ON GREEN’S FUNCTIONS IN THE THEORY OF HEAT
CONDUCTION IN SPHERICAL COORDINATESt}

ARNOLD N. LOWAN

In a previous paper,} the writer derived the expressions for the
Green's functions in the theory of heat conduction for an infinite
cylinder and for an infinite solid, bounded internally by a cylinder.

The object of the present paper is to derive the appropriate
Green's functions for a sphere and for an infinite solid bounded in-
ternally by a sphere. In both cases, we shall take the boundary con-
dition in the form

ou
B;+hu=0, r = a.

The case of a sphere. In this case we start with the expression

1
. — R4k
(1) “("’ 0, ¢, t; ro, b0, ¢0) 2(7rkt)3/2 € 4kt
where
2) R? = 72 4 ri — 27y cos v,

v being the angle between the radii from the origin to the points
(7, 0, ¢) and (7, 0o, do). The expression (1) is the point source solution
of the differential equation of heat conduction in spherical coordi-
nates.

The expression (1) may be written in the form§

1 0
u(r, 0} ¢: t; 7o, 00; ¢0) = Z (2"’ + l)Pn(COS 'Y)
4 (rrg)t'? .50

3) w
. f ae‘""‘2‘J,,+1/2(aro)],,+1/2(ar)da.
0

The corresponding Laplace transform

2]

L{u()} =f e u(t)dt = w(p)

0

t Presented to the Society, October 29, 1938.
1 This Bulletin, vol. 44 (1938), pp. 125-133. This paper will be referred to as
AN.L.

§ See Carslaw, Mathematical Theory of Heat Conduction, article 93.
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is therefore

1 0
u*(r’ 0’ ¢) ?; o, 00) ¢0) =T Z (2n + 1)Pn(COS 'Y)
(4) 411'(7’70)]/2 n=0

*  ada
) f az—qz Jniye(ar) T nyyso(aro),
0 —

where we have put p= — kg2
With the aid of the identities (5) and (5’) of A.N.L., (4) becomes

2 (21 4 1) Po(cos V) upya(r@) Htraa(rg), 7 < o,

(2
S) u* = ————
( ) 8k(rro)”2 n=0

z 0
2 (2n 4 1) Po(cos V) npya(reg) Hirya(rg), 7> ro.

6) u* = ———
( ) 8k(7’70)1/2 =0

I

In order to obtain the Green's function, we must add to the point
source solution # a function v, satisfying the differential equation of
heat conduction, vanishing at ¢=0, and such that u-v satisfies the
boundary condition du/dr+hu =0, for r=a.

Since L{0u(t)/0t} = L{u(t) } —u(0) =u*(p) —u(0),and since the two
operations of differentiation with respect to x, and of acting with the
Laplace operator L, may be commuted, the Laplace transform of v
must satisfy the differential equation

) Av* + g%* = 0.

The transition from «*+v* to the desired Green’s function G =u-o.
will be apparent from the subsequent developments.

The most general solution of (7) which is symmetric about the axis
v =0 may be written in the form

® =

— 2n + 1DA,.P, I .
8k(rr)/* n{:o (2n + 1) (cos ¥) ny/2(rq)

From (8) we get

(a”*+h*) S (20 4 DAuPa(cos )
JE— ) = n nd n{COS
dr rma  Sk(aro)l? .5 s

d 1
. {q — Jny2(2) + [h - —]JM-I/?(Z)} .
dz 2a 2=aq
Since

(10) (%+ h)(u* +9% =0, r=a,

©)
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it follows that

d
{q s + O = 1/(20))Hn1+1/2(2)}
2

11) Ay = — Jopie(r =,
( o) D) & b — 1/ Q@) eatag)
thereforef
i 0
12 * L — 2% + 1) P,(cos X,
(12) u* + 8}6(770)”25,)( + 1) Pu(cos v)w
where
Jny1y2(rq)
w, = —ﬂ—{ﬂhw(w) Unyi(aq) — Jnyy2(rq)
Uniy2(aq)
(13)
z d 1
'[— — H.Lyye(2) + (h - —> Hn1+1/2(z)]
a dz 2a smaq
and
, 1
(14) Uniy2(aq) = ¢Ja1y2(aq) + (h - E&) Jni12(aq).

Comparison between (14) and equation (14) of A.N.L. shows
clearly that there is a formal analogy between the present and the
former expression for w,*. Specifically, our present w,* may be ob-
tained from the corresponding expression in A.N.L. by replacing »
by n4+1/2 and & by h—1/(2a¢) and multiplying by the factor 1/2.
The inversion of (12) therefore ultimately yields}

Z (2n + 1) Pa(cos v)

m(r ro)'? 150
(15) . ; g e ke Ty 12(qir)
‘ Jur1y2(qira) ,
[ — 1/Qa)* + g2 — (n + 1/2)%/@®] Tnsaa(gi0) |

G(?’, 07 ¢y t; Yo, 00, d’O)

t Formulas (13), (15), (18), (19), (20), and (22) are given for » <ro. In the case
r >rq, the corresponding formulas are obtained by interchanging 7 and 7,.

1 As mentioned in A.N.L., the transition from pw,*= Y(p)/Z(p) to w, is equiva-
lent to the inversion of the Laplace transform defining w.*, and we have

_ ¥0) )
=20 T pzy

where the summation extends over the roots of Z(p) =0.
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where the second summation extends over the roots
(16) Uniyj2(ag) = 0.

From this formula we may obtain the Green’s function for the
case where the boundary is impervious to heat by putting 2 =0. Also
the case where the boundary is kept at 0° may be obtained by putting
h= . In this case it is clear that the transcendental equation (16)
reduces to

(17) Juiy2(ag) = 0.
Also it is easily seen that the denominator of (15) reduces to
¢? [Jd4ap2(qi0) |2
’l;hus the Green’s function for the case where the boundary is kept at
0° is

-]

1 ,
G(ry 0; b, L; 1o, 00, ¢0) =TT i Z (2% + l)P,,(COS 'Y)Z e_kq‘.“
(18) 2mwa’(r 7¢)'% 250 ai

J wr1/2(qi) T ny172(giro)
{Tdsy2(agi) }2

where the second summation extends over the roots of (17).

Case of the infinite solid bounded internally by a sphere. The
former analogy with the treatment in A.N.L., noticed in the previous
case, applies also in the case under consideration. Thus since v* must
be finite for 7= «, it follows that in (8) we must replace J,i12(7q)
by Hj,12(rq). Proceeding as in the previous case, we ultimately ob-
tain

(19) w* 4 o* = _t > (2n 4 1)P,(cos v)W ¥,

8k(rro)V? .5
where the expression for W,* may be obtained from equation (30) of
A.N.L. by replacing # by #—1/(2a) and # by #+1/2 and multiplying
by the factor 1/2. Our final solution is therefore

1 0
G(r, 0, ¢, t; 70, B0, o) = ———— D_ (2n + 1) Pa(cos 7)
8w (rro)t/? 1o
too H} 7
(20) : f a-tats Eaers)
—0 U,,+1/2(ad)

ATnyya(ar) Unpya(aa) — Unpyya(ar) niya(ea) § da
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where

d 1
(21) Un+1/2(ad) = {a '—H,,I_H/g(z) + <h - ’—'> H,}+1/2(z)} .
dz 2a rmaa

For h = « this reduces to

1 0
G(r, 0, ¢, t; 70, B0, o) = —— > (2n + 1) P,(cos 7)
87!'(7’7’0)112 n=0
(22) f 2 Hiv(aro)
. ae” Ft —————
— H}yo(aa)

ATu(ar) Hrys(@a) — Japye(@a)HLype(or) }da.

This is the solution of our problem when the spherical surface r=¢
is kept at 0°.

The Green’s functions above evaluated may be called point source
Green’s functions. They are solutions of the differential equation of
heat conduction, depending on the spherical coordinates 7, 6, and ¢
and satisfying the condition

(23) lim f f [ 660,607, 0, 600 = 1,

where w is a little sphere of radius e surrounding the point source
(7’0, 00) ¢0)

In addition to these Green’s functions we may consider the Green’s
functions depending on 7 only and satisfying the condition

r,+e
(24) limdr | G(r, p, 0)p2dp = 1.

0
o

For the case of the sphere radiating into a medium at 0° the

Green'’s function, while not given explicitly by Carslaw, may be de-
rived from his article 65, in the form

1 2 aal + (ah— 1)
2mwarrg 1 ala + ah(ah — 1)

. . _ 2
-SIN ap? + Sin auree ko't

G(ry t; rO) =

(25)

where a, is a root of aa cos aa+(ah—1) sin aa=0.

The Green'’s function for the case of the infinite solid bounded in-
ternally by a sphere may be obtained by considering a continuous
distribution of point sources over the sphere r =7, and integrating for
the variables 8’ and ¢’. This leads to
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G(r, t; ro) = % 2 Po(cos y)eka't
(26) T
. J12(qir)T 172(qi70) ,
[(h = 1/(20))* 4 ¢2 — 1/(4a®)][Ty2(gia) |?

where the summation extends over the roots of (17).

The desired results may also be obtained in the following manner.
It can be easily shown that if u(r, p, t), is the Green’s function appro-
priate to a “plane source,” and therefore satisfying the condition

rote

27 lim u(r, p, 0)dp = 1,

€0 ro

then
1

475'71’0

v = u

is the desired Green'’s function appropriate to a spherical source. By
substituting for # the expression which may be derived from Cars-
law’s article 82, the desired Green’s function is obtained in the form

G(r, t; o) = ! [ (r_a—rw]
HB T = 87rrro(1rkt)”2{exp 4kt

(r — a + r)?
. e[ - =]

® r—a+4r+9? }
- —h — d
tho eht exp[ Yy ] £

which must, of course, agree with (26).
It should be remarked that the Green’s functions so derived are of
the general form

(29) G = D un(P) - u,(Po)e~ "t

where the u,’s are the normalized characteristic solutions of the ho-
mogeneous differential equation of

(30) Vi 4+ Nu =0
which satisfies the prescribed boundary conditions.
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