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In a previous paper,} the writer derived the expressions for the 
Green's functions in the theory of heat conduction for an infinite 
cylinder and for an infinite solid, bounded internally by a cylinder. 

The object of the present paper is to derive the appropriate 
Green's functions for a sphere and for an infinite solid bounded in­
ternally by a sphere. In both cases, we shall take the boundary con­
dition in the form 

du 
h hu = 0, r = a. 

dr 
The case of a sphere. In this case we start with the expression 

(1) u(r, 6, 0, /; ro, dQ, *o) = _, _ , . „ <r* '4*S 

where 

(2) R2 = r2 + r0
2 - 2rQ COST, 

7 being the angle between the radii from the origin to the points 
(r, 0, </>) and (r0l 0O, $o). The expression (1) is the point source solution 
of the differential equation of heat conduction in spherical coordi­
nates. 

The expression (1) may be written in the form§ 

1 
u(r, 6, 0, /; r0, 60; 4>0) = A , N1/9 Z (2« + l)Pn(cos 7) 

(3) 47r(ffo)1/2 n=o 

• I ae-ka2tJn+i/2(aro)Jn+i/2(oLr)da. 
J 0 

The corresponding Laplace transform 

L{u(t)) = f e~^u{t)dt = u*(p) 
J 0 

f Presented to the Society, October 29, 1938. 
% This Bulletin, vol. 44 (1938), pp. 125-133. This paper will be referred to as 

A.N.L. 
§ See Carslaw, Mathematical Theory of Heat Conduction, article 93. 
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is therefore 

>. à\ Vn. 6cs. Ón\ = . . u*(r, e,<j>,p; r0, 0O, <j>„) = £ (2« + l)P„(cos 7) 

(4) 

/ n f l /2 (« f ) / n + l/2(«^o) , 
0 < * 2 - 8« 

where we have put ƒ> = — kq2. 
With the aid of the identities (5) and (5') of A.N.L., (4) becomes 

i °° 
(5) w* = or/ M/O ^ (2n + l)-P«(cos7)/tt+i/2(fg)H»1

+i/2(fog), r < fo, 
8k(rr0)

l/2
 w=a0 

i °° 
(6) w* = oL/ M/O 23 (2« + l)Pn(cos y)Jn+1/2(r0q)H^+1/2(rq)y r > r0. 

In order to obtain the Green's function, we must add to the point 
source solution u a function v, satisfying the differential equation of 
heat conduction, vanishing at / = 0, and such that u+v satisfies the 
boundary condition du/dr+hu = 0, for r — a. 

Since L {du(t)/dt} = L {u(t)} —u(0)=u*(p) — u(0),and since the two 
operations of differentiation with respect to x, and of acting with the 
Laplace operator L, may be commuted, the Laplace transform of v 
must satisfy the differential equation 

(7) Az;* + q*v* = 0. 

The transition from w*+#* to the desired Green's function G = u-\-v. 
will be apparent from the subsequent developments. 

The most general solution of (7) which is symmetric about the axis 
7 = 0 may be written in the form 

i °° 
W ** = 7 I 7 * T ^ 2 (2» + lMnP»(cos y)Jn+i,2(rq). 

From (8) we get 

I +hf\ = £ (In + l)AnPn(cos 7) 
\dr /r-a Sk{ar0)

112
 w==0 

< (? — /n+l/2(2) + * ~ — Unf VaW \ 

Since 

(10) f— + A W + »*) = 0, r = a, 
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it follows that 

iq—Hl+M + (A - l/(2a))ffnVv«(*)| 

(11) A n = ~ /n+l/2(ro?) 
qJn+i/2(aq) + (h — l / (2a ) ) / n + i / 2 ( ag ) 

therefore! 

(12) *** + z,* = — A — E (2» + l)P*(cos 7)w»*, 
8k(rr0)

112
 n==s0 

where 

Wn* =
 n+1/2 «! HUm{rq) Un+i/2(aq) - Jn+i/2(rq) 

(13) Un+i/2{aq) I 

• [— -̂  ff „V v,(s;) + f * " ^-) ^iî+v»(*)l I 
and 

(14) Un+i/2(aq) = qJn+i/2(aq) + lh J Jn+wiaq). 

Comparison between (14) and equation (14) of A.N.L. shows 
clearly that there is a formal analogy between the present and the 
former expression for w£. Specifically, our present w£ may be ob­
tained from the corresponding expression in A.N.L. by replacing n 
by w + 1/2 and h by h — l/(2a) and multiplying by the factor 1/2. 
The inversion of (12) therefore ultimately yields J 

1 
Gif, 6, 0, t; f0, 0o, <t>o) = — — — E (2» + l)P»(cos 7) 

2ira2(r r0)
1'2 w=o 

. - . • Hqi2e-kgiZtJn+i,2(qir) 

Jn+i/2\qtro) 

' [(A - 1/(2*))* + q? - (n + l/2y/a*][j«.m(qia)]*' 

t Formulas (13), (15), (18), (19), (20), and (22) are given for r<r0. In the case 
r>r<t, the corresponding formulas are obtained by interchanging r and r0. 

X As mentioned in A.N.L., the transition from pw,?~ Y(p)/Z(p) to wn is equiva­
lent to the inversion of the Laplace transform defining wn*, and we have 

HO) , ^ Y(Pi) 
Z(0) ^^PiZf(Pi) ' 

where the summation extends over the roots of Z(p) = 0. 
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where the second summation extends over the roots 

(16) Un+1/2(aq) = 0. 

From this formula we may obtain the Green's function for the 
case where the boundary is impervious to heat by putting h = 0. Also 
the case where the boundary is kept at 0° may be obtained by putting 
&= oo. In this case it is clear that the transcendental equation (16) 
reduces to 

(17) Jn+i/2(aq) = 0. 

Also it is easily seen that the denominator of (15) reduces to 

qt*[Jn+i/2(qi<*)]*-

Thus the Green's function for the case where the boundary is kept at 
0° is 

1 
G(r, 6, 4>, t; fo, «o, *o) = — — — — E (2n + l)Pw(cos T ) £ <rW* 

(ls) 2Ta2(r r0)
1/2 n=o Qi 

Jn-\-l/2\qi/nJn+l/2\qi^o) 

{Jn+i/2(aq{)}
2 

where the second summation extends over the roots of (17). 

Case of the infinite solid bounded internally by a sphere. The 
former analogy with the treatment in A.N.L., noticed in the previous 
case, applies also in the case under consideration. Thus since v* must 
be finite for r = <*>, it follows that in (8) we must replace Jn+i/2(rq) 
by H\+V2(rq). Proceeding as in the previous case, we ultimately ob­
tain 

(19) U* + V* = Q * t / 8 Z (2» + l)Pn(C0S 7 )^n*, 

where the expression for W* may be obtained from equation (30) of 
A.N.L. by replacing h by h — l/(2a) and n by n + 1/2 and multiplying 
by the factor 1/2. Our final solution is therefore 

G(r, 6, </>, /; r0> e0, 0O) = Q , x1/9 E (2» + l)Pn(cos 7) 
87r(rr0)

1/2
 ns=o 

(20) • ae ƒ. 
+ 0 0 HUi/2(ar0) 

Un+y2(aa) 

Jn+i/2(oir) Un+i/2(aa) ~ Un+i/2(ar)Jn+i/2(aa)}da 
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where 

(21) Un+1/2(aa) = la ^-HJ+M + (h- —W+V»(*)l • 
\ dz \ 2a/ ) z^aci 

For h = oo this reduces to 

1 °° 
C(r, 0, 0, /; ro, 0o, *o) = 0 , N1I> E (2» + l)P»(cos 7) 

(22) f + - Hl+vi(aro) 

£ Hn+V2(« a ) 

• {jn{ar)H}+y2(aa) — / w + 1/2(aa)H*+ y2 (ar)}da. 

This is the solution of our problem when the spherical surface r — a 
is kept at 0°. 

The Green's functions above evaluated may be called point source 
Green's junctions. They are solutions of the differential equation of 
heat conduction, depending on the spherical coordinates ry 0, and <t> 
and satisfying the condition 

(23) Km fff G{r, 0, 0, 0; r', 0', <t>')dr = 1, 

where co is a little sphere of radius e surrounding the point source 
(fo, 0o, #o). 

In addition to these Green's functions we may consider the Green's 
functions depending on r only and satisfying the condition 

(24) lim 4TT f ° *G(r, p, 0)p2dp = 1. 

For the case of the sphere radiating into a medium at 0°, the 
Green's function, while not given explicitly by Carslaw, may be de­
rived from his article 65, in the form 

nt , N 1 A « + (** - I)2 

G(r, /; r0) = Z. 
2irarr0 n==i a2an

2 + ah{ah — 1) 

•sin anr • sin anrQe~ka^ ', 

where an is a root of ace cos aa-\-(ah — 1) sin &a = 0. 
The Green's function for the case of the infinite solid bounded in­

ternally by a sphere may be obtained by considering a continuous 
distribution of point sources over the sphere r = ro and integrating for 
the variables 0' and <£'. This leads to 
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G(r, /; fo) = ] £ ^o(cos 7 )e-^ 2 < 
27ra2

 a, 
(26) 

Ji/i(qtr)Ji/2(qtro) 
[(* - 1/(2*))» + tf - V(4a2)][/1 /2(^a)]2 

where the summation extends over the roots of (17). 
The desired results may also be obtained in the following manner. 

I t can be easily shown that if u(r, p, /), is the Green's function appro­
priate to a "plane source," and therefore satisfying the condition 

ƒ» r0+e 

u(r, p, 0)dp = 1, 
TO 

then 
1 

v = u 
ATTTTQ 

is the desired Green's function appropriate to a spherical source. By 
substituting for u the expression which may be derived from Cars-
law's article 82, the desired Green's function is obtained in the form 

1 ( [" (r - a - fo)2"] 
/ ; = 87rrroM0 1 / 2 t e X P L 4 ^ J 

(r - a — f0)
2 

(r - a + fo)2" r (f - a + fo)2l 

f°° r (r - a + r0 + £)n ) 

0 

which must, of course, agree with (26). 
I t should be remarked that the Green's functions so derived are of 

the general form 

(29) G = Z ^ n ( P ) - ^ ( P o ) e - ^ 2 S 

where the un's are the normalized characteristic solutions of the ho­
mogeneous differential equation of 

(30) v2u + \2u = 0 

which satisfies the prescribed boundary conditions. 
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