ry.

More generally, if K is a set of Γ-strongly positive linear forms on 91 which is
closed and bounded in 2IJ, then the set &κ= Q S^ is compact in 23(91, Γ)'σ (and

φeK

convex whenever K is convex) .
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Let 910(2I, Γ) denotes the linear hull [in jtf(2I, Γ)] of 95(21, Γ) 91. We have:

(21) [9ί0(2I, Γ)]* 9t0(9I, Γ) c 9K(9I, Γ)

(where [910(9I,Γ)]* is the set {x*|xe 9t0(9I,Γ)}) since 95(9l,Γ) is a subset of
9W(9I,Γ) and since 9ϊ 9W(9ί,Γ)-9rc9M(9r,Γ) (Lemma 6b). It follows that
(x, jO^vX x*}7) is a positive sesquilinear form on 9t0(2l, Γ) x 910(9I, Γ) for any
positive linear form φ on 9JΪ(2I, Γ). Furthermore, for any element y of 9l0(9ί, Γ),
xt-*ψ(y*xy) is a positive linear form on 93(91, Γ) so we have:

(22) ψ(y*x*xy)* ^ ||x|| ψ(y*y)* , Vx e 93(91, Γ), V y e 910(9I, Γ).

On the other hand, for any positive linear form χt->φ(x) on 9JΪ(2I, Γ) and for
any y e 91, χκ»t/;(j;*χj;) is again a positive linear form on 9Jt(2ί, Γ) (Lemma 6a).

Let us equip 910(9I, Γ) with the locally convex topology generated by the
semi-norms xι->tp(x*x)^ where ψ runs over the set of all positive linear forms on
9W(2l, Γ). It follows from the above discussion that (x, y) \->xy is a jointly continuous
bilinear mapping of 95(2I,Γ) x 9l0(2l,Γ) into 9ί0(2I,Γ) and that, for any ye21,
χκ»χj; is a continuous linear mapping of 9l0(9t, O int° itself. Let us denote the
completion of 9t0(9l, Γ) by 9t(9ί, Γ), [remark that 910(9I, Γ) is a Hausdorff space].
We have, by continuity, a continuous bilinear mapping of 93(9ί, Γ) x 91(91, Γ) into
91(91, Γ) [again denoted by (x, y)^xy for x e 95(21, Γ), y e 9ί(9ί, Γ)] and, for any
element z of 91, a continuous linear mapping of 9l(9ί, Γ) into itself [again denoted
by y^yz for ye 91(91, Γ)].

Xl(x2 . y) = (Xl . χ2)3,, V x 1 ? x2 G 35(21, Γ), V y E 91(91, Γ)

, Vz 1 ,z 2 e2I, Vyeϊl(2l, Γ)

(23)

so 91(91, Γ) is a left 95(21, Γ)-module and a right 9I-module. 93(91, Γ) and 91 are
both subspaces of 91(91, Γ).

Lemma 11. 93(91, Γ) is a dense sub space of the space 91(91, Γ).

Proof. Let ψ be an arbitrary positive linear form on SDΪ(2I, Γ) and let ω be its
restriction to 95(21, Γ). Then, ω is solution of the m(Γ)-problem for the restriction
of ψ to 91 and we know (Theorem 5) that we have:

and V/ι = / ι*e2ϊ .

Let x be an arbitrary hermitian element of 91 and let xn be defined by

xn = x i H for any integer n > 0. Then xn e 93(91, Γ) and ψ((x — xn)(x — xj)

0. It follows that the set of all bermitian elements~j 2"

of 91 is in the closure of 93(91, Γ) in 91(91, Γ). Therefore 9ί is in the closure of 95(21, Γ)
in 9l(9ί, Γ) (since this closure is a linear subspace). This implies that 93(91, Γ) 91
is also in the closure of 95(21, Γ) in 91(91, Γ), [since (x, y)^xy is jointly continuous
from 95(21, Γ) x 91(91, Γ) into 91(91, Γ)]. So (again by linearity), 910(9I, Γ) is in the
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closure of 23(21, Γ) and is dense in 9l(2ί, Γ) (by construction). It follows that the
closure of 93(21, Γ) in 91(21, Γ) is 9ί(2I, Γ). Π

Remark 7. Let φ be a positive linear form on 9ϊl(2I, Γ) and let ω be its restriction
to 23(21, Γ). Lemma 11 implies that the positive sesquilinear form on 910(2I, Γ)
x9l0(2ί, Γ) defined by (x, y)^>ψ(x*y) does only depend on ω [and the same is
true for its continuous extension to 9t(2ί, Γ) x 91(21, Γ)]. In other words, Lemma 11
means that 9l(2ί, Γ) is the completion of the space 33(21, Γ) equiped with the locally
convex topology generated by the semi-norms XH»CO(X*X)^ where ω runs over
the set of all solutions of ra(Γ)-ρroblems. Notice also that the linear hull of the
f(h\ for/ e ^(R) and h = Λ* e 21 is canonically a subspace of 91(21, Γ).

Proposition 3. Let φ be a Γ-strongly positive linear form on 21, let ω be a
solution of the m(Γ)-problem for φ and let (πω, §ω, Ωω) be the cyclic *-representation
πω of 33(21, Γ) in the Hilbert space §ω with cyclic vector Ωω associated with ω by
G.N.S. construction. Then, there is a unique continuous linear mapping 0/91(21, Γ)
into §ω, Ψω, such that Ψω(x) = πω(x)Ωω, Vxe33(2ί, Γ). Furthermore, we have:
πω(x)Ψω(y)=Ψω(x'y), Vxe23(2X,Γ) and Vye9l(2ί,Γ); (Ψω(x)\ΨM) = φ(x*y),
Vx, y e 2ί. For any fixed element 0/21, x, let ωx be the positive linear form on 23(21, Γ)
defined by: o)x(y) = (Ψω(x)\πω(y)Ψω(x)), V y e 23(21, Γ). Then ωx is solution of the
m(Γ)-problem for φx, where φx is the Γ-strongly positive linear form on 21 defined by:
φx(y) = φ(x*yx), V y e 2 X , (φx is Γ-strongly positive by Lemma 6a).

Proof. The mapping xt-»πω(x)Ωω from 23(21, Γ) into §ω is clearly continuous
for the topology induced [on 93(21, Γ)] by the topology of 91(21, Γ). So, by Lemma
11, there is a unique continuous linear mapping, Ψω, from 91(21, Γ) into §ω such
that ϊί

ω(x) = πω(x)Ωω, for any xe93(2ί, Γ). Let x be an arbitrary element of
93(21, Γ), then, [by (22)] y^πω(x)Ψω(y) and y±->Ψω(x - y) are both continuous on
91(21, Γ) and they coincide on 93(21, Γ); so we have: πω(x)Ψω(y)=Ψω(y x),
V 3; e 91(21, Γ). Let x = x* be an arbitrary hermitian element of 21. Then

/ χ 2 \ ~ 1

xn = x 1 + is in 93(21,Γ\Mn^ 1, and we have:

and

i i yjxj - yj* jιι2 = f
m

2 = 2It follows that φ(x2) = \\ ^ω(x)||2, Vx = x* e 21, and therefore we have (by polariza-
tion):

Let ψ be any positive linear form on the ordered space 9K(2I,Γ) such that ψ(x) = φ(x)
if x is in 2ί and ψ(x) = ω(x) if x is in 93(21, Γ) (the existence of ψ follows from
Theorem 5). Then we have ψ(x*yx) = φx(y) if x, y are in 21 and ωx(y) = ψ(x*yx)
if XG 21 and ye 33(2ί, Γ); but yt-*ψx(y) = φ(x*yx) is again a positive linear form
on 9Jί(2ί, Γ) (by Lemma 6 a), and therefore (proceed as in the proof of Theorem 4)
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we have :

So ωx is a solution of the m(Γ) problem for </>,,.

8. Subspaces and Determination

Let us keep the hypothesis and notations of last section and let φ be a
Γ-strongly positive linear form on 91. In complete analogy with what is done in
the study of the classical moment problem (see the definition of μand^ in Ref. [2]),
we associate to φ the following real functional on 9JΪ^(9I, Γ):

ίx^φ*(x)= Inf (φ(y) I y e 91 and y-xej*+(W9 Γ)}
(Ά and x-y ej/+(9I, Γ)} .

We have of course:

(25) 0* (x) ̂  φx (x) , Vx G 9J^ (91, Γ) .

Proposition 4. Let φ be a Γ -strongly positive linear form on 91 and let h be an
arbitrary hermitian element of 30ΐ(9t, Γ). Then, for any real number, r, such that
φ^ (h)^r^ φ* (h\ there is a positive linear form on 9JΪ(9l, Γ), ψ, such that we have:
φ(x) = ι/?(x), Vx 6 91, and ψ(h) = r.

Proof. Consider, on the linear subspace £ of 9W spanned by {x + / l / z | x e 9 T
and ΛeC}, the linear form φ1 defined by: φl(x + λh) = φ(x) + λr, Vxe9ί and
V/ί e <C. Let £* = 21* + IR. Λ be the real subspace of £ of all the hermitian elements
of £. Then it is easy to see that φ1 is real- valued on Q^ and that </>* (x + ρ/z)
^ιφ(x) + ρr = φί(x + ρh), for any hermitian x e 91 and for any real number ρ. On
the other hand, we have: φ* (h^ + Λ2) ̂  0* (ΛJ + 0* (/z2), Vf t l 9 Λ2 e 2R*(2I, Γ) and,
φ*(ρh1} = ρφ*(hί), V/T! e 9 (̂91, Γ) and Vρ^O. Therefore, it again follows from
Hahn-Banach theorem that there is a real linear form on 9DΪ*(5I, Γ), 01? such that
Φiίίφ* and φι(x) = 0ι(x) for any xe£ Λ . 0: is positive on $R+(9ί, Γ) (since

/ x-j-x* \

φi^φ*), and the linear form t/; on 9JΪ(9I,Γ) defined by: ψ(χ) = φ1l — - —

^c e 9JI) satisfies the conditions of Proposition 4. Π

Definition 5. Let φ be a Γ-strongly positive linear form on 91 and let V be
a *-invariant subspace of 93(2ί,Γ). Suppose that all the solutions of the m(Γ)-
problem for φ coincide on F; then we say that the m(Γ)-problem for φ is deter-
mined on V. If V = 33(91, Γ) we simply say that it is determined.

As an immediate corollary of Proposition 4, we have the following result.

Corollary 3. Let φ and V be as in Definition 5. Then the m(Γ)-problem for φ
is determined on V if and only if we have :
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Practically V will be a C*-subalgebra of 93(<SI, Γ). For instance if the objects
of interest form a system of hermitian generators of ί̂, it is natural to restrict our
attention on the C*-subalgebra generated by the continuous functions vanishing
at infinity of these hermitian generators. This will typically be the case in quantum
field theory (see the next section).

9. First Application to Quantum Field Theory

A. The Localίzable Algebra

Let M be the space 1RS+1 equipped with the bilinear form

Let @ = @(M) be the Schwartz' space of complex C°° functions with compact
supports on M equipped with its usual topology [14] and let 3)' = &(M) be the
topological dual space of 2) that is the space of distributions on M. 3) is an
involutive vector space with the continuous involution g\->g* defined by g*(x)
= g(x), (Vx e M). The tensor algebra T(2) over 2 is canonicaly a *-algebra with
a unit. Let T2> be (as in Section 4) the set of all C*-semi-norms on Ύ(β)y\-> (|π(y)||
where π runs over the matrix representations of T(β) with coefficients in & .
& separates 2 so (by Theorem 2), any positive linear form on the *-algebra T(β)
is Γ0/-strongly positive. Therefore (by Theorem 4), the w(/V)-problem for a
positive linear form on Ύ(3)} is always soluble.

Let ̂  be the family of bounded open subsets of M and for any & e 3Fb let
93(0) denotes the C*-subalgebra of 93(T(®),/V) generated by the family f(h)
where /e ^(0)0R) and where h runs over the hermitian elements of 2 [considered
as a subset of the *-algebra T(β^\ with supports in & \_f(h] is defined in Section 6,
Definition 2]. We have (by construction):

(26) 01 ?02E^ and 0ιC02=>93(01)c93(02)

and 93(0!) is a C*-subalgebra of 93 (02).

Definition 6. A) (j 33(0) is canonically a normed *-algebra which will be
&<Ξ&b

called the locαlizαble algebra and will be denoted by 93(M). The completion S(M)
of 93(M) is the C*-subalgebra of 93(T(S), Γ&) generated by 93(M). »(M) will be
called the quasi-localίzable C*-algebra.

B) A ^-algebra automorphism of 93 (M), α, will be called an automorphism of
93 (M) iff there is a permutation φΛ of J^ such that, for any Θ E J^, the restriction
of α to 93(0) is a ^-isomorphism of 93(0) on 93(<pα(0)).

The set of all these automorphisms of 33 (M) forms a group which will be
denoted by Aut(93(M)).

It follows that any element of Aut(93(M)) is isometric and therefore it has a
unique extension to 33 (M) which is an automorphism of the C*-algebra S3(M).
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Aut(23(M)) will be identified with the corresponding subgroup of the group
Aut(23(M)) of all the automorphisms of the C*-algebra 23 (M).

We denote the group of all diffeomorphisms4 of M by Diff(M). Remembering
that Diff(M) operates (to the left) on 2(M) by h(x)\-*hφ(x) = h(φ~1(x)) and that
(Λ*)φ = (Λφ)*, VφeDiff(M), we have the following:

Proposition 5. There is a unique group homomorphism α, from Diff(M) into
Aut(23(M)) such that <*(φ)lf(Kf]=f(hφ), Vφ e Diff (M), Vh = h*e®(M) and
V/e ^(0)0R). Then we have:

α(φ) 93(0) = 93(φ($)), V0 e JF& , Vφ e Diff(M) .

Proo/. Since /iH>Aφ is linear and satisfies (h*)φ = (hφ)* there is a unique ̂
morphism α(φ) of Γ(0) into itself such that α(φ) [1] = i and α(φ) [A] = hφ,
It is not very hard to see that α(IdM) = IdΓ(^} and that a(φί ° φ2) = α(<Pι) ° ^(^2)?
Vφ1 ? φ2 e Diff(M). Remembering that, for any diffeormorphism φ, the mapping
h\->hφ is continuous for the usual topology of Q)\ it follows that if π is a matrix
representation of Ύ(β) with coefficients in & then the same is true for π°α(φ),
Vφ e Diff(M). This implies that α(φ) is continuous for the topology &~ΓQI (see
Section 2) and therefore α(φ) has a unique continuous extension ά(φ) which is
a *-homomorphism of £0(T(3ι\Γ2l) into itself. By uniqueness we have:

ά(IdM) - Id^ ( τ ( Φ ) ϊ / / ) and α(φ! ° φ2) - ά(φi) ° ά(φ2), Vφ1 ? φ2 e Diff(M) .

Let x be an arbitrary element of 23^(7^), Γ^/) and let φ be an element of
Diff(M). Then, for any peΓ®,, \\πp(*(φ)(x))\\ ^ sup ||πp,(x)|| = \\x\\; So, *(φ)(x)

'

Let α(φ) be the restriction of ά(φ) to 23(M). Then α(φ)23(0) = 33(φ($)) follows
from the definitions, and φί-»α(φ) satisfies all the conditions stated in the pro-
position. The uniqueness of α follows from the fact that the {f(h)} generate a
dense subalgebra of 23 (M) and that an automorphism of 23(M) is continuous
(for the norm topology). Π

Remark 8. Up to now, nothing is changed if we replace M by an arbitrary
(finite dimensional C°°) differentiable manifold.

Let a be an element of M and let ta the corresponding translation (ίαeDiff(M)).
Then we simply write ha instead of hta to denote the function χκ>/z(χ — a) and
similarly, α(ία) will simply be denoted by αfl(e Aut(23(M))).

Let Sl and S2 be two subsets of M Then we say that SΊ and S2 are space-like
separated or that S1 is space-like separated with respect to S2 iff. (xί — X2,x1—x2)<0
(strict), VXi e S1 and Vx2 e S2.

B. Quantum Field with Quasi-analytic Vacuum

Let S be a symmetric operator in a Hubert space § and let Ω e § be a vector
which belongs to P) dom(5") [dom(^4) denotes the domain of an operator A

By diffeomorphism, we mean here, a bijection which is C°° and which has a C°° inverse.
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acting in §]. According to Nussbaum [15], we say that Ω is a quasi-analytic
vector for S iff. Ω is such that

(27) f ||S"Ω|Γ* = °o.
n=l

An analytic vector for S, [16], is, of course, a quasi-analytic vector for S, but the
converse proposition is not true. Let us state a theorem of Nussbaum [15]
(Theorem 2 in that paper).

Nussbaum's Theorem A. Let Shea closed symmetric operator in a Hilbert space
§. Then S is self-adjoint if and only if S has a total set of quasi-analytic vectors.

In other words, this theorem is Nelson's theorem [16], where "analytic
vectors" is replaced by "quasi-analytic" "vectors".

Another theorem of Nussbaum (Theorem 5 of Ref. [15]) will be applied in this
section in the following form.

Nussbaum's Theorem B. Let S and T be symmetric operators in a Hilbert space
§ and let D be the set of all vectors in § which are quasi-analytic for both S and T
and which are in the domain of the operators τnSm,SmTn, for n, m= 1,2, ... and
such that (TnSm-SmTn)D = Q, V r c , w ^ l . // D is dense in §, then S and T are
essentially selfadjoint and the spectral resolutions of their closures commute.

Let A be an operator in the Hilbert space § and assume that dom(^4) is dense
in §. Then we denote the adjoint of A by A+. Let D be a dense subspace of § and
let <f *(D) be the set of all operators in ί>, A, such that we have:

(28) dom(A) = D,dom(A + )^>D and

$*(D) is a *-algebra (with unit) if we equip it with the involution defined by

(29)

where ϊ D means the restriction to D.
Now, we consider a scalar neutral field, A(h\ satisfying the usual assumptions

[17]. Namely, we have a strongly continuous unitary representation of the trans-
lation group in the Hilbert space §, M 3 a\-> U(a) = j ei(p'a)dE(p) (by Stone theo-

M
rem), a dense subspace D of § such that U(a)D cD.Vae 'M, and a linear mapping

of &(M) into <$*(D) such that
a) A(h*) = A(h)* in g*(D\ Vh e ®(M\
b) U(a)A(h\ [/(α)'1 = A(ha\ V/z e 0, where ha(x) = h(x - a\
c) Supp(dE(p))c V+ = {p\p° ^0, (p,p)^0),
d) 3ί2eDwith U(a)Ω = Ω, VαeM,
e) D is the linear hull of A(h^ ... A(hn)Ω, rc^O where the hk run over 9(M\
f) (^(Λi) A(Λ2) - A(h2)A(hJ) = 0, V/z l 5 h2eD such that (x - y, x - y) < 0

) and Vy eSupp(/z2) .
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a) is the hermiticity condition, b) is the translation invariance, c) is the spec-
trum condition, d) is the existence of a "vacuum" Ώ, e) is the cyclicity of the vacuum
Ω -f a specification of the domain D, ί) is the local commutativity.

A is a linear mapping of 3) into the *-algebra with unit <ί*(D) such that
A(h*) = A(h)*, V/ze^. It follows that (see Section 4) there is a unique *-homo-
morphism again denoted by A from Ύ(β} into <ί*(D) such that A(ί) = 1 and which
extends A \β is a subspace of the *-algebra T(^)]. Then, e) may be written in
the form D = A(T(S>))Ω. Furthermore, as well known [6,17], everything is deter-
mined up to a unitary by the knowledge of the positive linear form 2B on T(® (M))
defined by:

(30) 2B(/ί!(x) --• ®hn) = (Ω\A(hί)...A(hn)Ω), V/z fee^(M), V r c ^ O .

Theorem 6. Let A be a field theory satisfying the assumption a) to ί) (above).
Suppose that the vacuum Ω is a quasi-analytic vector for each A(h\ V/z = h* e @(M).
Then we have:

a) Mh = h* e 2(M\ A(h) is essentially self-adjoint and if hί = h* and h2 — h* are
in 2(M) and have space-like separated supports then the spectral resolutions of
A(h^ and A(h2) commute.

b) The m(Γ@>)-problem for 2B is determined on the quasi-localizable C*-algebra
23(M) (C 33(7X0), /V)) and we have:

VΛ,...Jπe<ί? ( ( ) )θR), V Λ ^ Λ * . . . ,Λ π = Λ*

and where ω is the unique positive linear form on 23 (M) obtained by restriction to
23 (M) of a solution of the m(Γ@f)-problem for 2B.

c) The corresponding (unique) representation π of 23 (M) in §> such that
π(f(h)) = f(A(h}\ V/e ^(0)(1R) and V/z - Λ* e 0(M), satisfies:

π(αβ(x))= C/(α)π(x) ^(α)'1 V α e M .

Vxe.S(M) w/z^rβ JR(ί?) is the von Neumann algebra generated by the spectral
resolutions of the family A(h) with h = h* e^(M) such that supp(h)C&.

Proof, a) The proof of a) is the same that the proof given by Borchers and
Zimmermann in the case of an analytic vacuum [4] except that Nelson's theorem
has to be replaced by Nussbaum's Theorem A. Here we shall directly use Nuss-
baum's Theorem B combined with Reeh-Schlieder theorem [18]. Let hί= h*E&
and h2 = h%E@ be such that ^ e Supp^) and x2eSupp(/ι2) imply (xi — x2,
xι —χ2)<^ and let Θ be a no empty open subset of M which is space-like sepa-
rated with respect to Supp^JuSupp^). Then the linear hull D((9)cD of the
vectors A(h() ... A(h'n)Ω, n— 1,2, 3, ... where the h'k are functions of 2(M) with

5 As usual if S is self-adjoint (S = S + \ f(S) is defined by /(S)= \f(t)dE(f) where E(t) is the
spectral resolution of S.
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supports in &, is dense in § (by Reeh-Schlieder theorem). We have for α = 1 or α = 2 :

M(Aί) ... A(hf

n}Ω\\2 = (A(h[] ... A(h'n}Ω\A(h.}2mA(h'l) ... A(hn)Ω)

= (A(h'*) ... A(h[*)A(h[) ...

where we used A* == Aα, assumptions a) and f) and Schwartz inequality (j£ = \\A(K*)...
A(h'?)A(h'?)...A(h'n)Ω\\). In the same way we have more generally:

\\A(ha)
mΦ\\2^K(Φ). M(AJ 2 w Ω||,forα = l o r α = 2, VΦeD(0).

Therefore, VΦ e D((9\ we have for α = 1 or α = 2:

X M(Aα)" Φ|| -̂  Cte x X \\A(hJ2nΩ\\ ~1/2n = oo ,
n n

since the sequence un= | |y4(Aα)wΩ||1 / w is an increasing positive sequence (and
therefore Σw" 1 = oooΣw^1 = oo). It follows that /)($) is a dense set (in §) of
quasi-analytic vectors for both ^(Aj) and A(h2) and, since D(^)Cί) and since
supp(AA) and supp(A2) are space-like separated, D(@)Cdom(A(h1)

nA(h2)
m),

D(Θ)cdom(A(h2)
mA(h1)

n) and (A(h^)nA(h2T - A(h2)
mA(hv)

n}D(Θ) = ̂  V n , m ^ l ;
so, applying Nussbaum's Theorem B, we immediatly obtain the statement a) of
the theorem.

b) Let ω1 be an arbitrary solution of the m(Γ^,)-problem for $B, let (πωι,$ωι,Ωωι)
be the cyclic *-representation πωι of 3J(T(0), Γ^J in the Hubert space §ωι with
cyclic vector Ωωι associated with ω! by G.N.S. construction and let Ψωi be defined
as in the Proposition 3. Then A(x)Ωt-*Ψωι(x) defines an isomorphism of the
separated prehilbertian space A(T(9))Ω on Ψωι(T(&)) (by Proposition 3). There-
fore, we may identify § with the closure of Ψωι(T(@)) in §ωι in such a way that
we have :

ίA(x)Ω=Ψωι(x)9

|so, Ω = Ωωι.

With these identifications, we have:

(32) πωι(x)A(y)Ω = Ψωι(xy) , Vx 6

Let Φ be a bounded open subset of M(& e ^b) and let (P7 be any no empty open
subset of M which is space-like separated with respect to (9. If A = A* e 2 has his
support in 0, then any Φ e D(0') is an analytic vector for A(h). This means that
the positive linear form on <C[X] defined by P(J^)κ>(Φ|P(yl(A))Φ) satisfies the
condition of Carleman's theorem (see Section 5), so the classical (Hamburger's)
moment problem for this positive linear form on <C[X] is determined. Remem-
bering that if μ is a bounded measure on IR which is solution of a determined
Hamburger's problem, then the polynomials are dense in L2(dμ); it follows that
{πωι(/(A))Φ|/e#(0)(IR)} is a dense subspace of the closure of {A(P(h))Φ\P(X)
eC[Z]} in §. This implies that πωι(/(A))ϊ§ is unique and that πωι(/(A))Sc§,

V/6^(0)(IR) [since D(&') is dense in § and πωι(/(A)) is bounded]. Furthermore,
A (A) is essentially self adjoint on D(0') so we must have: πωι(f(h)) = f(A(h)).
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It follows that πωι(x) |"§ is unique for any x in S3(M), (23(M) is generated by
the f(h))9 and is a bounded operator in J5f (§). This implies that the restriction ω
of ω1 to 23 (M) is unique and we have:

= (Ω\f1(A(h1))...fn(A(hn))Ω), Mhk = h*ε®, V

c) The last part of the theorem follows immediately from above and from the
fact that if h is an arbitrary real function of 2(M\ (h = h*) then the spectral reso-
lutions of A(h) and A(ha), E(λ) and Ea(λ\ must be connected by:

Ea(λ)=U(a)E(λ)U(aΓ1, (VαeM). D

Remark 9. a) The choice of 2 as space of test functions and Γ®, as directed
set of C*-semi-norms on Ύ(β} is not essential. Other choices work as well. How-
ever the Proposition 5 must be slightly modified.

b) On most *-algebras (with units) generated by fields operators there are no
C*-semi-norms at all. Nevertheless, the Theorem 6 shows that the non-com-
mutative moment problem, lifted to the tensor algebra, gives the local rings (at
least, for the free field)6.

10. Conclusion

In this paper we give the formulation of a generalization of the classical
moment problem on *-algebras (the m-problem). In a forthcoming paper we shall
describe (and apply) some important properties of this construction. In particular
we shall deal with the connexion between the m-problem and self-adjointeness
properties of operators in Hubert space.

There exist other generalizations of the classical moment problem on ^alge-
bras. For instance, the problem of integral decomposition of states on *-algebras
is a very natural generalization of the classical moment problem. A recent work
by Borchers and Yngvason deals with this problem [19]. In this paper, it is the
measure itself which is replaced by something else (namely a positive linear from
on a suitable C*-algebra). At this point, it is worth noticing that Segal gave a non-
commutative generalization of integration theory in reference [20]. However, the
positive linear forms ω on the C*-algebra 33(21) which are solutions of m-problems
are generally not central forms (or traces) on 95(91); so (23(21), ω) is not an inte-
gration algebra in the sense of reference [21] when ω is a solution of some
m-problem on 21. There exist other (distinct) non-commutative problems of
moments; for instance, in Ref. [22], a "quantum problem of moments" is intro-
duced in order to study the representations of the *-algebra generated by Heisen-
berg canonical commutation relations (= the envelopping algebra of the Heisen-
berg Lie algebra).

This remark has been suggested by a comment made by R. T. Powers (private communication).
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The whole construction given in this paper is based on the properties of
C*-semi-norms. It is worth noticing that, in Ref. [23], Borchers had shown that
the properties of the continuous C*-semi-norms on the algebra of test functions
for quantum fields may be used to prove various usefull results.

Let us end this paper with some remarks on the "localizable systems" which
represent the quasi-localizable C*-algebra 23(M) (this situation may be easily
generalized). According to the analysis of Haag and Kastler [24], the corre-
sponding "algebraic systems" (= class of physically equivalent systems) are in
one to one correspondance with primitive ideals of S(M). On the other hand, if
P(33(M)) denotes the set of pure states on 2J(M) equipped with the weak topology
and if Prim (23 (M)) denotes the set of primitive ideals of 23 (M) equipped with
Jacobson topology, then the canonical mapping of P(23(M)) on Prim(23 (M)) is
continuous and open [8]. It follows that the Jacobson topology has something
to do with the notion of approximation of an algebraic system by another algebraic
system. Notice also that if 3e Prim (23 (M)), the corresponding algebraic system
is translation invariant if and only if. 3 is translation invariant; it is a local sys-
tem if and only if 3 contains xy — yx whenever x e 23($) and y e 23($') where (9
and & are space-like separated bounded open regions.
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