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Abstract. A (non-commutative) generalization of the classical moment problem is formulated on
arbitrary *-algebras with units. This is used to produce a C*-algebra associated with the space of test
functions for quantum fields. This C*-algebra plays a role in theories of bounded localized observ-
ables in Hilbert space which is similar to that of the space of test functions in quantum field theories
(namely it is represented in Hilbert space). The case of local quantum fields which satisfy a slight
generalization of the growth condition is investigated.

1. Introduction and Notations

This paper deals with a sort of non-commutative generalization of measure
theory and of the classical moment problem on arbitrary *-algebras. The con-
nexion between the classical moment problem and the hermitian representations
(in the sense of Powers [1]) of the algebras of polynomials is well known. The
generalization given here has some similar connexions with hermitian represen-
tations of *-algebras.

In the usual one dimensional classical moment problem [2, 3], one starts with
a sequence of numbers S, (n=0) and a closed subset S of R and one asks the
following question: Is there a positive measure u supported by S such that

.= [t"du(r), forany integer n=0?

Remembering that there is a bijection (S,)—@s,) from C™ on the set of all the
linear forms on the *-algebra C[X] of complex polynomials with respect to an
indeterminate X,

d)(sn)(zaﬂXn):ZanSn’ vzanX"EC[X].

The classical moment problem may be put in the following form. Let ¢ be a
linear form on C[X] and S be a closed subset of R, is there a positive measure u
on S such that,

d(P(X)= [ P(du(t), YP(X)eC[X]?

In the generalization given in this paper: C[X] is replaced by an arbitrary
*-algebra with unit 2, ¢ is a linear form on U, u is replaced by a positive linear
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form on an adapted C*-algebra (associated with ) and we give a substitute for
the above integration formula. Of course a main part of this paper deals with the
construction (and the description) of various auxiliary spaces and algebras needed
for the formulation of the problem. This part is possibly of some interest in itself
since it describes a sort of non-commutative functional analysis. Roughly speaking,
these spaces are generated by an abstract formulation of continuous functions of
hermitian elements of 2.

The first step needed to understand the construction is to remark that all the
concepts which enter in the formulation of the classical moment problem may be
constructed in a purely algebraic way from the algebra of the polynomials C[ X].
Indeed, the Stone-Weierstrass theorem implies that the polynomials are dense in
the C*-algebra of all continuous functions on a compact subset of R (identified
with the set of all characters on €[X]). On the other hand, the sup(|.[) over
compact subsets of R are exactly all the C*-semi-norms on the *-algebra C[X].
It follows, for instance, that the *-algebra of all continuous functions on IR equipped
with the topology of compact convergence may be identified with the completion
of C[X] for the topology (locally convex) generated by all its C*-semi-norms.
If we are interested in the continuous functions on some closed real subset S, it
is sufficient to select the corresponding directed set of C*-semi-norms. Then, it
is not very hard to construct positive continuous functions, polynomially bounded
continuous functions, continuous functions vanishing at infinity, positive linear
forms on polynomially bounded continuous functions (= rapidly decreasing
positive measures), etc. .... It is the direct generalization of this algebraic con-
struction that we describe in this paper. Then, we use it to produce a C*-algebra
associated with the space of test functions of quantum field theory which is,
roughly speaking, generated by an “abstract formulation” of continuous functions
vanishing at infinity of “general field variables”

In Section 2 we study the completions of *-algebras for locally convex to-
pologies generated by C*-semi-norms. Besides the fact that we want to generalize
the classical moment problem with given supports, there is another reason to
consider sets of C*-semi-norms (instead of all C*-semi-norms). Namely that, in
a forthcoming paper we shall be interested in topological *-algebras, and then it
is natural to restrict our attention on continuous C*-semi-norms.

In Section 3, we introduce the notions of positivity (strong positivity) which
are relevant for the problem and we describe an extension theorem for the linear
forms which satisfy these strong positivity conditions. Finally, it is pointed out
that there are *-algebras where no non-trivial strongly positive linear form exists
at all. However, any *-algebra with unit is a quotient of a tensor algebra over an
appropriate involutive space and it is proved in Section 4 that any positive linear
form on a tensor algebra over an involutive space is strongly positive so one may
always “lift” the problem to an appropriate tensor algebra.

In Section 5, we identify the notions introduced in the Sections 2 and 3 in the
case when our *-algebra is a polynomials algebra and we discuss some aspects
of the classical moment problem. In connexion with this, we prove that any
positive linear form on the algebra of all polynomially bounded continuous func-
tions on IR” is a rapidly decreasing measure. This result is certainly a classical
one; we give the proof of it just because we will use it very currently in what follows.
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In Section 6, we describe the functional calculus on the completions of *-alge-
bras for locally convex topologies generated by C*-semi-norms. We define the
corresponding associated C*-algebras (they are generated by the continuous
functions vanishing at infinity of the hermitian elements of our *-algebras).

In Section 7, we give the formulation of our generalization of the classical
moment problem. It is worth noticing here that this formulation has been sug-
gested to us by the spectal theorem for self-adjoint operators in Hilbert space.

In the end of Section 7, and in Section §, we begin the study of this moment
problem.

In Section 9, we introduce a C*-algebra associated with the test functions for
quantum fields; we call it the quasi-localizable C*-algebra. For any bounded
open subset @ in space-time, we consider the C*-subalgebra associated with the
test functions with supports in @ and we define the localizable algebra as the
*-algebra generated by these C*-algebras (its norm-closure is the quasi-localizable
C*-algebra). We show that there is a group-homomorphism from the group of
difftfomorphisms of space-time into the group of automorphisms of the localizable
algebra and that the corresponding automorphisms permute the C*-algebras
associated with the bounded open subsets of space-time. The case of a local
quantum (neutral scalar) field with a quasi-analytic vacuum is investigated. We
show that the result of Borchers and Zimmermann remains true for this slight
extension of the growth condition [4]. Moreover, (and this is the important point)
in this case we show that the moment problem for the Wightman functional is
determined on the localizable algebra and that the corresponding representation
of the localizable algebra generates the local rings associated to the field.

Let us say a few words on our notations. In this paper, an involutive vector
space is a complex vector space equipped with an anti-linear involution. A
*-algebra is a complex associative algebra A equipped with an antilinear involu-
tion x+x* such that (xy)* =y*x* for any x,ye . Such an algebra is, in a
natural way, a preordered vector space [5] with positive cone A" = convex hull
of the set {x*x|x e A}. Therefore, a positive linear form ¢ on A is defined to be
a linear form on 2 such that ¢(x*x) =0 for any element x of 2.

Let U be a *-algebra with a unit, 14, and let ¢ be a positive linear form on 2.
The set 3, = {x|x e Wand ¢(x* x) =0} is a left ideal in A. The positive sesquilinear
form (x, y)¢(x*y)' pass to the quotient from U to A/T, and we denote the
corresponding Hausdorff prehilbertian space by D,. Let $, be the Hilbert space
obtained by completion of D, and let ¥, be the canonical mapping of 2 in §,
(on DyC$H,). Let m, be the cyclic *-representation [1] of A in $, with dense
domain D,, and cyclic vector Q, =¥, (1) defined by: m,(x) ¥ ,(y) = ¥ 4(x ).

Then (n,, $y4, Dy, 24)is unique up to unitary equivalence under the conditions:

(Qy17,()2,) = (x) VxeA, D,=m,(A)Q,=dom(r,).

We refer to this construction as Gelfand-Naimark-Segal construction (G.N.S.
construction), [6].

We use the Hahn-Banach theorem in the following form (see Dunford and
Schwartz, p. 62, [7]).

! We use the physicist convention for sesquilinear form (linearity in the right variable!).
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Let the realfunction p on the real vector space E satisfy

pix+y)=p(x)+p(y), Vx,yeE
plex)=¢p(x), VxeE and Vp=0.

Let ¢ be a (real) linear form on a subspace M of E with ¢(x) <p(x), Vxe M.
Then there is a (real) linear form ¢ on E for which ¢ (x) = ¢(x), Vxe M; ¢(x) <p(x),
VxeE.

Let A be a *-algebra with a unit. A C*-semi-norm on 2 is a semi-norm p for
which p(xy) < p(x) p(y), ¥x, y € U; p(x*x) = p(x)?, Vx e A p(1) = 1.

2. Topologies Generated by C*-Semi-Norms on *-Algebras

Let A be a *-algebra with a unit, 1€ A, and let I" be a directed set of C*-semi-
norms on U such that the locally convex topology on U generated by I, I, is
a Hausdorff topology (in other words: p(x)=0, Ype '=>x=0).

The involution of A, x+x*, is I -continuous and the product of A is jointly
I r-continuous [continuous from (2, I;) x (A, ;) into (A, I)]. It follows that
the completion of U for 7} is canonically a locally convex *-algebra with con-
tinuous involution and jointly continuous product; this complete topological
*-algebra will be denoted by .7 (2, I') or simply by .« when no confusion arises.

Let p, be a C*-semi-norm on A; p, induces a norm on A/p,*(0) and the
Banach space obtained by completion is canonically a C*-algebra which will be
denoted by B,,,. If p, is 7 -continuous then there is a unique continuous *-homo-
morphism 7, from o/ into B, which is an extension of the canonical projection
from A on A/p, *(0) (m,, is in fact surjective as we shall see below). Since I' is
directed, for any J -continuous C*-semi-norm p,, there is a positive constant K
and a C*-semi-norm pel such that: py(x)<Kp(x), Vxe . The canonical
mapping, 7, ,:8,—B,, is a *-homomorphism with dense image. It follows
(since B, and B, are C*-algebras) that =, , is norm-decreasing and surjective:
1750, O = N1 and T, p(B,) = B,,.. This implies that we have: po(x) < p(x), Vx e U

The mapping x+>(7,(x)),.r from .o/ into the locally convex *-algebra [[B,
pel

is a topological *-isomorphism from ./ on its image (here and in the followmg
lemma B, denotes the underlying normable space of B,). We may identify .o/
and its image under this mapping; with this convention we have:

Lemma 1. </ is the projective limit of the family (B ,),.r with respect to the
mappings n, ,» (pel, p'e I’ and p <p’). In other words, </ is the closed subspace
of the topological product || B, defined by:

pel’
lim(B,) = {(x,)per| X, € B, X, =7, (x,) pp' in T}
Proof. The proof of this lemma is standard [5].
Let us first remark that we have:
Ty =Ty py° Tpys Vpi,,p, €I’ with p, =<p,
{nm,ps =T, p° Wprpss VPP, P3€l with p <p,<p;.

It follows that we have: o/ C lirp(%p).

1)
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Conversely, let (x,),.r be an element of lirp (8B,). Consider the family (S, .)per.e> 0
of subset in .« defined by:

Spe=m, ({ylyeB, and [y—x,[=<e}).

psé

These subsets are not empty since n,(.2/) is dense in B, Vp e I. We have

S, NS

D1, 91 D2,€2

DSpeﬂ vpzplapb V8S81,82.

Furthermore, we have:Vpe I, Ve >0, S, ,, — SI, o2 C Ve ={x|xe s/ and p(x) Z¢}.
It follows that (S, ,) is a Cauchy filter base in .o/ Wthh converges to an x € &/
since ./ is complete. By construction we have 7,(x) = x,, Vp € I, 50 X = (X,) jer € o.

O

Remark 1. It follows from above that the set I of all Z;-continuous C*-semi-
norms on U is directed and that in all the discussion we may replace I' by I or
by any cofinal subset of I In particular we have: «/(U, ') =/ (A, I'") for any
cofinal subset I in I’

Lemma 2. Let x be an element of of; then x has an inverse in </ if and only if,
for any pe I, n,(x) has an inverse in B,

Proof. Suppose that x € .o/ has an inverse x ! € .o/; then np(x‘l) is clearly an
inverse for m,(x) € B,,.

Conversely, suppose that x € o7 is such that 7,(x) has an inverse 7rp(x)_1 €B,,
Vpe I'; then (m,(x) '), is an inverse of x in [ [ B,. On the other hand, if p;, p, € I’

pel

satisfy p; <p,, we have: [by (1) and since © is @ homomorphism]

pP1,p2
ﬂpt Pz(npz(x)_l) ’ 7z:lil(x) p1 pz(ﬂ) ]1

Pl(x) npl Pz(npz(x) ) Pl Pz(ﬂ) ﬂ-

and therefore: =, , (n,,(x)"")=m, (x)"". Applying Lemma 1, it follows that
x P =(m,(x) pere O

It follows from this lemma that if x € <, the spectrum of x in o7, Sp(x), is the
union of the spectrums of 7,(x) in B, Sp(7,(x)), when p runs over I

) Sp(x)= | Sp(m,(x)), Vxe..

pel
In particular, if h € .o is hermitian (h* = h), its spectrum is real: Sp(h) C R, Vhe .o/~

Lemma 3. Let h be an element of of. The following conditions are equivalent :

a) h=x? with x=x* € ¢,

b) h=x*x with x€ o,

c) Sp(h)CR* ={o|ee R and ¢ 20},

d) n,(hyeB,, VpeT, where B, denotes the set of all the positive elements in
the C*-algebra B, [8].

Moreover, the set o/ of all the he </ satisfying these conditions is a closed
convex cone in o/ and we have: of ¥ n(—.o/*)={0}.

Proof. a)=>b) is obvious; b)=-d) since m, is a *-homomorphism; c)=-d)
follows from (2).
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Suppose that d) is satisfied. Then, Vp e I, there is a unique |/7,(h) e B, such
|/7,(h)* =m,(h), [9]. If we have p,,p,el with p, <p,, then we have:

n,, (M) e B, and (n,, ,,()/7,,(W)* =7, ,,(7,,(W)=n, (h), so we have:

)=1]/m,,(h), Vp, < p, € I. This implies, by Lemma 1, that

Vh=(/7,0),er

is an element of .« and we have a) with x =]/E.
B, is a closed convex cone in B, with B, n(—B,;)={0}, Vpe I It follows

that intersection of [| B, with the closed subspace .« C [ | B, is a closed convex
pel’ pel
proper cone in of; by d), this cone is just o/*. This completes the proof of

Lemma 3. [

Notice that we have o/*=./" —.o/* as for any *-algebra with a unit
(h=(1+%h)* — (1 —%h)*). Remembering that if B is a C*-algebra with positive
cone B*, for any hermitian he B, there is a unique decomposition h=h* —h~
with h* e B* and h* -h™ =0. If furthermore he B (h=h"), then for an arbi-
trary positive integer n, there is a unique "\/ﬁe B* such that ({/ﬁ)"=h; '{/ﬁ is
also denoted by h'/", [9]. Using this result, Lemma 1 and the fact that Ty, p, ATE
*-homomorphism, it is not difficult to prove the following lemma.

Lemma 4. a) Let h be an arbitrary hermitian element of /. Then there is a
unique decomposition h=h* —h~, withh* e /", h" e /™ and h* -h~ =0.

b) Let h be an element of /™ and let n be a positive integer. Then there is a
unique element of o/ ™, '{/ﬁ, such that (’{/ﬁ)” =h.

{/l_z will be also denoted by k'’ (for he o/ *). The proof is left to the reader
[proceed as in the proof of Lemma 2, or as in the proof d)=>a) in Lemma 3].
These results will be partially generalized in Section 6 (functional calculus).

Lemma 5. Let B, (or B (A, I')) be the set of all xe o/ such that p+—p(x)
= |n,(x)|l is bounded on I'. Then B, is a *-subalgebra of o/ with 1€ B, and it is
a C*-algebra for the norm x| x|| = sup(||m,(x)[|).

pel

Let x be an arbitrary element of /. Then, for any strictly positive number &,
1+ ex*x has an inverse in of and x,=x-(1+ex*x)"1 is in B,. Furthermore we
have in o :

lim(x,)=x.

Proof. B, is the intersection of .o/ with the C*-product of the family (B,),.r

of C*-algebrasin [ B,,.

pel’
Let x be an element of .«Z. 1+ ¢x* x has an inverse in <7, by Lemma 2. We have
7, (x )% = 7, (xF x) | = |7, (x* x - [1+ex*x]72)[, Vpe I. So we have: ||z, (x,)]?

1 1
<sup {———— = ——. It follows that x,e B, (IIXSII = ——) On the other
is0 L(1+et) 4¢ 2)/e

hand we have: Vpe I,
I7,(x) — 7, (e )l = [, (e - xx* x - [L+ex*x] ™ Sellm,()l|? - 17,(x)] -

It follows that linol[p(x—xg)] =0, VpeI'; this means ]in3x8=x in o [
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It follows that B, is dense in »/ and therefore, for any pe I, 7,(B,,) is dense
in B,. This implies 7,(B,,) =B, (since 7, is a *-homomorphism and B, and
B, are C*-algebras) for any pe I So , is surjective.

3. Strong Positivity for Linear Forms

Let W and I" be as in Section 2, and let us use the same notations (<7, 7 etc. ...).
Let A” (resp. /%), be the set of all the hermitian elements of 2, (resp. 7). A%,
(resp. /%), is a real linear subspace in 2, (resp. 27), and A =A™ — A", where
A" is the convex cone generated by {x*x|xe A}.

Let us define M#(A, I') C .o/* to be

(3) MAU, TN ={x|xeo/* and 3Ix;,x,e WA with x;—x, x—x,e4"}

this is a (real) linear subspace of .«/* containing 2* which will simply be denoted
by M* (when no confusion arises). The complex subspace of .« generated by I*
will be denoted by (A, I'), or simply by M; M = IN* + i M* C .o/. We have:

ACcWMcot, WM cH?.

Finally let 9™ be the cone MM .7 *. M is an ordered vector space with positive
cone M*, and,

@) M ={x|xex/" and 3IyeW with y—xeL*}.

Lemma 6. We have

a) x*-M" - xCM*, Vxe ¥,

b) x* - IM-yCIM, Vx,yeA,

c) Mi=Mm* —Mm*

d) B, CM.

Proof. y—xqe ot xoe " and ye U=x*(y —x,) xe L™, x*xoxe /™ and
x*yxe A, Vxe W. This proves a).

We have: M — M+ CM” Conversely, let x be an arbitrary element of M*;
then there are two elements of 2, x;,and x,, such thatx, — xe &/ " and x— x, e o/ *.
x; and x, are hermitian elements of U, so [1+%(x, +x,)]* are in A" CIM™.
We have: x=y, —y,, where, y; =3(x—x,) +[L+3(x; +x,)]1* €M™, and,
V, =73(x; —x)+ [L—§(x; + x,)]* € M*. This proves c).

b) is a consequence of a), ¢), and of the following polarization identity:

) 2x*zy=(x+y)*z(x+y)—ilx+iy)f* z(x +iy)+ (- 1) [x*zx +y*zy],

for any x, y and z in <.
Finally d) follows from the fact that we have: o1 — xe B}, Vx=x*e B _ and

Vo>|x|. O
Let us remark that the closure for the topology J of the positive cone A
of A is equal to AN/ and is also the closure of {x*x|xe A}.

Definition 1-A. Let ¢ be a linear form on 2. Then, ¢ will be called a I'-strongly
positive linear form on A if it is positive on the closure AT of A" for the
topology 7 (in ).
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Then, we have the following theorem.

Theorem 1. Let ¢ be a linear form on . Then the following conditions are
equivalent :

a) ¢ is I'-strongly positive (p(A s/ ") CRY),

b) There is a linear form & on M which is positive on M™ and such that we
have: ¢(x)=¢p(x), Vxe W (¢ is an extension of ¢).

Proof. b)=>a) since we have: AT 7T = Ao/ + =A~M*. Conversely suppose
that ¢ is positive on WM™ and define the following real function on the real
vector space M*:

(©) xep) = inf {p0))  (xeM.

y—xed*
This function satisfies:

plx; +x5) Sp(x) +p(x;),  Vxp, X, e M,
plex)=¢p(x), VxeM* and VoeR".

Furthermore we have: ¢(x)=p(x), Vx e A% The Hahn-Banach theorem implies
that there is a real linear form ¢, on the real vector space M7 satisfying ¢, (x)= p(x),
Vx e A% and ¢, (x) < p(x), Vx € M~ The latter inequality implies that ¢, is positive
on M™*. The the following equality deﬁnes a positive linear form d) on M which

extends ¢: $(x) = ¢1<x+x )+i¢1( - ),Vxe?m. O

Any linear form on .o/ defines by restriction a linear form on 9t and a linear
form on 2. Moreover these restrictions are injective on the topological dual .o/’
of o7 since A is dense in . It follows that .«#" may be identified with a linear
subspace of the algebraic dual 9t* of 9t or with a linear subspace of the algebraic
dual 2* of .

Proposition 1. Let ¥ (resp. A¥), denote the algebraic dual space of M (resp.
A), equipped with the weak topology o(I*, M) (resp. a(W*, A)).

a) The set of all the linear forms on M which are positive on M™ is the closure
in M* of the convex cone of all continuous positive linear forms on o/ (restricted
to M).

b) Let K be a set of I'-strongly positive linear forms on 2 which is closed and
bounded in A* (<>compact). Then the set K of all the positive linear forms on IMN
which have restrictions to W in K is a compact subset of W*. If K is convex, then
K is also convex.

Proof. a) M* =M/ is the set {x|xeIMM and ¢(x)=0, Vo e.o/' with ¢
positive}. Therefore, the set of all positive linear forms on I is the bipolar of the
set of the restrictions to M of positive continuous linear forms on 7. This last set
is a convex cone in 9t*. This implies a). N

b) The restriction to U is a continuous linear mapping of M into A, so K
is closed. K is obviously convex if K is convex. In the algebraic dual E* of a vector
space E, any weakly closed bounded subset is compact (E¥ is a closed subspace
of €F), so it remains to prove that K is bounded in Mi*. By positivity, linearity
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and by Lemma 6c¢), it is sufficient to show that for any element x of IN* the set

{w(x)|pe K} of positive numbers is bounded. But for any xe 9™, there is an

element x; of A" 7T with x; — xe M™, and, by the hypothesis K bounded in ¥,

{w(x,)} is bounded and therefore sukp {w(x)} = sup {p(x;)} = sup{p(x;)} <oo. [
e pekK ¢$ekK

Remark 2. The convex cone of all Z-continuous positive linear forms on A
is identical with the set of restrictions to 2 of all continuous positive linear forms
on 7; its closure in ¥ is the convex cone of all I'-strongly positive linear forms
on . Notice also that any algebraic dual E* is weakly complete, so the convex
cone of all I'-strongly positive linear forms on 2 is weakly complete. If ¢ is
I'-strongly positive, the set of all positive linear forms ¢ on I with ¢ =@ P oI is
weakly compact.

In what follows we shall need the generalization of the theory for arbitrary
*-algebra with unit, A, and arbitrary directed set of C*-semi-norms on 2, I". In
other words, 7 will not be supposed to be a Hausdorff topology on 2. Let us
say a few words on this general situation. Notice first that the closure of {0} for

T is the *-invariant two-sided ideal I, = () p~*(0). It follows that /I is again
pel’
a *-algebra with a unit. Any C*-semi-norm in I" (and any J -continuous C*-semi-

norm on 2A) induces a C*-semi-norm on A/J. The set of these C*-semi-norms
on /I will again be denoted by I'. This set of C*-semi-norms on /I generates
the quotient topology of 7 which will again be denoted by J and is now a
Hausdorff topology on /3. With the notations given above we define the
spaces o (U, T), MO, T), B (A, T), (U, T) etc. ... by:

AW = W3, T), WMA,T)=MA/I, ), etc....
and, we complete Definition 1-A by the following.

Definition 1-B. Let ¢ be a linear form on . Then we say that ¢ is a I'-strongly
positive linear form on A if ¢ is positive on the closure AF7T of A" for the
topology J7. If furthermore I is the set of all C*-semi-norms on 2, ¢ will simply
be called a strongly positive linear form on 2.

The following lemma is an obvious consequence of this definition.

Lemma 7. Let I'" be a directed set of C*-semi-norms on W such that . is
finer than I .. Then any I'-strongly positive linear form on U is I''-strongly positive
(and so strongly positive). Furthermore any strongly positive linear form on U is
a positive linear form on .

Remark 3. There are “many” *-algebras on which no non trivial C*-semi-
norm exists: so it may happen that the trivial linear form, x—0, is the only strongly
positive linear form. However, we are going to show, in the next section, that
every positive linear form on the tensor algebra T(E) over an involutive vector
space E is strongly positive. It is worth noticing that, if E is an involutive vector
space with dim(E) = 2, there are positive linear forms on the symmetric algebra
S(E) over E which are not strongly positive [in spite of the fact that the C*-semi-
norms on S(E) generate a Hausdorff locally convex topology on S(E)]. This
latter point is connected with the non solubility of Hamburger’s moment problem
for positive linear forms on C[X;, X,] (= S(C?)), [3, 10].
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Let - : A— A/J- be the canonical projection of A on W/JIy; 7y is a *-homo-
morphism with z(1)=1. For any I'-strongly positive linear form ¢ on /T,
¢ oy is a I-strongly positive linear form on U and, conversely, any I'-strongly
positive linear form on 2 is of this form for a unique I'-strongly positive linear
form ¢ on A/J;. Therefore all the results given above are easily translated in
results for the general situation (where J is not Hausdorff). So, as long as I' is
kept fixed, it is not a restriction to assume that g, is Hausdorff (replace 2 by
A/3;); We say in this case that I" separates 2L.

4. The Case of Tensor Algebras over Involutive Vector Spaces

Let E be an involutive vector space. There is a unique involution, x> x*, on
the tensor algebra T(E) over E such that it extends the involution of E, it is anti-
linear and satisfies:

(xy)y*=y*x*, Vx,yeT(E).

Equipped with this involution, T(E) is a *-algebra with a unit. Furthermore any
*-algebra with unit is (in a non unique way), a factor algebra of such a tensor
algebra by a two-sided *-invariant ideal. Therefore it is important to know what
happens when 2 is the tensor algebra over an involutive vector space E.

Let us define, as usual, an involution, f +f* in the dual E* of E by:

f*x)={f,x*), VxeE.

Let us recall that if o is a linear mapping from E into a *-algebra with unit
2, such that o, (x*) =0y (x)*, Vx e E; then there is a unique *-homomorphism o
from T(E) into U satisfying a()=1 and a(x)=0,(x), Vx e E. In particular if
(fumdn.m=1.....n 1s a finite family of linear forms on E satisfying f,% = f,,,, then there
is a unique *-homomorphism, 7, from T(E) into the C*-algebra My(C) of all com-

Fir(9) o fun ()

7 will be called a matrix representation and the f,,, its coefficients. Clearly if n is
a matrix representation then y+ |[z(y)|| is a C*-semi-norm on T(E).

plex N x N matrices such that n(l)=1 and =(x)= VxeE;

Theorem 2. Let E be an involutive vector space, let E' be a *-invariant subspace
of the (algebraic) dual space of E and let I'y, be the set of all C*-semi-norms on
T(E) y+|m(y)|l where m runs over the matrix representations of T(E) with coef-
ficients in E'. Suppose that E' separates E; then any positive linear form on T(E)
is I'y.~strongly positive.

Proof. Let @ be a positive linear form on T(E) and let (n,, 9., 2,) be the
cyclic *-representation =, of T(E) in §,, with cyclic vector Q, associated with w
by G.N.S. construction.

For any finite set A,,...,h,, of hermitian linearly independent elements in E,
choose fi=f*, ....fu =/ in E such that {f,, h) =7, and let Py be the or-
thogonal projection on the finite dimensional subspace Hy of $,, spanned by the
vectors m,(hy,) ... m,(h; ) Q,, With K< N and j,e{l,2,...,M} (Vle{l,2,...,K}).
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Define n-m:N(x) for x e E by:

k=

M
niu ,,,,, hm;N(x): Z <ﬁ(, X>Pan(hk)PN5 VxeE.
k=1

"N is a linear mapping from E into Z(9,,) satisfying ¥ (x*) = z{":V(x)*. It
follows that there is a unique *-homomorphism ¥ from T(E) into the C*-algebra
2(9,) such that 7™ ¥1)=1 and 7®"(x) =nN(x), Vxe E. Hy is invariant by
7n®:¥(T(E)) and the corresponding representation in $y defines, for any hilbertian
basis in $Hy, a matrix representation with coefficients in E'. It follows that the
linear form x>, y(x) = (2,7 (x)Q,) is a I}-strongly positive linear form
on T(E). Furthermore, @, y(x) = w(x),

K=N
Vx= Y Zph ichi® - @by, (AyeC).
K=0

So Vxe T(E), 3(h), N as above such that w(x) agrees with w,. y(x). This implies
that w is I -strongly positive since the cone of all I'-strongly positive linear forms
on a *-algebra 2 is weakly closed in the dual space of A (for any directed set,
I, of C*-semi-norms on A). []

Except for the formulation this theorem was proved by Borchers [11] (see the
proof of I1. 3.8 in that paper).

Corollary 1. Let E be an involutive vector space. Then any positive linear form
on T(E) is strongly positive.

5. Algebras of Polynomials and the Classical Moment Problem

Let C[X,, ..., X,] denote the *-algebra of all complex polynomials with
respect to the indeterminates X, ..., X,. There is a bijection (x;, ..., X,)Xx,.....x)
from IR" onto the set of all characters? on C[X|, ..., X,] given by:

(7) X(Xl ..... xn)(P(Xl,...,Xn))=P(x1,...,xn), VP(XD"‘7Xn)EC[X19""Xn]'
Any C*-semi-norm on C[ X, ..., X,] is of the form

{P(Xl’ [RRE] Xn)l—_)pB(P(Xla caey ‘Xvn))‘_—(x1 Sup (lP(xl’ ...,Xn)l),

..... Xn)eB
for some closed bounded subset B of R" .

®)

Furthermore B+ pjy is an order preserving bijection from the directed set of all
compact subsets of IR” (ordered by inclusion) onto the directed set of all C*-semi-
norms on C[Xj,..., X,]; (remind that Stone-Weierstrass theorem implies that
polynomials are dense in the C*-algebra %(K) of all continuous functions on K
for any compact K CIR", and that, on the other hand, for any compact K CR” and
x € R"™\K, there is a continuous function from R" into [0, 1], f, with f(x)=1 and
f(K)={0}). We have: B={(xy,...,x,)|[P(xy, ..., x,)| < pp(P(X1, ..., X)),
VP(Xy, ..., X)) e C[Xy, ..., X,]}, for any compact subset B of R". The compact B

2 In this paper, a character on a *-algebra with unit 2 is a *-homomorphism (of *-algebras with
units) from A into C.
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will be called the support of the C*-semi-norm pp and, more generally, for any
directed set I of C*-semi-norms on C[ X/, ..., X,] we define the support of I to
be the closed set:

9) Supp(l)= U_Br = closure of the union of the supports of the elements of I".
pge

Let B be an arbitrary bounded subset of IR”, then we have:
pe(P(Xy, ..., X)) = iug(lP(X)l) = Su%(lP(x)I) =p(P(Xy, ..., X))

(If S is a subset of R”, § denotes its closure in R".)

We want now to identify the various things defined in Sections 2 and 3 in the
cases where A=C[X,,...,X,] and I'=T{ or I'=TY¥, where SCIR" and I'{",
I are defined by:

{ I = {pg| B runs over the finite subsets of S},

(10)
'Y’ = {pg| B runs over the bounded subsets of S} .

It is not difficult to show that we have:

A (C[X,, ..., X,], ['{) = CS5 equipped with the product topology,
MCLX,, ..., X,], [¥’) = all complex polynomially bounded functions
onS,
AT (CLXy, o, X1, T =(R7),

B, (CLX,, ..., X,,], I'$) = C*-algebra of all bounded complex functions
on S (equipped with the sup norm).

(11)

In order to solve the case I' =TI, let us remark that all the constructions
given in Sections 2 and 3 do only depend on the set I' of 7 -continuous C*-semi-
norms; Therefore, we may replace I' by any other directed set of C*-semi-norms
which is cofinal with respect to I' (< generates 7;; see Section 2). On the other
hand, we have: I'{) = I'{) = I'Y, where

(109 I'¥) = {pg| B runs over the compact subsets of S} .

With this in mind, it is easy to prove that we have:

A (C[X,, ..., X,], T¥)=%(S) equipped with the topology of compact
convergence .

MCLX,, ..., X,], I¥) = 2(5) = {polynomially bounded continuous
functions on S},

AT (CLXy, ..., X, IP)=%(S)" = {positive valued continuous functions
on S} .

B (C[X,,..., X, 1, T¥P)= (C*-algebra of bounded continuous complex

12)

functions on § equipped with the sup norm) ,
S

where %(S) denotes the set of all complex continuous functions on §.
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Let us remark that for any directed set of C*-semi-norms on C[ Xy, ..., X,], I,
there is a subset S of IR*, namely S = U Supp (p) (so S=Supp(I), such that

(13) Y =rechciY=rP

upp(I) *

In this sense, the two families I'® and I'¥) are extreme cases. We have:
Supp (I'Y”) =Supp(Iy”) =S.

It follows from (11) and (12) that a linear form, ¢, on C[X,, ..., X,] is I{"-
strongly positive if and only if it is positive on the polynomials Psuch that P(S) CR”"
and that ¢ is I'¥-strongly positive if and only if it is positive on the polynomials P
such that P(S)CIR*. However, we have: P(S)CIR*<P(S)CR" since R" is closed
in € and since (xy,...,x,)—P(xq, ..., x,) is continuous on R”, VP(Xy, ..., X,)
e C[ Xy, ..., X,]. This implies that I'-strong positivity only depends on Supp(I), i.e.

such that Supp(I')=Supp(I"), for ¢ e C[X,,..., X, ]* (=CN).

Let ¢ be a linear form on C[ X, ..., X,] and let S be a closed subset of R".
Then, the S-moment problem for ¢ is the following problem:
Is there a positive Radon measure, y, supported by S and such that
d(P(Xy, ..., X,)
= [ P(xy,...,x,)du(xy, ..., x,), VP(Xy, ..., X,)eC[Xy, ..., X;]?
N

{q,') is I'-strongly positive <>¢ is I''-strongly positive, if I" and I are

(14)

If the answer is yes, the S-moment problem for ¢ is said to be soluble and yu is
called a solution. If u is the unique solution, then the problem is said to be deter-
mined. It is said to be indetermined if there are several solutions. The main
solubility criterion is the following Riesz’ criterion.

Riesz’ Criterion. The S-moment problem for ¢ is soluble if and only if
d(P(Xy, ..., X,)) 20 for any P(Xy,...,X,)eC[X,, ..., X,] such that P(x,,...,x,)
=0, V(xq,...,x,)€S.

We know (from the above discussion) that this condition is equivalent to
I'P-strong positivity for ¢ [<I-strong positivity for Supp(I') = S]. Let us now
give a brief discussion of the proof of this criterion. Remark first, that the con-
dition is obviously necessary. Secondly, suppose that ¢ is I¥-strongly positive,
then, it follows from (12) and Theorem 1 that ¢ has an extension $ to 2(S) which
is positive on 2(S)* = 2(S)n¥(S)". Let u be the restriction of qb to the C*-algebra
%)(S) of all complex continuous functions on S vanishing at infinity,
(u= d)P%”(O)(S))  is a positive linear form on % y,(S) with u(1)=¢(1). So p is a
bounded positive Radon measure supported by S, (Supp(x) C S). The end of the
proof of Riesz’ criterion follows from the following lemma.

Lemma 8. Let y be a positive linear form on P(S) (where S is a closed subset
of R") and let u be its restriction to % o)(S). Then, any f e P(S) is u-integrable and
we have:

w(f)=£fdu, VfeZ(S).
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Proof. Let (y,) denote a sequence of continuous function on IR" with values in
[0, 1] and such that y,(x)=1if |x|| =k and y,(x)=01if | x|| =k + 1.
For any fe 2(S), .- f is u-integrable and f(x)= klim () - f(x), Vx eS8, and

Iz 1= 1f). On the other hand |y, f| = x| f]1s an increasing sequence of y-integrable
functions with sup (.| 1) = /1€ 2(S). It follows that p (x| /1) = |zl S1du=w (£,

(Vk=0), and therefore | f| is u-integrable and we have (Lebesgue’s theorem)
[1f1du=sup [z lfldp=w(f]), VfeZ(S).
This implies that f is also u-integrable and,
[ fdu=lim J . fdu.
We have:
() — [ f dul=1w([1 —xd NS w1 —2d 1D,

(by positivity of y). And, there is [for each fe 2(S)] a positive 4 and a positive
integer such that | f(x)] < A(1 + || x]|"), Vx € S. It follows that

( 1 )_ AL+ [ x]"?

[ — )] Sl =AML+ [ x]7) sup

p=nze \ LI/ 1+k

So, we have:

—0.

WU~ Dt dal S AT+ 151

This implies that
w(f)=lim [y fdp=[fdu V/e2(S). O

We recall that the IR"-moment problem for a linear form on C[ X, ..., X,], ¢,
is called Hamburger’s moment problem for ¢. It is well-known that if n=1, the
Hamburger’s moment problem is always soluble for a positive linear form on the
*-algebra C[X]. But since C[ X] is canonically isomorphic with T(C), this appears
as a specific case of Theorem 2 (the most trivial). On the other hand, there are
positive linear forms on C[ X, , X,] which are not positive on the polynomials which
define positive functions on R? (in other words there are positive linear forms on
C[X,, X,] which are not strongly positive); the Hamburger’s moment problem
is not soluble in these cases.

An important result which will be used in below is the following:

Carleman’s Theorem [12]. Let ¢ be a positive linear form on the *-algebra
C[X] such that
1

Y (X% " =o0,

n=1

then, the Hamburger moment problem for ¢ is determined.
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6. Functional Calculus and the C*-Algebras B(2, I')

Let again U be a *-algebra with unit (1e ), I" be a directed set of C*-semi-
norms on A and let us use the previous notations. Let S be a closed subset of R
and let 15 and Idg be the real functions on S defined by:

(15) lgx)=1, VxeS and Idg(x)=x, VxeS.

1g and Idg are elements of the *-algebra #2(S) of all continuous polynomially
bounded complex functions on S.

Theorem 3. Let h be a hermitian element of of and let S be a closed subset of R
which contains Sp(h). Then, there is a unique *-homomorphism, o, from P(S) into <f
such that a(1g) =1 and a(Idg) = h. Furthermore o is continuous if P(S) is equipped
with the topology of compact convergence and, if he U, then a(Z2(S))C M.

Proof. a) There is a unique *-homomorphism, «,, from the algebra of poly-
nomials C[X] into .o/ such that oy(1)=1 and oy(X)=h (remind that C[X] is
isomorphic with the tensor algebra over one dimensional involutive space).
Let p be an element of I', then p o o, is a C*-semi-norm on €[ X ] and the support of
pe g is the spectrum of 7, (h) in B, (remembering that if h, is a hermitian element
of a C*-algebra with a unit, 1, then the C*-subalgebra generated by 1 and 4, is
isomorphic with the C*-algebra of all continuous functions on the spectrum of 4,).
It follows that there is a unique *-homomorphism, &, from the *-algebra of all
polynomial functions on S (S>Sp(h) = | Sp(n,(h))) into o/ such that &(1g) =1,

pel

&(Idg) = h and that this *-homomorphism is continuous for the topology of com-
pact convergence on S. On the other hand, polynomial functions are dense in the
set of continuous functions on S, %(S), for the topology of compact convergence.
Therefore there is a unique continuous *-homomorphism & : €(S)— .« satisfying
%(1g) =1 and %(Idg) = h. The restriction o = | 2(S) has obviously all the proper-
ties mentionned in Theorem 3. It remains to show that « is the unique *-homo-
morphism from 2(S) into &/ satisfying a(lg) =1, a(Idg) = h.

b)® We know that o is unique on polynomial functions on S. It follows that
o is also unique on the *-algebra generated by the polynomial functions and the
inverses of polynomial functions inversible in 2(S). In particular we have: Y& >0,
YoeR

of[Ids—o1s] - [1s+e(ds— 1917 ") =(h—ol) - [+ e(h— o1)*]7",

and these elements are in the C*-algebra B, by Lemma 5. Since *-homo-
morphisms of C*-algebras are continuous and since the functions

t—o
e €Y

separate strongly S, [13] [and so generate the C*-algebra %,(S) by Stone-
Weierstrass], it follows that « is unique on the *-algebra generated by the C*-
algebra % ,(S) (of continuous functions vanishing at infinity on S) and the poly-
nomial functions. But this *-algebra is just 2(S); indeed f e 2(S)<f continuous

3 This proof of uniqueness has been suggested by H. Epstein.



240 M. Dubois-Violette

fo .. .
W 1S 1n (5(0)(5) and its

product with the polynomial (1 +t2)¥*1is f. O

and 3N, K with | f(0)| S K1 +t*)VVteSs, so tr

Lemma 9. Let h, S, a be as in Theorem 3.

a) If f is a bounded continuous function on S, then o(f) is in the C*-algebra ‘B .

b) a(%)(S)) is the C*-subalgebra of B, generated by the set {(h— 1)
[1+(h—e1Y’] '|eeR}.

Proof. Let p be an arbitrary element in I', let @ be as in the proof of Theorem 3
and let f'e 4(S). Then we have: 7, (x(f))= f(n,(h), Vpe I (in the C*-algebra B,
with the usual notation [8,97), and, ||z, («(f))| = Sup (| f(t)]). Part a) of the

teSp(np(h)
lemma follows from this and from the definition of B . Let us consider the
l—¢ . t—¢
& . e d
[F(—of fo); VteS, JgeR with 1T (—oF +0, an

ti—¢ I,—0
1+t —0) L+ (t, ~ )
%0)(S) is the C*-algebra generated by these functions (Stone-Weierstrass). On the
other hand, we know that a(f,)=(h— o1)- [1+ (h— ¢1)*]~ . This implies b). [J

Remark 5. Lemma 4 is not an obvious consequence of Theorem 3.

Definition 2. Let h, S, o be as in Theorem 3 and let @ be the unique continuous
extension of « to €(S). Then, we define f(h) for

fe€(S) by: f(y=a(f), (V/e%(S).

Notice that if (h, S,, «;) and (h, S,, a,) are as above and if S, D S,, then, by
uniqueness, we have:

functions t+

. It follows that

Vi, t, €S with t; #+t,, 30 € R with

fi)=(fi 1 S2) (), V11 €€(S)),

(where f; | S, is the restriction of f; to S,). So, Definition 2 is coherent.

Definition 3. Let 2 be a *-algebra with a unit and let I' be a directed set of
C*-semi-norms on 2.

a) If I' separates A, B(A, I') is defined to be the C*-subalgebra of B (A, I
generated by the set {h(1+h?)"*|heW and h=h*}. If I' does not separate 2,
we define B(A, I') to be B(A/I, I') (see Section 3 for the notations).

b) If I is the set of all C*-semi-norms on A. Then B(A, I') will be called the
C*-algebra associated with the *-algebra U and will simply be denoted by B().

c) If A is a topological *-algebra and if I' is the set of all continuous C*-semi-
norms on A, B(A, I') will be called the C*-algebra associated with the topological
*-algebra .

Notice that B() is associated with 2 equipped with its finest locally convex
topology. B(2, I') will simply be denoted by B, (when no confusion arises).

Let A be a *-algebra with a unit (1 e ). If p is a C*-semi-norm on A, the C*-
algebra obtained by completion of 2 /p~*(0) for the norm induced by p is denoted
by B,(A) (=B, in Section 2). Let I'; and I, be two directed sets of C*-semi-
norms on A and suppose that the locally convex topology 7, generated by Iy
is finer than the locally convex topology 77, generated by I',. Then the identity
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mapping of A is continuous from A equipped with 7. on A equipped with I, ;
therefore, it determines a continuous *-homomorphism 7np,  from (2, TI7)
into /(W I,). We have 7y, 1 (B (U, ) C B (A, I), but 7y, r (B (A, T7)) is
generally a strict C*-subalgebra of B_ (2, I',) (see the examples given in Section 5).

Proposition 2. Let A be a *-algebra with unit, let p be an arbitrary C*-semi-
norm on A and let I'y and T, be two directed sets of C*-semi-norms on U such that
Iy, is finer than Ir,. We have:

a) B(Y, {p})=B,(A),

b) 7, (B, I,)) =B, I).

Proof. For any hermitian element h of A/p~1(0) and for any &>0,
1
h,=h(l+eh*) 1= ﬁ(]/éh) (]14—(]/5}1)2)"1 is an element of B(Y, {p}); so we

have a), by Lemma 5. On the other hand, b) follows easily from Definition 3 and
from the fact that any *-homomorphism of C*-algebras with a dense image is a
surjective *-homomorphism. []

So, B(A, I') is a quotient C*-algebra of B(A).

In connexion with Definition 3, the following slight lemma is worth noticing.

Lemma 10. Let A be a C*-algebra with unit. Then the C*-algebra associated
with U considered as a *-algebra is identical with the C*-algebra associated with 2
considered as a topological *-algebra, and both are canonically identical with 2,

(B(A) = A).

Proof. For any C*-semi-norm on 2, p, the *-homomorphism 7, must be a
norm-decreasing surjective *-homomorphism of 2 on B,. Therefore, any C*-
semi-norm on 2 is continuous; this proves the first statement. The other part of

Lemma 10 follows from the fact that

h=lin(1)h(]1+8h2)‘1, Vh=h*eUA. J

It follows that any positive linear form on a C*-algebra with a unit is strongly
positive but this does not mean that I'-strong positivity has no interest in this case.
For instance, let 2 be an arbitrary *-algebra with unit and let .«Z(U) be o7 (2,
{all C*-semi-norms on 2A}), we have: B(A) C./(A). Let I' be a directed set of
C*-semi-norms on U; I" induces a directed set of C*-semi-norms on .o/ () and, by
restriction, a directed set of C*-semi-norms on B(A) which will again be denoted
by I'. Then it is not hard to see that we have:

(16) BU,T)=B(B(A), ) canonically .

7. A Generalization of Classical Moment Problem on *-Algebras

Let A be a *-algebra with a unit, (1), and let I" be a directed set of C*-semi-norms
on A. We suppose that I' separates U (otherwise replace A by A/I).

For any hermitian element of 21, , and for any positive linear form on B(, I),
o, there is a unique bounded positive Radon measure on R, y, ,,, such that

(17) o(f ()= [ f(Odp, 1),V [ € €.
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Morever, p, ,, is supported by the closure (in R), Sp-(h), of the spectrum in .7 (U, I')
of h, Spr(h):

(18) Supp (4, ,) CSpr(h) .

Indeed, by uniqueness in Theorem 3, f > f (h) must factorize as f +> f | s~ f (h)
[where f1— f | § is the restriction | §:2(R)— 2(S)], VS CR closed and such that
Spr(h)CS.

Definition 4. Let ¢ be a linear form on 2. Then, we define the m(I")-problem
for ¢ to be the following problem: Is there a positive linear form on B(U, I'), w,
such that

(W)= [tdp, (1), Vh=h* e A

If the answer is yes, we say that the problem is soluble and that w is a solution.

If I' is the set of all C*-semi-norms on A, the /m(I")-problem for ¢ will simply be
called the m-problem for ¢.

Let f be an arbitrary element of % )(IR); then, for any integer n =1, t f (t")
is also an element of (6(0)(IR). So, applying the definition (17) of 4, ,,, we find:

(19) (fB) =[S @) dp, o) =] f(O)dpm,o ).

On the other hand, if w is a solution of the (I)-problem for ¢ we have: w(1)
= [l pn, ol = fdp, (€)= ¢(1). It follows that if the /(I')-problem for ¢ is soluble
and if w is an arbitrary solution, we have:

(20) d(P(h)= [ P(t)dp, ,(t), Vh=h*e A and YP(X)eC[X].

In other words, 4, , is a solution of the classical moment problem for the linear
form on C[X] defined by: P(X)—¢(P(h)).
The generalization of Riesz’ criterion is given by the following theorem.

Theorem 4. Let ¢ be a linear form on W. Then, the m(I')-problem for ¢ is
soluble if and only if ¢ is a I'-strongly positive linear form on 2.

Proof. Suppose that the m(I")-problem for ¢ is soluble and let w be a solution.
Then, by (18), we have: Supp(u, ,)CR", Vhe Un /7 (A, T) (use Lemma 3);
So ¢p(h) =0, Vhe Un o+ (A, T') which means that ¢ is a I'-strongly positive
linear form on 2.

Conversely, suppose that ¢ is I'-strongly positive. Then, by Theorem 1, there
isa linear form on (A, I'), ¢, which is positive on M+ (A, I') = MU, oA (A, T)
and which is an extension of ¢. Let @ denotes the restriction of ¢ to B(W, I') and
let h be an arbitrary hermitian element of 2U. Then, w is a positive linear form on
B(W, I') and p, , is, by definition, the restriction to € ,(IR) of the positive linear
form on 9’(]1{) defmed by: f@(f (h)). Therefore, it follows from Lemma 8, that
we have: q’) =[f(Odw, ),V f € P(R), Yh=h*e WA. So w is a solution of
the m(I')- problem for ¢. [

Remark 6. a) Combined with (18) and (20), this theorem means that the
m(l)-problem for ¢ is soluble if and only if, for any hermitian element A of 2,
the Sp,(h)-moment problem for the linear form P(X)+¢(P(h)) on C[X] is soluble.

b) It should be clear that any solution of some 7 (I")-problem is a solution of
the m(I')-problem for a unique linear form on 2.
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¢) In the proof of the Theorem 4, we construct a solution of the m(I")-problem
for a I'-strongly positive linear form by restriction of a positive linear form on
(A, I'). It is not obvious that all the solutions are of this type.

Definition 4'. Let ¢ be a linear form on A. The m(I')-problem for ¢ is the
following problem. Is there a positive linear form w on B(2, I') such that
b=b*e B, T)and h—be o * (W, I') with he A imply ¢(h) = w(b)?

Theorem 5. Let ¢ be a linear form on U and let w be a positive linear form on
B(A, I'). Then w is solution of the m(I')-problem for ¢ if and only if there is a
positive linear form y on the ordered vector space (A, T) such that ¢ =y | A
and =1y B, T'). Then we have:

()= [ f(O)dp o),V f € PR) and Yh=h*eA.

So the m(I')-problem for ¢ is soluble if and only if ¢ is I'-strongly positive and any
solution is a solution of the m(I')-problem for ¢.

Proof. It is clear (from Definition 4') that if v is a positive linear form on
M, I), p | B(A, I') is solution of the m(I')-problem for y | A

Conversely, let w be a solution of the m(I')-problem for ¢; it follows from the
definition that we have:

wb)=pl)= Inf {()}, Vb=b"eBQALT).
h —_be fzi +
Applying again Hahn-Banach theorem (see the proof of Theorem 1), we find that

there is a real linear form, y,, on the real subspace 9* of MM which is an extension
of w [restricted to the hermitian elements of B(, I')] and satisfies:

PSP = Inf (S0}
h—xedt

. X+ x* . * -
It is not hard to see that x—y(x)=1y, 5 +iyp, 5 satisfies the
i

conditions of the theorem. []

The last statement in Theorem 5 (which is a direct consequence of lemma 8),
implies that  is in fact uniquely determined on the subspace of (2, I') spanned
by {f(Wlh=h*e¥, f e Z(R)}.

Let B(A, I'), be the topological dual space of the C*-algebra B(2, I') equipped
with the weak dual topology o(B(2L, I'), B(2, I'). The restriction to B(A, I') of
positive linear forms on IM(A, I') is weakly continuous. Therefore, it follows from
Proposition 1, that Theorem 5 has the following corollary.

Corollary 2. Let ¢ be a I'-strongly positive linear form on U; then, the set S, of
all the solutions of the m(I')-problem for ¢ is a weakly compact convex subset in
B, TY.

More generally, if K is a set of I'-strongly positive linear forms on U which is

closed and bounded in ¥, then the set Sg= | ) S, is compact in B(U, T'), (and
¢$eK
convex whenever K is convex).
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Let 9, (2, I') denotes the linear hull [in o/ (2, I')] of B2, I') - A. We have:
21 [N (2, I)T* - o (A, I') CM(A, T')

(where [Ro(A, I)]* is the set {x*|xe Ny (A, I')}) since B(A,I') is a subset of
MO, I) and since A- ML) - ACMARA, I') (Lemma 6b). It follows that
(x, y)—=p(x*y) is a positive sesquilinear form on Ny (A, I') x N, (A, I') for any
positive linear form p on (A, I'). Furthermore, for any element y of Ny (2, I'),
x—p(y* xy) is a positive linear form on B(A, I') so we have:

(22) pExExp < xp(*y)?E,  VxeBEALT), VyeR,(A D).

On the other hand, for any positive linear form x+—y(x) on M, I') and for
any y e U, x—p(y*xy) is again a positive linear form on M(A, I') (Lemma 6a).

Let us equip N, (2, I') with the locally convex topology generated by the
semi-norms x+p(x*x)* where 1 runs over the set of all positive linear forms on
I, I). It follows from the above discussion that (x, y)—>xy is a jointly continuous
bilinear mapping of B(W, I') x Ny (A, I') into It,(A, I') and that, for any ye A,
xxy is a continuous linear mapping of 9t,(2, I') into itself. Let us denote the
completion of N (A, I') by (W, I'), [remark that N (2, I') is a Hausdorff space].
We have, by continuity, a continuous bilinear mapping of B(2, I') x N(A, I') into
N, I') [again denoted by (x, y)r>xy for xe B(AU, I'), y e R(A, I')] and, for any
element z of A, a continuous linear mapping of (A, I') into itself [again denoted
by y+>yz for ye WA, IN)].

X1 (%20 y)=(x1 - x5)y, VX1, %, € B T), Vye R T)
(23) (V-z1)z2=y(2125), Vz;,2, € A, Vye RA,T)

YAz +A25)=A1yz1+ 2,925, VA, A €C, V2,2, e U, Vye N, T).
so M, T) is a left B(, I')-module and a right A-module. B(A, I') and A are
both subspaces of N(A, I').

Lemma 11. B, I') is a dense subspace of the space (A, I).

Proof. Let y be an arbitrary positive linear form on 9, I') and let w be its
restriction to B(2, I'). Then, w is solution of the m(I')-problem for the restriction
of p to A and we know (Theorem 5) that we have:

w(f ()= fO)duy o), ¥ feP®R) and Vh=h*e .

Let x be an arbitrary hermitian element of U and let x, be defined by

. -1
X, =X (]1 X ) for any integer n > 0. Then x,, € B(A, ') and p((x — x,,) (x — x,))
t 2
= (t - th/n) dp, ()—0. It follows that the set of all bermitian elements

of Wis in the closure of B(W, I') in N(W, I'). Therefore A is in the closure of B(A, I')
in WA, I') (since this closure is a linear subspace). This implies that B(A, I') - A
is also in the closure of B(, I') in N(A, I), [since (x, y)>xy is jointly continuous
from B(A, I') x N(A, I') into N(A, I')]. So (again by linearity), 9, (2, I') is in the
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closure of B(A, I') and is dense in N(2, I') (by construction). It follows that the
closure of B, I') in MU, I') is RO, ). O

Remark 7. Let y be a positive linear form on (2, I') and let w be its restriction
to B, ). Lemma 11 implies that the positive sesquilinear form on 9, (A, I')
x No(2, I') defined by (x, y)>yp(x*y) does only depend on w [and the same is
true for its continuous extension to (2, I') x N(A, I')]. In other words, Lemma 11
means that M(2, I') is the completion of the space B (2, I') equiped with the locally
convex topology generated by the semi-norms x+w(x*x)* where w runs over
the set of all solutions of m(I')-problems. Notice also that the linear hull of the
f(h), for f € Z(R) and h = h* € Wis canonically a subspace of (U, I').

Proposition 3. Let ¢ be a I'-strongly positive linear form on U, let w be a
solution of the m(I')-problem for ¢ and let (n,,, D, 2,,) be the cyclic *-representation
7, of B, I') in the Hilbert space §,, with cyclic vector Q,, associated with w by
G.N.S. construction. Then, there is a unique continuous linear mapping of (U, I')
into 9, ¥Y,, such that ¥, (x)=mn,(x)Q,, Yxe B, I'). Furthermore, we have:
To(X) ¥, (N)=¥,(x-y), Vxe B T) and Vye WA T); (P07, ()= p(x*y),
Vx,yeW. Forany fixed element of U, x, let w, be the positive linear form on B(W, I
defined by: @ (y) = (¥ ,(X)|7,(y) ¥ (X)), VyeBQL I). Then w, is solution of the
m(I')-problem for ¢, where ¢ is the I'-strongly positive linear form on W defined by :
¢ (y) = (x*yx), Vye N, (¢, is I'-strongly positive by Lemma 6a).

Proof. The mapping x 7, (x)Q, from B, I') into §,, is clearly continuous
for the topology induced [on B(, I')] by the topology of M(A, I'). So, by Lemma
11, there is a unique continuous linear mapping, ¥,,, from (2, I') into &, such
that ¥ (x)=7,(x)Q,, for any xe B2, I'). Let x be an arbitrary element of
B(W, I'), then, [by (22)] y—n,,(x) ¥, (y) and y—¥ (x - y) are both continuous on
N, ') and they coincide on B(A, I'); so we have: 7, (x)¥, ()= ¥, (- x),
VyeNMQU, ). Let x=x* be an arbitrary hermitian element of . Then

2\—1
X, =X (]l+ XT:) is in B(A, I'), Yn=1, and we have:

p(x?) = [P dp, (1)
and

105 Polil? = [ = —

I+ — 1+ —
n m

2
Aty o(0)=0.

It follows that ¢(x?) = ||¥,,(x)||%, Vx = x* € A, and therefore we have (by polariza-
tion):
P(x*y) =(Po,(0) | Pu(y), Vx,ye.

Let p be any positive linear form on the ordered space 921, I') such that y(x) = ¢(x)
if x is in A and p(x)=w(x) if x is in B, I') (the existence of y follows from
Theorem 5). Then we have p(x* yx)= ¢, (y) if x,y are in A and w,(y)=p(x*yx)
if xeWand ye B, I); but y—p,(y)=p(x*yx) is again a positive linear form
on M, I') (by Lemma 6a), and therefore (proceed as in the proof of Theorem 4)
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we have:
v (f()= [ f(O)dpp, 0 (t), VY ePR), Yh=h*eU.

So w, is a solution of the m(I') problem for ¢,. [

8. Subspaces and Determination

Let us keep the hypothesis and notations of last section and let ¢ be a
I'-strongly positive linear form on 2. In complete analogy with what is done in
the study of the classical moment problem (see the definition of rand y in Ref. [2]),
we associate to ¢ the following real functionals on 9*(2, I'):

{x|—>¢’*(x): Inf {¢(y)|yeWA and y—xe/ (AT}

24 xt=>¢, (x)=Sup{p(y)lyeW and x-—yes/ " (UT)}.

We have of course:
(25) P* ()2 ¢y (x), VxeMAUT).

Proposition 4. Let ¢ be a I'-strongly positive linear form on A and let h be an
arbitrary hermitian element of (A, I'). Then, for any real number, r, such that
¢ (W) =7 = ¢* (h), there is a positive linear form on MW, I'), yp, such that we have :
o(x)=y(x), Vxe U, and p(h)=r.

Proof. Consider, on the linear subspace £ of 9 spanned by {x + Ah|xeUA
and A€}, the linear form ¢, defined by: ¢;(x + Ah)=p(x)+ Ar, Vxe A and
Vi eC. Let 2= A*+1R. h be the real subspace of £ of all the hermitian elements
of £ Then it is easy to see that ¢, is real-valued on £% and that ¢* (x + gh)
= d(x)+ or = ¢, (x + gh), for any hermitian x € A and for any real number g. On
the other hand, we have: ¢* (h; + h,) < ¢* (hy) + ¢* (hy), Vhy, h, € MAA, T') and,
¢* (ohy) = 0¢* (hy), Yhy € MAA, T') and Vg 2 0. Therefore, it again follows from
Hahn-Banach theorem that there is a real linear form on IMA, I'), ¢,, such that
¢, <o¢* and ¢, (x)=¢p,(x) for any xe &". ¢, is positive on M* (A, I') (since

b - *
¢ = ¢*), and the linear form vy on IM(A, I') defined by: w(x)=¢, (X—;x )

¥
+ig, (x 2ix ) (Vx € M) satisfies the conditions of Proposition 4. [

Definition 5. Let ¢ be a I'-strongly positive linear form on o and let V be
a *-invariant subspace of B(U, I'). Suppose that all the solutions of the m(I')-
problem for ¢ coincide on V; then we say that the m(I')-problem for ¢ is deter-
mined on V. If V=8B(U, I') we simply say that it is determined.

As an immediate corollary of Proposition 4, we have the following result.

Corollary 3. Let ¢ and V be as in Definition 5. Then the m(I')-problem for ¢
is determined on V if and only if we have:

¢* W)=y (h), VYh=h*eV.
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Practically V will be a C*-subalgebra of B(, I'). For instance if the objects
of interest form a system of hermitian generators of 2L, it is natural to restrict our
attention on the C*-subalgebra generated by the continuous functions vanishing
at infinity of these hermitian generators. This will typically be the case in quantum
field theory (see the next section).

9. First Application to Quantum Field Theory

A. The Localizable Algebra
Let M be the space R*** equipped with the bilinear form

k=s
Q) =x2°— 3 Xy =x0)0—%.§.

k=1
Let 2 =2(M) be the Schwartz’ space of complex C* functions with compact
supports on M equipped with its usual topology [14] and let 2' = 2'(M) be the
topological dual space of & that is the space of distributions on M. & is an
involutive vector space with the continuous involution g—g* defined by g*(x)
= g(x), (Yx e M). The tensor algebra T(Z) over & is canonicaly a *-algebra with
a unit. Let I'y, be (as in Section 4) the set of all C*-semi-norms on T(Z) y+— || n(y)||
where 7 runs over the matrix representations of 7(Z) with coefficients in 2.
9’ separates & so (by Theorem 2), any positive linear form on the *-algebra T(2)
is I'y.-strongly positive. Therefore (by Theorem 4), the m(l'y)-problem for a
positive linear form on T(2) is always soluble.

Let %, be the family of bounded open subsets of M and for any ¢ € &, let
B(O) denotes the C*-subalgebra of B(T(2), [5) generated by the family f(h)
where f'e %,)(IR) and where h runs over the hermitian elements of & [considered
as a subset of the *-algebra T(Z)] with supports in @ [ f(h) is defined in Section 6,
Definition 2]]. We have (by construction):

(26) 01,0, 7, and 0;C0O,=B(0)CB(0,)
and B(0O,) is a C*-subalgebra of B(0,).

Definition 6. A) () B(0) is canonically a normed *-algebra which will be
OeFy A~
called the localizable algebra and will be denoted by B(M). The completion B(M)
of B(M) is the C*-subalgebra of B(T(D), ['5) generated by B(M). B(M) will be
called the quasi-localizable C*-algebra.

B) A *-algebra automorphism of B(M), «, will be called an automorphism of
B(M) iff there is a permutation ¢, of %, such that, for any O € %,, the restriction
of o to B(0O) is a *-isomorphism of B(O) on B(p,(0)).

The set of all these automorphisms of B(M) forms a group which will be
denoted by Aut(B(M)).

It follows that any element of Aut(B(M)) is isometric and therefore it has a
unique extension to ‘f3(M) which is an automorphism of the C*-algebra B(M).
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Aut(B(M)) will be identified with the corresponding subgroup of the group
Aut(B(M)) of all the automorphisms of the C*-algebra B(M).

We denote the group of all diffeomorphisms* of M by Diff(M). Remembering
that Diff(M) operates (to the left) on 2(M) by h(x)—h,(x)=h(p ~'(x)) and that
(h*), = (h,)*, Vo € Diff (M), we have the following:

Proposition 5. There is a unique group homomorphism o, from Diff(M) into
Aut(B(M)) such that a(e) [f(W)]= f(h,), Yo € Diff(M), Vh=h* e Z(M) and
Vfe %) (R). Then we have:

a(p) B(O)=B(p(0), YOe%, YoeDiff(M).

Proof. Since hi—h,, is linear and satisfies (h*), = (h,)* there is a unique *-homo-
morphism &(¢) of T(2) into itself such that &(¢) [1] =1 and &(¢) [h]=h,,, Vhe 2.
It is not very hard to see that &(Id,,) = Id; g4 and that a(p; c ¢,)=&(@,)° &(@,),
Y., ¢, € Diff(M). Remembering that, for any diffeormorphism ¢, the mapping
hi—h, is continuous for the usual topology of Z; it follows that if « is a matrix
representation of T(2) with coefficients in &' then the same is true for 7o &(¢),
V¢ € Diff(M). This implies that &(¢) is continuous for the topology 7, (see
Section 2) and therefore &(¢) has a unique continuous extension &(¢) which is
a *-homomorphism of .«7(T(2), I';/) into itself. By uniqueness we have:

a(ldy) = IdM(T(@),F@,) and  a(@, ° @,)=a(p1)°&(e,), Vou, e, e Diff(M).

Let x be an arbitrary element of B, (T(2), ['5,) and let ¢ be an element of
Diff(M). Then, for any pe I’y [m,(&(¢) ()| = sup 7, (Il = [lxIl; So, &(¢) (x)
p'elg

e B (T(2),I'y).

Let a(p) be the restriction of &(¢) to B(M). Then a(p)B(0) = B(p(0)) follows
from the definitions, and @+o(¢) satisfies all the conditions stated in the pro-
position. The uniqueness of o follows from the fact that the {f(h)} generate a
dense subalgebra of B(M) and that an automorphism of B(M) is continuous
(for the norm topology). [

Remark 8. Up to now, nothing is changed if we replace M by an arbitrary
(finite dimensional C*) differentiable manifold.

Let a be an element of M and let ¢, the corresponding translation (z,e Diff (M)).
Then we simply write h, instead of h, to denote the function x+—h(x —a) and
similarly, «(t,) will simply be denoted by o,(e Aut(B(M))).

Let S, and S, be two subsets of M. Then we say that S; and S, are space-like
separated or that S, is space-like separated with respect to S, iff. (x; —x,,x; —x,) <0
(strict), Vx; € S; and Vx, € S,.

B. Quantum Field with Quasi-analytic Vacuum

Let S be a symmetric operator in a Hilbert space $ and let Qe $ be a vector
which belongs to () dom(S") [dom(A4) denotes the domain of an operator A

nz1

4 By difftomorphism, we mean here, a bijection which is C* and which has a C* inverse.
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acting in $]. According to Nussbaum [15], we say that Q is a quasi-analytic
vector for S iff. Q is such that

—-

(27) YIS "=o0.
n=1

An analytic vector for S, [16], is, of course, a quasi-analytic vector for S, but the
converse proposition is not true. Let us state a theorem of Nussbaum [15]
(Theorem 2 in that paper).

Nussbaum’s Theorem A. Let S be a closed symmetric operator in a Hilbert space
9. Then S is self-adjoint if and only if S has a total set of quasi-analytic vectors.

In other words, this theorem is Nelson’s theorem [16], where “analytic
vectors” is replaced by “quasi-analytic” “vectors”.

Another theorem of Nussbaum (Theorem 5 of Ref. [15]) will be applied in this
section in the following form.

Nussbaum’s Theorem B. Let S and T be symmetric operators in a Hilbert space
$ and let D be the set of all vectors in © which are quasi-analytic for both S and T
and which are in the domain of the operators T"S™,S™"T", for nnm=1,2,... and
such that (T"S™ —S"T")D =0, Vn,m=1. If D is dense in 9, then S and T are
essentially selfadjoint and the spectral resolutions of their closures commute.

Let 4 be an operator in the Hilbert space $ and assume that dom(A4) is dense
in $. Then we denote the adjoint of 4 by A™. Let D be a dense subspace of $ and
let £*(D) be the set of all operators in §, A, such that we have:

(28) dom(4)=D,dom(4")>D and ADCD,A*DcCD.
&*(D) is a *-algebra (with unit) if we equip it with the involution defined by
(29) A>A*=(A" D),

where | D means the restriction to D.

Now, we consider a scalar neutral field, 4(h), satisfying the usual assumptions
[17]. Namely, we have a strongly continuous unitary representation of the trans-
lation group in the Hilbert space $, M 3 a—U(a) = | "7?dE(p) (by Stone theo-

M

rem), a dense subspace D of § such that U(a) D C D, Yae ‘M, and a linear mapping
hi—A(h) of 2(M) into &*(D) such that

a) A(h*)= A(h)* in £*(D), Vhe 2(M),

b) U(a)A(h), U(a):_1 = A(h,), Vhe 9, where h,(x)=h(x — a),

¢) Supp(dE(p)) C Vy ={p|p° =0, (p,p) 20},

d) 3Qe D with U(a)2=Q,Vae M,

e) D is the linear hull of A(h,) ... A(h,)Q, n=0 where the h, run over Z(M),

f) (A(hy)A(hy) — A(h,) A(hy))=0, Vhy, h, € D such that (x — y, x — y) <0

VxeSupp(h) and VyeSupp(h,).
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a) is the hermiticity condition, b) is the translation invariance, c) is the spec-
trum condition, d) is the existence of a “vacuum” ©, e) is the cyclicity of the vacuum
Q + a specification of the domain D, f) is the local commutativity.

A is a linear mapping of & into the *-algebra with unit &*(D) such that
A(h*)= A(h)*, Yhe 2. It follows that (see Section 4) there is a unique *-homo-
morphism again denoted by 4 from T(2) into £*(D) such that A(1)=1 and which
extends A [2 is a subspace of the *-algebra T(2)]. Then, ¢) may be written in
the form D = A(T(2))Q. Furthermore, as well known [6, 17], everything is deter-
mined up to a unitary by the knowledge of the positive linear form 2 on T(2(M))
defined by:

(30) Wiy ® - ®h)=(Q|Ahy) ... A(h,)Q), Vhe (M), ¥n=0.

Theorem 6. Let A be a field theory satisfying the assumption a) to f) (above).
Suppose that the vacuum Q is a quasi-analytic vector for each A(h), Vh=h* e 9(M).
Then we have:

a) Yh=h*e Q(M), A(h) is essentially self-adjoint and if h, = h¥ and h, = h% are
in D(M) and have space-like separated supports then the spectral resolutions of
A(h,) and A(h,) commute.

_ b) The m(I'y)-problem for M is determined on the quasi-localizable C*-algebra
B(M) (CB(T(2), I'y)) and we have:

o(fi(hy) ... fu(h) = (QUA(ARY)) .. f(A(R)Q)°,  ¥nz0

and where  is the unique positive linear form on B(M) obtained by restriction to
B(M) of a solution of the m(I w)-problem for .

c) The corresponding (unique) representation m of B(M) in O such that
n(f(h) = f(AM)), Vf € %0,(R) and Vh=h* € D(M), satisfies:

2(B(O) =R(O), Y0 e 7,
{ (o, (x)) = Ula)n(x) U(a)™"' VaeM.

Vx e B(M) where R(0) is the von Neumann algebra generated by the spectral
resolutions of the family A(h) with h=h* e 2(M) such that supp(h) CO.

Proof. a) The proof of a) is the same that the proof given by Borchers and
Zimmermann in the case of an analytic vacuum [4] except that Nelson’s theorem
has to be replaced by Nussbaum’s Theorem A. Here we shall directly use Nuss-
baum’s Theorem B combined with Reeh-Schlieder theorem [18]. Let h; = h¥e D
and h,=h¥e 2 be such that x, € Supp(h;) and x, € Supp(h,) imply (x; — x,,
X; —X,)<0 and let @ be a no empty open subset of M which is space-like sepa-
rated with respect to Supp(h;)uUSupp(h,). Then the linear hull D(0)C D of the
vectors A(hy) ... A(h,)Q, n=1,2,3,... where the h; are functions of Z(M) with

* As usual if S is self-adjoint (S=S7), f(S) is defined by f(S)= [ f(z) dE(r) where E(t) is the
spectral resolution of S.
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supports in ¢, is dense in § (by Reeh-Schlieder theorem). We have fora =1ora =2:
A" A(RY) ... Alh) Q1% = (A(HS) ... A(h)QIA(R)™A(RY) ... A(h,)Q)
=(A(mY) ... Ah*) Ay ... A() QA" Q) <K . [A(h)"Ql,

where we used ¥ = h,, assumptions a) and f) and Schwartz inequality (K = || A(h*)...
A(h)ARTF)... A(h,)R2]]). In the same way we have more generally:

|Ahy"@|* <K(P). |Ah)*™Q|, for a=1 ora=2, VoeD(0).
Therefore, Y& € D(0), we have for x =1 or a =2:
AR @[T Z Crex Y [ Ah)* "R T =0,

since the sequence u,= ||A(h,)"Q|'" is an increasing positive sequence (and
therefore Tu, ! = co<Xu;! = o). It follows that D(0) is a dense set (in ) of
quasi-analytic vectors for both A(h,) and A(h,) and, since D(O)C D and since
supp(h,;) and supp(h,) are space-like separated, D(0)C dom(A(h,)" A(h,)"),
D(O)C dom(A(hy)" A(hy)") and (A(hy)" A(hy)" — A(hy)" A(hy)")D(0) =0, Vn,m=1;
so0, applying Nussbaum’s Theorem B, we immediatly obtain the statement a) of
the theorem.

b) Let w, be an arbitrary solution of the m(I',)-problem for 2B, let (r,, , 9,,,,2,,)
be the cyclic *-representation n,, of B(T(2), I, ) in the Hilbert space $,,, with
cyclic vector @, associated with w; by G.N.S. construction and let ¥, be defined
as in the Proposition 3. Then A(x)Q+¥,, (x) defines an isomorphism of the
separated prehilbertian space A(T(2))Q on ¥, (T(2)) (by Proposition 3). There-
fore, we may identify $ with the closure of ¥, (T(2)) in §,,, in such a way that
we have:

(31) {A(X)Q =¥, (x), VxeT(2),

so, =0, .
With these identifications, we have:
(32) Mo, (X)AW) R =¥, (xy), YxeB(T(D),I4), VyeT(D).

Let O be a bounded open subset of M(0 € %#,) and let ¢’ be any no empty open
subset of M which is space-like separated with respect to 0. If h=h* € & has his
support in 0, then any @ € D(0') is an analytic vector for A(h). This means that
the positive linear form on C[X] defined by P(X)—(®|P(A(h))®) satisfies the
condition of Carleman’s theorem (see Section 5), so the classical (Hamburger’s)
moment problem for this positive linear form on €C[X] is determined. Remem-
bering that if u is a bounded measure on IR which is solution of a determined
Hamburger’s problem, then the polynomials are dense in I?(dp); it follows that
{n,,(f()®|f b, (R)} is a dense subspace of the closure of {A(P(h))®|P(X)
eC[X]} in . This implies that ,,,(f(h))1'$ is unique and that n,, (f(R)HCH,
Vfe%)(R) [since D(O) is dense in $ and 7, (f(h)) is bounded]. Furthermore,

A(h) is essentially self adjoint on D(0") so we must have: =, (f(h) = f(A(h)).
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It follows that 7, (x) 19 is unique for any x in B(M), (@(M) is generated by
the f(h)), and is a bounded operator in Z($). This implies that the restriction w
of w; to B(M) is unique and we have:

w(fl (hl) . fn(hn)) = (anwl(fl (hl)) e nwl(fn(hn))‘g)

=(QUA(AR) .. f(AR))Q),  Vh=heD, Ve Co)[R).

c) The last part of the theorem follows immediately from above and from the
fact that if & is an arbitrary real function of 2(M), (h = h*) then the spectral reso-

lutions of A(h) and A(h,), E(4) and E,(4), must be connected by:
E,A=U(@ERX) U@, ~aeM). O

"Remark 9. a) The choice of & as space of test functions and I'y as directed
set of C*-semi-norms on T(2) is not essential. Other choices work as well. How-
ever the Proposition 5 must be slightly modified.

b) On most *-algebras (with units) generated by fields operators there are no
C*-semi-norms at all. Nevertheless, the Theorem 6 shows that the non-com-
mutative moment problem, lifted to the tensor algebra, gives the local rings (at
least, for the free field)®.

10. Conclusion

In this paper we give the formulation of a generalization of the classical
moment problem on *-algebras (the m-problem). In a forthcoming paper we shall
describe (and apply) some important properties of this construction. In particular
we shall deal with the connexion between the m-problem and self-adjointeness
properties of operators in Hilbert space.

There exist other generalizations of the classical moment problem on *-alge-
bras. For instance, the problem of integral decomposition of states on *-algebras
is a very natural generalization of the classical moment problem. A recent work
by Borchers and Yngvason deals with this problem [19]. In this paper, it is the
measure itself which is replaced by something else (namely a positive linear from
on a suitable C*-algebra). At this point, it is worth noticing that Segal gave a non-
commutative generalization of integration theory in reference [20]. However, the
positive linear forms w on the C*-algebra B(?A) which are solutions of m-problems
are generally not central forms (or traces) on B(2A); so (B(A), w) is not an inte-
gration algebra in the sense of reference [21] when w is a solution of some
m-problem on 2. There exist other (distinct) non-commutative problems of
moments; for instance, in Ref. [22], a “quantum problem of moments” is intro-
duced in order to study the representations of the *-algebra generated by Heisen-
berg canonical commutation relations (= the envelopping algebra of the Heisen-
berg Lie algebra).

6 This remark has been suggested by a comment made by R. T. Powers (private communication).
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The whole construction given in this paper is based on the properties of
C*-semi-norms. It is worth noticing that, in Ref. [23], Borchers had shown that
the properties of the continuous C*-semi-norms on the algebra of test functions
for quantum fields may be used to prove various usefull results.

Let us end this paper with some remarks on the “localizable systems” which
represent the quasi-localizable C*-algebra B(M) (this situation may be easily
generalized). According to the analysis of Haag and Kastler [24], the corre-
sponding “algebraic systems” (= class of physically equivalent systems) are in
one to one correspondance with primitive ideals of B(M). On the other hand, if
P(B(M)) denotes the set of pure states on B(M) equipped with the weak topology
and if Prim(ES(M)) denotes the set of primitive ideals of B(M) equipped with
Jacobson topology, then the canonical mapping of P(SB(M)) on Prim(B(M)) is
continuous and open [8]. It follows that the Jacobson topology has something
to do with the notion of approximation of an algebraic system by another algebraic
system. Notice also that if e Prim(B(M)), the corresponding algebraic system
is translation invariant if and only if. J is translation invariant; it is a local sys-
tem if and only if J contains xy — yx whenever x € B(0) and y € B(¢') where O
and O are space-like separated bounded open regions.

Acknowledgements. 1t is a pleasure to thank H. Epstein for his interest in this work and for
helpfull suggestions. The author is also indebted to H. J. Borchers and J. Yngvason for stimulating
discussions.

References

. Powers,R.T.: Commun. math. Phys. 21, 85—124 (1971)

. Shohat,J. A., Tamarkin,J.D.: The problem of moments. American Mathematical Society (1963)

. Akhiezer,N.1.: The classical moment problem. Edinburgh-London: Oliver and Boyd Ltd. 1965

. Borchers,H.J., Zimmermann, W.: Nuovo Cimento 31, 1047 (1964)

. Schaefer,H.H.: Topological vector spaces. Berlin-Heidelberg-New York: Springer 1971

. Landford,O.E.,III: In: de Witt,C., Stora,R. (Eds.): Statistical mechanics and quantum field
theory. New York: Grodon and Breach 1971

. Dunford,N., Schwartz,J.T.: Linear operators. I. New York: Interscience publishers, Inc. 1958

. Dixmier,J.: Les C*-algébres et leurs représentations. Paris: Gauthier-Villars 1964

. Sakai,S.: C*-algebras and W*-algebras. Berlin-Heidelberg-New York: Springer 1971

. Guelfand,I. M., Vilenkin,N.Y.: Les distributions, tome 4. Paris: Dunod 1967

. Borchers,H.J.: In: Sen,R.N., Weil,C. (Eds.): Statistical mechanics and field theory. New York:
Halsted Press 1972

12. Carleman,T.: Les fonctions quasi-analytiques. Paris: Gauthier-Villars 1926

13. Rickart,C.E.: Banach algebras. Princeton, New Jersey, Toronto, London, New York: Van Nos-

trand 1960

14. Schwartz,L.: Théorie des distributions, tome I. Paris: Hermann 1957

15. Nussbaum, A.E.: Ark. Mat. 6, 179 (1965)

16. Nelson,E.: Ann. Math. 70, 572 (1959)

17. Wightman, A.S.: Phys. Rev. 101, 860 (1956)

18. Reeh, H., Schlieder,S.: Nuovo Cimento 22, 1051 (1961)

19. Borchers,H.J., Yngvason,J.: On the algebra of field operators. The weak commutant and

integral decompositions of states (to appear)

20. Segal,I.E.: Ann. Math. 57, 401 (1953)

21. Segal,I.E., Kunze,R. A.: Integrals and operators. New York, St. Louis, San Francisko, Toronto,

London, Sydney: McGraw-Hill 1968

N AW N =

= O 0 ™

e



254 M. Dubois-Violette

22. Woronowicz, S. L.: Reports Math. Phys. 1, 135 (1970)

Woronowicz, S.L.: Reports Math. Phys. 1, 175 (1971)
23. Borchers,H.J.: In: R.C.P. 25, Volume 15, LR.M.A., C.N.R.S. Strasbourg (1973)
24. Haag,R., Kastler,D.: J. Math. Phys. 5, 848 (1964)

Communicated by H. Araki Michel Dubois-Violette
Laboratoire de Physique Théorique
et Hautes Energies
Batiment 211
Université de Paris-Sud
F-91405 Orsay, France





