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Abstract

We use the Konishi anomaly equations to construct the exact ef�
fective superpotential of the glueball super�elds in various N � � su�
persymmetric gauge theories� We use the superpotentials to study in
detail the structure of the spaces of vacua of these theories� We con�
sider chiral and non�chiral SU�N� models� the exceptional gauge group
G� and models that break supersymmetry dynamically�
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� Introduction

The strong coupling dynamics of N � � supersymmetric gauge theories in
four dimensions is clearly of much theoretical and maybe physical impor�
tance� Recently Dijkgraaf and Vafa made a beautiful conjecture ��
 �
 ��
that the F�terms of a large class of N � � supersymmetric gauge theories
can be computed exactly by a large N computation in a bosonic matrix
model� The assumption is that the relevant �elds in the IR are the glue�
ball super�elds Si and the conjecture provides means of computing their

�
�
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exact e�ective superpotential� This is done by evaluating the planar dia�
grams of the matrix model� The generic glueball superpotential is a sum
of Veneziano�Yankielowicz logarithmic superpotential terms ��� and an in�
�nite perturbative sum in the Si� Thus
 even if the matrix model is not
solvable
 one can still compute the superpotential to arbitrary power of Si
by evaluating matrix model diagrams�

In �	� it has been shown for a theory with adjoint matter that the loop
equations for the matrix model associated with the N � � gauge theory
are equivalent to the generalized Konishi anomaly equations� Besides being
a nice observation by itself
 the loop equations can sometimes be powerful
enough in order to solve the large N matrix model� Also
 one can forget
about the matrix model and study the Konishi anomaly equations by them�
selves� This will be the approach that we will take in this paper�

The aim of this paper is to study various types of N � � supersymmetric
gauge theories and to compute the exact glueball e�ective superpotential
by using the Konishi anomaly� We analyze the vacuum structure of those
theories� This approach works for chiral and non�chiral theories as well as
theories with exceptional gauge groups� One can even study theories with
dynamical supersymmetry breaking�

The paper is organized as follows� In section � we discuss the general
strategy and its limitations� Limitations can be of di�erent sorts� One could
be that there are not enough equations to solve for the superpotential� An�
other requirement is the existence of a supersymmetric vacuum
 which limits
the analysis of models that break supersymmetry� In section � we analyze
SU�N� gauge theory with matter in the fundamental representation and a
quartic superpotential� We analyze the di�erent classical and quantum vacua
and compute the exact quantum superpotentials� We show how motions in
the parameter space of the theory interpolate between di�erent vacua� In
section � we analyze a gauge theory based on the exceptional group G� with
matter in the fundamental representation� Again
 we compute the exact
superpotential and discuss the vacuum structure� In section 	 we discuss a
chiral model and perform a similar analysis� Results are in agreement with
other methods� In section � we analyze the IYIT model that breaks super�
symmetry dynamically� In the appendix we prove �under certain conditions�
the one�loop exactness of the �generalized� Konishi anomaly equation� This
result is used in the previous sections�

� The Classical and Quantum Chiral Rings

In this section we discuss some aspects of the classical and quantum chiral
rings of four�dimensional supersymmetric gauge theories� The discussion
parallels the one in �	��

We denote the four�dimensional Weyl spinor supersymmetry generators
by Q� and �Q ��� Chiral operators are operators annihilated by �Q ��� For
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instance
 the lowest component � of a chiral super�eld � is a chiral operator�
The OPE of two chiral operators is nonsingular and allows for the de�nition
of the product of two chiral operators� The product of chiral operators is
also a chiral operator� Furthermore
 one can de�ne a ring structure on the
set of equivalence classes of chiral operators modulo operators of the form
f �Q ��
� � � ��

Consider a generalN � � supersymmetric gauge theory with gauge group
G and some matter supermultiplets� Denote by V the vector super�eld in
the adjoint representation of G
 by � chiral super�elds in a representation r
of G and by � their lowest component� The �eld strength �spinor� super�eld
is W� � �

�
�
�D�e�VD�e

V and is a chiral super�eld� Using products of � and

W� we construct chiral operators
�� They satisfy the relation

W �r�
� ��r� � � �����

modulo f �Q ��
� � � � terms
 where we noted that � transforms in a represen�

tation r of the gauge group G� W
�r�
� � W a

�T
a�r� with T a�r� being the

generators of the gauge group G in the representation r� The relation �����
implies in particular

fW �r�
� �W

�r�
� g � � � �����

We will be interested in the sector of gauge invariant chiral operators�
These can be constructed as gauge invariant composites of W� and � tak�
ing the identity ����� into account� We will call the chiral ring the ring of
equivalence classes of gauge invariant chiral operators modulo f �Q ��� ��� �� An
important element of the chiral ring is the glueball super�eld S

S � �
�

����
TrW � � �����

The gauge invariant chiral operators made of the matter multiplets para�
metrize the moduli space of vacua of the supersymmetric gauge theory� It
is therefore of interest to �nd the relations among the elements of the chiral
ring which constrain the structure of the moduli space� These relations can
be di�erent in the classical and in the quantum theory�

��� The Classical Chiral Ring Relations

Let us comment �rst on the relations in the classical chiral ring� There are
two types of relations� The �rst are kinematic ones which are associated

�In this paper we denote by W� the supersymmetric �eld strength as well as its lowest
component� the gaugino�
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with group theory and statistics and contain no dynamics of the classical
theory� One such relation is

SdimG�� � � � �����

or an even stronger relation

Sh
�

� � � ���	�

where h� is the dual Coxeter number of the group G� The last relation
has been proven in �	� for G � SU�N� and in ��� for gauge groups Sp�N�
and SO�N�� It has been conjectured to hold for all simple groups� Another
example of a kinematic relation is

Tr�n � P�Tr�� � � � �Tr�N � � �����

with � an adjoint �eld in a U�N� gauge theory and n � N �

The second type of relations in the classical ring are the dynamical rela�
tions given by the variation of the tree level superpotential Wtree

�Wtree

��
� � � ���
�

These relations are not gauge invariant but can be implemented in a gauge
invariant way� For instance by

�
�Wtree

��
� � � �����

with appropriate extraction of the gauge invariant parts of the equations�

For a generic tree level superpotential the relations ���
� �x the moduli
space of the theory up to a discrete choice� This means that we can solve
these relations �possibly together with kinematic relations� and �x all the
gauge invariant chiral operators made out of matter �elds�

��� The Quantum Chiral Ring Relations

The classical chiral ring relations have quantum deformations� In general it is
hard to �nd the quantum deformations unless there are enough symmetries in
the theory� However the classical relations arising from ���
� have a natural
generalization as anomalous Ward identities of the quantized matter sector
in a classical gauge�ino� background� If � transforms in a representation r of
the gauge group G
 then the classical superpotential relation ���
� transforms
in the dual representation �r� It has to be contracted with a chiral operator
�� in a representation r� such that the decomposition of the tensor product
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�r � r� contains a singlet representation� This yields a classical chiral ring
relation

��
�Wtree

��
� � � �����

This relation can be interpreted as a classical Ward identity for the Konishi
current J � �yeV ��

�D�J � ��
�Wtree

��
� ������

This Ward identity gets an anomalous contribution in the quantum the�
ory� In general �� is a function of � and the generalized Konishi anomaly
takes the form �	
 

 ��

�D�J � ��i
�Wtree

��i
�

�

����
W�i

jW�
j
k ��

�
k

��i
� ������

where i
 j and k are gauge indices and their contraction is in the appropriate
representation� This Ward identity has tree level and one loop contributions�
In order to prove that there are no higher loop or nonperturbative corrections
to this identity one has to use symmetry arguments and asymptotic behav�
ior in the coupling constants �see the appendix for a proof under certain
conditions��

Since the divergence �D�J is �Q�exact it vanishes in a supersymmetric
vacuum� Taking the Wilsonian expectation value of ������ in a slowly varying
gaugino background
 we get�

��i
�Wtree

��i

�
S

�

�
�

����
W�i

jW�
j
k ��

�
k

��i

�
S

� � � ������

This relation will be our main tool to determine the e�ective superpotential�

��� The E
ective Superpotential

We will be interested in determining the e�ective superpotential Weff for
the glueball super�eld S with the matter �elds � being integrated out�

The strategy we will use is as follows� We �rst use the gradient equa�
tions for Weff in the tree level superpotential couplings� For a tree level
superpotential

Wtree �
X
I

gI�I � ������
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where �I are gauge invariant chiral operators
 we get

�Weff

�gI
� h�IiS � ������

The expectation values are taken in a slowly varying �classical� gaugino
background� We then use the chiral ring relations ������ to solve for the
h�IiS in terms of the S and the coupling constants gI � In order to solve
these relations we use the factorization property

h�I�JiS � h�IiSh�JiS ����	�

of expectation values of chiral operators in a supersymmetric vacuum�

We insert the solutions into the gradient equations ������ and determine
the e�ective superpotential up to a function C�S�
 which does not depend
on the gI � We can determine this function by semi classical arguments in
certain limits of the coupling constant space
 where the low energy dynamics
is described by pure SYM� The strong IR gauge dynamics is then captured
by a Veneziano�Yankielowicz type superpotential� If there are several such
limit points
 there are consistency checks one can do�

� SU�Nc� with Fundamental Matter

In this section we will consider N � � supersymmetric gauge theories with
SU�Nc� gauge group and matter in the fundamental representation� We
will use SQCD with one �avor as a representative model to outline our
technique� Due to the small number of generators in the chiral ring the
usual Konishi anomaly su�ces to obtain the e�ective superpotential� Using
the full e�ective superpotential we will then analyze the vacuum structure
of the model� We discuss also various generalizations�

��� SU�Nc� with One Flavor

Let us start by considering SQCD with gauge group SU�Nc� and one �avor�
This theory was studied in the matrix model context in ��������� The theory
is non�chiral and has one fundamental matter multiplet Q and one antifun�
damental matter multiplet �Q� There are only two gauge invariant chiral
operators one can build out of the fundamental �elds
 the meson M � �QQ
and the gaugino bilinear S� To begin with let us assume the tree level su�
perpotential

Wtree � mM � �M� � �����

Note we have chosen a rather simple superpotential to illustrate our method
but in principle we could take an arbitrary polynomial in the meson �eld�
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The theory with ����� has two classical vacua at M � � and M � �m
�� � In

the �rst vacuum the gauge group is unbroken
 whereas in the second vacuum
the gauge group is broken to SU�Nc � ���

The Konishi variation �Q � 	Q leads to the relation

mhMiS � ��hM
�iS � S � �����

We also have the relations

�Weff

�m
� hMiS �

�Weff

��
� hM�iS � �����

If we use the factorization properties for the chiral operators we get a
quadratic equation for hMiS

��hMi�S �mhMiS � S � � � �����

Now we get two di�erential equations which control the dependence of the
e�ective superpotential on the bare couplings

�Weff

�m
� �

m

��
�

r
m�

����
�

S

��
� ���	�

�Weff

��
�

�
�
m

��
�

r
m�

����
�

S

��

��

� �����

By taking the classical limit S � � in the above equations we �nd that the �
sign corresponds to the classical vacuumM � � and the � sign toM � �m

�� �
These two equations can be integrated to give the following superpotential

Weff � �
m�

��
�
m�

��

r
� �

��

m�
S � S logm� S log ���

r
� �

��

m�
S� � C�S� �

���
�

where C�S� is an S dependent integration constant�

To determine C�S� we proceed as follows� In the classical vacuum M �
� the matter �elds have mass m� If we take m �� �
 where � is the
dynamically generated mass scale we can integrate out the matter �elds in
perturbation theory� Hence
 we separate the pure gauge dynamics from the
dynamics of the matter �elds� We will take care of the pure gauge dynamics
in the strong coupling regime by an appropriate Veneziano�Yankielowicz
term ���� We concentrate �rst on an e�ective actionW pert�

eff �S� for S obtained

by integrating out the matter �elds in perturbation theory� As explained in
�	� the terms of W pert�

eff �S� linear in S come from integrating out the matter
�elds at one loop� Higher loops depend on the bare couplings in the tree level
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superpotential and are thus already included in ���
� ����� The contribution
C�S� can thus be determined by an explicit one loop calculation �	��

Note that in general this requires that we have a classical vacuum where
all the matter �elds are massive around which we can do perturbation theory�
However
 this method also works for vacua where all the matter degrees of
freedom are eaten up by the Higgs mechanism� This will prove especially
useful in the case of chiral models where we cannot have mass terms for the
matter �elds�

Right now we consider perturbation theory around the classical vacuum
M � �� The perturbative superpotential at an energy scale � 
 � 
 m is
given by

W pert�
eff � ��S � �NcS log

��
�
� S log

m

��
�O�S�� � �����

where �� is the UV cuto�� Substituting

�� � ���Nc � �� log
��
�

�����

amounts to replacing �� by � in ������ Since we compare ���
� to a one loop
calculation around the vacuum M � � we have to choose the branch with
the � sign� Matching then the contributions of O�S� in ���
� and ����� gives

C�S� � �NcS log
�

�
� S log ��

S

�
� S log � � ������

We have to include the strong coupling dynamics by replacing �

�NcS log
�

�
� NcS

�
� log

S

��
� �

�
� ������

Finally matching the scale �� of the pure SYM according to

���Nc � ��Nc��m � ������

we �nd the full nonperturbative superpotential

Weff � NcS

�
� log

S

���
� �

�
�
S

�
�
m�

��
�
m�

��

r
� �

��

m�
S � ������

�S log

�
�

�
�
�

�

r
� �

��

m�
S

�
�

Alternative Derivation of Weff

To gain con�dence in this result
 we can give an alternative derivation of
������ based upon the ILS linearity principle ����� If we consider the tree level

�This amounts to replacing �� � S�e�
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superpotential as a perturbation to the low energy physics we can �rst forget
about the superpotential and consider SU�Nc� SYMwith one massless �avor�
Along the �at direction parametrized by M the gauge group is generically
broken to SU�Nc���� We thus expect an appropriate e�ective description in
terms of a pure SU�Nc� �� SYM obtained by Higgsing the original SU�Nc�
with one �avor� The e�ective superpotential for the SU�Nc � �� theory is
just the Veneziano�Yankielowicz superpotential

Weff � �Nc � ��S

�
� log

S
���
� �

�
� ������

We have to relate the scale �� of the Higgsed theory to the scale � of the
original theory� This is done at the scale set by the meson expectation value
M � We have �

��

M���

���Nc���

�

�
�

M���

��Nc��

� ����	�

such that

����Nc��� �
��Nc��

M
� ������

Adding the tree level potential will localize the meson expectation value at
the quantum vacuum� This localization is equivalent to integrating out M
from the e�ective superpotential� However
 the quantum expectation value
of the meson as a function of S is given by the Konishi relation ���	�� So
if we add the tree level superpotential ����� to ������ and replace M by the
quantum expectation value hMiS given by the Konishi relation as

hMiS � �
m

��
�

r
m�

����
�

S

��
� ����
�

we exactly reproduce the full nonperturbative superpotential given in �������
This gives us a nice consistency check�

Relation to the Vector Model

The anomaly equation ����� can also be derived from the zero dimensional
vector model Z

dQd �Qe�
�

gs
Wtree� 	QQ� � ������

The Ward identity for the variation Q �� Q� 	Q is

gsNVM �

�
�Wtree

�Q
Q

�
VM

� mhMiVM � ��hM
�iVM � ������

Making the identi�cation S � gsNVM 
 one reproduces the anomaly equation�
In the planar limit hM�iV M factorizes and we get the same result as before�
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��� The Vacuum Structure

The expression for the e�ective superpotential has two branches for the two
signs of the square root� These correspond to the two classical vacua� One
can make an expansion for small 
�

m�S in both branches to recover Nc vacua
in the one branch and Nc � � vacua in the other� This is the expected
result from the semiclassical analysis since we expect the unbroken gauge
symmetries to con�ne in the IR�

The quantum vacua are at the critical points of Weff 
 i�e� they satisfy

log

�
���Nc

SNc

�
�

�
�
�

�

r
� �

��

m�
S

�	
� � � ������

This can be simpli�ed to

�S�Nc�� � �SNc�� � z � � � �S �
S

���
� z � ���

��

m�
� ������

From this equation it is possible to understand the quantum parameter
space� It is given as the complex surface
 associated to the analytic con�
tinuation in z of the gaugino condensate S � ��� �S�z��

Naturally
 from the polynomial equation we expect �Nc�� sheets� There
is an order �Nc�� branching point at z �� and an order Nc�� branching
point at z � �� The remainingNc branching points are double points located
at the roots of the equation

zNc � ���Nc
�Nc � ��Nc��Nc

Nc

��Nc � ���Nc��
� ������

At the double points two zeros of the polynomial ������ coincide
 such that
its �rst derivative vanishes� Since this is equivalent to the second derivative
of the superpotential
 we generally expect massless glueballs at these points�
This implies that the mass gap disappears at those points
 unless the K�ahler
potential also gets singular�

At the point z � � we expect to �nd a clear distinction of Higgsed and
un�Higgsed quantum vacua� And actually for small z the above equation
factorizes to SNc�� � ����Nc��� � � �where we used z����Nc��� � ����Nc����

and SNc � ���Nc � �� These give Nc � � vacua for the Higgsed branch and
Nc for the un�Higgsed one with the appropriate scales �� and ���

Circling z � � corresponds to rotating the scale ����Nc��� and thus
changes from one quantum vacuum to the next in the Higgsed branch �see
Fig� ��� Circling the bulk branch points changes from quantum vacua in the
Higgsed branch to the un�Higgsed one �see Fig� ��� If we take z to be large

then the �Nc�� vacua arrange themselves symmetrically on a circle and the
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Figure �� Monodromy around z � � for G � SU���� we follow the positions of the vacua
in the S plane as we take a small� not completely closed circle around z � �� The un	
Higgsed vacua� corresponding to the smaller outer circles� are not interchanged� whereas
the big circle corresponds to the four Higgsed vacua which get interchanged as we change
the phase of z�

monodromy at in�nity z � ze��i exchanges them in a Z�Nc�� symmetric
manner� So at z � � both branches look similar
 which seems natural
 as
the minima of Wtree degenerate �z � � is like m � ��� The structure of
the quantum parameter space for other models has been discussed recently
in ���
 ��
 ����

The Massless Limit

It is interesting to analyze the massless limit of our SQCD model� As
stated above this corresponds to the limit z � � in the quantum param�
eter space� From the analysis of the quantum parameter space we expect
that the two branches join to give the �Nc � � vacua� Indeed
 the e�ective
superpotential ������ has a �nite m� � limit on both branches and we can
recover the �Nc� � vacua from either branch� If we start on the un�Higgsed
branch �the � branch of ������� and take the massless limit we obtain

Weff � S log ��Nc�� �

�
Nc �

�

�

�
S �

�
Nc �

�

�

�
S logS �

�

�
S log ��

�

�
S log � �

������

Minimizing with respect to S gives the �Nc � � vacua

S � e
��ik

�Nc��


����Nc��

� �
�Nc�� � ������
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Figure �� Here we can see the motion of the vacua of the SU��� theory in the S plane
as we vary the parameter z along a small circle around a root of �
����� The un	Higgsed
vacua correspond to the smaller outer circles� whereas the bigger� inner circles correspond
to the Higgsed vacua� Most interesting is the rightmost big circle in which we can see the
exchange of an un	Higgsed with a Higgsed vacuum�

We can compare this result with the A�eck�Dine�Seiberg analysis of the
same system� In this approach the exact e�ective superpotential� in the
massless case is given by

WADS
eff � �Nc � ��

�
��Nc��

M

� �
Nc��

� �M� � ����	�

Looking for the mesonic vacua we �nd

M �

�
��Nc��

��

� �
�Nc��

e
��ik

�Nc�� � ������

As expected the vevs ������ and ������ satisfy the Konishi relation

��hMi�S � S � � � ����
�

obtained from ����� in the massless limit� We thus get a nice picture of the
�Nc � � vacua of the massless model if we think of them as obtained in the
massless limit of a massive model�

�The ADS superpotential can also be obtained from our glueball superpotential by a
Legendre transform in m and subsequent integrating out of S�
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��� SU�Nc� with Nc � Nf � �

We will now turn to a generalization of the above procedure to the case
of Nc � Nf � �
 with a simple tree level superpotential� The e�ective
superpotential can be derived again with the use of the Konishi relations�
With the superpotential at hand
 we investigate the vacuum structure of the
model� Many of the classical vacua turn out to be connected in the quantum
parameter space�

The model we consider is SU�N� SQCD with Nf �avors and tree level
superpotential


Wtree � m trM � � trM� � ������

with M the meson MI
J � �Qi

IQ
J
i � This superpotential breaks the U�Nf �	

U�Nf � �avor symmetry to a diagonal SU�Nf �� The diagonally embedded
U���B is responsible for the baryon number conservation�

The classical vacua can be understood in terms of the meson �eld M �
First
 we rotate the meson matrix MJ

I to diagonal form by �avor rotations�

Then the tree level superpotential allows that N�
f eigenvalues sit at zero and

N�
f at the minimum M I

I � �m
��� �With the condition N�
f �N�

f � Nf ��
In total we have Nf choices to distribute the eigenvalues of the meson�

Starting from a classical vacuum �N�
f � N

�
f � we have a clear expectation

of the quantum theory for the parameter in the range m
�
 �� and m

�� That is
 for energies much higher than the meson expectation values
M I

I � �m
�� and the squark masses m
 we expect to see SU�Nc� gauge
dynamics with Nf almost massless quarks� �We assume an appropriate
UV�completion of the above tree level potential�� Lowering the scale below
the squark masses and the meson expectation values
 but still above �
 we
expect to �nd pure SU�Nc�N

�
f � supersymmetric gauge dynamics with scale

����Nc�N
�

f
� � ��Nc�NfmN�

f ���
m�N
�

f � Finally
 for energies below �� one
�nds con�nement with Nc �N�

f supersymmetric vacua� Starting from this
well known vacuum structure we will extend the knowledge of the vacuum
structure to the case m
� 
 �� and m 
 � in the following�

To this end we have to use the Konishi relations� The �avor dependent
Konishi anomaly variation �QI

i � �IJQ
J
i leads to

mMI
J � ���M��I

J � �JI S � ������

We can solve for the diagonal entries of the meson M � Here we pick N�
f

eigenvalues to converge to the vacuum M � � and N�
f eigenvalues to con�

verge toM � �m
�� in the classical limit
 S � �� This amounts to choosing
branches for each of the eigenvalues in ������� The traces then have the vac�



CHIRAL RINGS� SUPERPOTENTIALS AND ��� ���

uum expectation values

htrMiS � �N�
f

m

��

�
�

�
�
�

�

r
� �

��

m�
S

�
�N�

f

m

��

�
�

�
�
�

�

r
� �

��

m�
S

�

htrM�iS � N�
f

m�

���

�
�

�
�
�

�

r
� �

��

m�
S

��

�N�
f

m�

���

�
�

�
�
�

�

r
� �

��

m�
S

��

�

Note that this will break the diagonal SU�Nf � �avor symmetry to SU�N
�
f �	

SU�N�
f �	 U���
 leaving �N�

f N
�
f massless Goldstone bosons�

In order to �nd the e�ective superpotential we can integrate the two
gradient equations

�Weff

�m
� htrMiS �

�Weff

��
� htrM�iS � ������

By matching the integration constant
 such that the appropriate VY poten�
tial is reproduced in the limit m
�
 �� and m
 �
 we can determine the
e�ective superpotential

Weff � NcS

�
� log

S

���
� �

�
�Nf �

S

�
�
m�

��
� � �N�

f �N�
f �

m�

��

r
� �

��

m�
S �

�S log

�

��
�
�
�

�

r
� �

��

m�
S

�N�

f
�
�

�
�
�

�

r
� �

��

m�
S

�N�
f

�
� � ������

This e�ective superpotential does not depend on the massless Goldstone
modes
 since they are true moduli by symmetry� This is like integrating out
the radial direction in a Mexican hat potential�

The scales in this model are the UV scale �
 the scale �� for the theory
with Nf massive quarks around Q � �
 and the scale �� for the theory with

N�
f massive quarks around Q � � and N

�
f Higgsing quarks


���Nc � ��Nc�NfmNf � ����Nc�N
�

f
��m�
���N

�

f � ������

The Vacuum Structure

Let us understand this result better in the limit of small S� One �ndsNc�
N�
f vacua with the appropriate scale plugged in� By analytic continuation
in the parameter space
 we can change the sign of the square roots
 i�e�
exchange the role of N�

f and N
�
f � Then for small S we �nd Nc�N�

f vacua

corresponding to N�
f Higgsing squarks� As in the case Nf � �
 these classical

vacua are smoothly connected in the quantum parameter space�
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The critical points of Weff are the supersymmetric ground states of the
theory� For a given branch of Weff they are given by the following equation
for S


log

�

 ���Nc

SNc

�
�

�
�
�

�

r
� �

��

m�
S

�N�
f
�
�

�
�
�

�

r
� �

��

m�
S

�N�
f

�
� � � � ������

For Nf 
 Nc this has Nc � N�
f solutions� However
 we have to take into

account that the � and � branches can be distributed in

�
Nf

r

�
di�erent

ways on the Nf meson eigenvalues� Hence
 the total number of vacua is

NfX
r��

�Nc � r�

�
Nf

r

�
� ��Nc �Nf � �

Nf�� � ������

The Case Nf � Nc

We would like to discuss now the above results for the special case Nf �

Nc� More speci�cally we consider the two branches� N
�
f � � and N

�
f � Nc�

In the �rst branch all meson vevs are zero at the classical level
 the gauge
group is unbroken and con�nes in the IR giving rise to Nc vacua� In the
second case all meson vevs are non�zero
 the gauge group is broken to nothing
and classically there is a unique ground state�

Now we look for the quantum vacua by analyzing ������� It turns out
that the N�

f � � case has Nc solutions and the vevs are given by

S � e��i k�Nc ���
�
� � e��i k�Nc

����

m

�
�

htrM iS � e��i k�Nc Nf �
� � ����	�

with ��m � ���� In the limit of small ��
�

m the gaugino condensate reduces

to S � e��i k�Nc ���
 the vacua of pure SU�Nc� gauge dynamics� There are

Nc points m
�� � �e��i k�Nc��
 where the gluino condensate vanishes�

The other case with N�
f � Nc is more subtle but a careful analysis of

������ shows that there is an extremum at S � � under the condition that�
����
�

m�

�Nc

� �� These are no new solutions
 but just the points with S � �

from ����	�� The fact that the gauge group is completely broken on the
N�
f � Nc branch is consistent with the vanishing of the gluino condensate�

We see that the full parameter space has Nc sheets
 where each of them
has two distinguished points
 one corresponding to a vacuum of pure SU�Nc�
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gauge dynamics and the other to a fully Higgsed vacuum� We will �nd this
structure useful when considering dynamical SUSY breaking�

We would like to close this section with the observation
 that the expec�
tation value of the meson M satis�es�

DetM � ��Nc � ������

all over the parameter space� On the other hand we can consider the gener�

alized Konishi variation �QI
i � 	ij����jNc

	IJ����JNc �Qj�
J�
� � � �Q

jNc

JNc
which leads to

the relation

�mNc � ��trM�B � �� ����
�

where B � detQ is the baryon� This implies B � �� Similarly
 we can show
that �B � �� This shows the validity of the relation

detM �B �B � ��Nc � ������

��� More General Wtree

Let us now illustrate how to implement more general tree level superpoten�
tials

Wtree�M� �

nX
j��

gj
j
M j � ������

in SQCD with Nf � �� In that case the Konishi constraint yields

nX
j��

gjhMijS � S � ������

This equation has n solutions for hMiS � Inserting this into the gradient
equations

�Weff

�gj
�
�

j
hMijS ������

one can solve for Weff � To see that these gradient equations are integrable

we have to show
 that there is no curl in the �ow� First note

� �
�

�gk

�
�X

j

gjhMijS � S

�
A �

�
�X

j

jgjhMij��S

�
A �hMiS

�gk
� hMikS � ������

�Although we have discussed only the extremal cases N�

f � � and N�

f � Nc the
quantum constraint from �
�

� can be veri�ed also for a generic eigenvalue distribution
for Nf � N�

f �N�

f � Nc�
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Using this we get

�

�gk

�

j
hMijS � �

hMij�k��SP
l lglhMil��S

� ������

This shows that the �ow is integrable� The integral is again �xed up to
a function only of S
 which has to be �xed by asymptotic behavior� Here
we have n asymptotic regions� One asymptotic region has unbroken SU�Nc�
gauge group
 i�e� Nc con�ning vacua� In each of the other asymptotic regions
the gauge group is Higgsed down to SU�Nc���
 i�e� there are Nc�� vacua

giving rise to a total of n�Nc � �� � � vacua�

The Massless Limit Revisited

We can now use a more general tree level superpotential to calculate
the e�ective superpotential for the massless case� We use a technique that
will be crucial in dealing with dynamical supersymmetry breaking and with
chiral models where no mass term is possible�

Our aim is to calculate the e�ective superpotential for a tree level super�
potential

Wtree � �M� � ������

One possibility in this model is to add a mass term
 apply our technique and
then send m� � as we have already done in a previous section� The other
possibility which is applicable also for chiral models
 is to add a tree level
term which gives a classical vacuum where the gauge group is Higgsed� We
will take

Wtree � �M� � �M� � ����	�

The classical vacua are then M� � � and M� � ��
��� If we solve the
Konishi relations as usual we get �for the Higgsed branch�

Weff � �
��

��
�
��

��

r
� �

��

��
S � �
�S log��

��
�S log �� �
�S log �� �

r
� �

��

��
S� � C�S� � ������

On the Higgsed branch we can easily match it to the Veneziano�Yankielowicz
potential for SU�Nc � ��
 whereas on the un�Higgsed branch a matching
seems impossible due to the massless �avors�

Introducing the strong gauge dynamics
 we �x the full e�ective superpo�
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tential to

Weff � S log ��Nc�� � �Nc � ��S log S � �Nc � ��S �

�
��

��
�

��

��

r
� �

��

��
S �

�

�
S log��

�

�
S log ��

�
�

�
S log

�
�

r
� �

��

��
S � �

�
� S log � �

S

�
� ����
�

where the upper sign corresponds to the Higgsed branch and the lower sign
to the un�Higgsed one�

We want to recover the e�ective superpotential for the case � � ��
This limit is not sensible on the Higgsed branch since its vacua run o� to
in�nity� The crucial ingredient is that the full superpotential also knows
about the un�Higgsed branch
 so we can just change the branch and take
the limit �� � there� If we do that we indeed recover the result ������� This
approach will be used later for the chiral model and models with dynamical
supersymmetry breaking�

� Gauge Group G� with Three Flavors

In this subsection we will study N � � SQCD with exceptional gauge group
G�� We will concentrate on the case with three �avors in the real funda�
mental � representation� This case is instructive because it requires the
introduction of a baryon operator in addition to mesons
 it has an instan�
ton generated superpotential ���
 �	� and exhibits an interesting vacuum
structure �����

��� The E
ective Superpotential

Using the primitive invariants of G� we can construct seven gauge invariant
operators� Six of them correspond to mesons

XIJ � �ijQi
IQ

j
J � �����

where XIJ is a symmetric matrix
 and the seventh operator is the baryon

Z � �ijk	IJKQ
i
IQ

j
JQ

k
K � �����

where �ijk is the G� invariant three�tensor which also appears in the multi�
plication table of imaginary octonions� Note that capital letters
 I� J�K �
�� �� �
 denote �avor indices whereas small letters
 i� j� k � �� � � � � 

 denote
gauge indices�
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For vanishing tree level superpotential the classical theory possesses a
U��� �avor symmetry� For concreteness we will study the theory in the
presence of the tree level superpotential

Wtree � mIJXIJ � �Z � �����

By a �avor rotation we can always make the mass matrix mIJ diagonal
 but
as a further simpli�cation we assume that all masses are equal

mIJ � m�IJ �����

which leaves a SO��� �avor symmetry unbroken� From here on we will

therefore
 consider the I� J indices as SO��� indices�

Let us now analyze the extrema of the model with this tree�level super�
potential at the classical level� The F�term constraints read

Qi
I � �

��

�m
�ijk	IJKQ

j
JQ

k
K � ���	�

whereas the D�term constraints are

�IJQ
i
IT

a
ijQ

j
J � � � �����

The T a are generators of G� in the fundamental representation� They furnish
a subset of the SO�
� generators and hence are anti�symmetric in i� j� There
are two solutions to ���	� and ������ in the �rst Qi

I � � and the gauge

symmetry is unbroken
 in the second Qi
I � ��m

�� �
i
I 
 after �avor and gauge

transformations
 which leaves an SU��� gauge symmetry unbroken� In the
semi�classical regime the matter �elds are all heavy and can be integrated
so that the total number of quantum vacua is the sum of the Witten indices
of G� and SU��� SYM� This means that we expect six con�ning vacua with
broken chiral symmetry�

In order to construct the Konishi anomaly relations and its generaliza�
tions we have to consider two kinds of transformations�

Qi
I � Qi

I � 	 �JIQ
i
J � ���
�

and

Qi
I � Qi

I � 	 	IJK�
ijkQj

JQ
k
K � �����

By contraction of the variations with �W
�Qi
I we obtain the tree�level con�

tributions to the Konishi anomaly which can be expressed as classical con�
straints for the gauge invariant meson and baryon operators

�mXIJ � ��IJZ � � � �����
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and

����XI
I �

� �XIJXIJ� � �mZ � � � ������

In these variables the two vacuum solutions turn out to be

XIJ � Z � � � ������

and

XII � m�
�� � XIJ � � for I �� J � Z � ��m�
�� � ������

Taking into account the one�loop exact correction to the Konishi anomaly
we �nd�

�mXIJ � ��IJZ � � S �

����XI
I �

� �XIJXIJ� � �mZ � � � ������

In particular the second line
 which corresponds to a generalized Konishi
anomaly
 does not receive quantum corrections in this particular case� The
two solution to these quantum relations are�

XIJ � x�IJ � Z � ���
�

m
x� � x� � �

�

����

�
�m� �

p
m� � ����mS

�
�

������

where the x � x� corresponds to the classical vacuum with vanishing vevs
and x � x� corresponds to the Higgsed vacuum with non�zero vevs� Using

�Weff

�m
� �hxiS and

�Weff

��
� hZiS � ���

�

m
hxi�S � ����	�

we can solve for the perturbative part of the e�ective superpotential

Weff �
m�

����

�
��

r
��

����

m�
S

�
�

�S log

�
��

r
��

����

m�
S

�
� �S logm� � C�S�� ������

Matching this in the UV to the G� theory with three fundamental chiral
multiplets we can �x C�S�� We �nd

Weff � �S

�
� log

S

���
� �

�
�

m�

����

�
��

r
��

����

m�
S

�
�

S � �S log

�
�

�
�
�

�

r
��

����

m�
S

�
� ����
�

�Note that the � in front of the gluino operator S is due to the fact that the index of
the fundamental 
 representation of G� is �� whereas the fundamental of SU�N� has index
��
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where ���� � ��m�� Looking at the leading S log S terms for the two possible
branches of the square roots in ����
� we �nd � � � extrema
 hence
 there
are six vacua as expected �����

��� The Vacuum Structure

The quantum vacuum manifold is described by the extrema of ����
�� Com�
bining both branches one is led to the polynomial equation

�
�S� � �S �

z

�

��
�S� � �S �

z

�

�
� � � �S �

S

���
� z � ���

����

m�
� ������

The complex surface de�ned by equation ������ has six sheets and there are
branch points at z �� and at the roots of z� � �	�

���

Figure �� The trivial monodromy around z � � as seen in the �S plane� The un	Higgsed
vacua� corresponding to the smaller outer circles� are not interchanged� whereas the two
circles in the middle correspond to the two Higgsed vacua which move around each other
but come back to itself�

In order to understand the physics near the critical points we study the
monodromies around them� The situation near z � � is depicted in Fig� ��
More precisely we are taking a small loop around z � � and see
 contrary
to the case of SQCD
 that the monodromy is trivial� The four un�Higgsed
vacua of the unbroken G� theory correspond to the four outer vacua and
stay where they are� The two vacua in the middle of the picture
 which
correspond to the vacua where G� is Higgsed to SU���

�
 loop around each
other but eventually return to their starting positions� In the limit z � � the

�Generically this SU��� theory con�nes and has two vacua� but we call them Higgsed
vacua here to distinguish them�
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gluino condensate S goes to zero
 but this is not related to the appearance
of a chirally symmetric vacuum� Actually
 the two vacua show run�away
behavior as can be seen by inspecting the meson vevs and Weff which both
are driven to in�nity in this limit�

More interesting are the critical points located at the roots of z� �
�	�

��� In Fig� � it can be seen that three of the un�Higgsed G� vacua
�outer circles� and one of the Higgsed vacua �circle in the center� remain at
their original location� However
 in the big circle on the right hand side of
the picture we see the exchange of one Higgsed with one un�Higgsed vacuum�

Figure �� Monodromy around z � ��
p
�
 as seen in the �S plane� The un	Higgsed vacua

correspond to the smaller outer circles� whereas the bigger inner circle corresponds to a
Higgsed vacuum� Most interesting is the rightmost big circle in which we can see the
exchange of a un	Higgsed with a Higgsed vacuum�

Finally
 we discuss the monodromy at z ��� For large z the six con�n�
ing
 chiral symmetry breaking vacua arrange themselves symmetrically on
a circle� However
 the monodromy z � ze��i does not exchange the vacua
in a Z� symmetric fashion but rather acts like a Z� rotation on two groups
of three vacua
 i�e� vacua are simultaneously exchanged in the sequence
�� � � � 	 � �� and �� � � � � � ��� This behavior can also be
anticipated by the fact that the equation for the quantum parameter space
������ factorizes� To summarize
 the combined actions of the monodromies
permute the six vacua which are organized in two groups of three but does
not lead to exchanges between the two groups�
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� A Chiral SU��� Model

In this section we apply the developed methods to chiral theories� We will
start with a model that has well�de�ned supersymmetric ground states at
the quantum level
 and defer the study of the interesting case of dynamical
supersymmetry breaking to a later section�

For concreteness we consider the case of SU��� with two antifundamen�
tals �QI and one antisymmetric tensor X ��

 ��
 ��
 ���� The relevant gauge
invariant operators are

T � �IJ �Q
I
i
�QJ
jX

ij � �	���

and

U � PfX � Xi�j�Xi�j�Xi�j��i�j�i�j�i�j� � �	���

where the capital I� J � �� � denote �avor indices and the small i� j denote
color indices� We want to �nd the e�ective superpotential for a theory with
the following tree level superpotential

Wtree � hT � gU � �	���

The classical vacuum is given by T � U � �� Since this is a chiral model we
cannot introduce mass terms for the matter �elds� We thus cannot separate
the gauge dynamics from the dynamics of the light �elds at a perturba�
tive level and the matching to a one loop calculation will in general fail�
Therefore
 we try the technique we have already applied successfully to the
massless SQCD case in section ���� A deformation of the tree level superpo�
tential will give a classical vacuum where the gauge group is Higgsed� If all
the light matter degrees of freedom are eaten up by the Higgs mechanism
we can reliably match the e�ective superpotential below the Higgsing scale
to a one loop calculation in the remaining gauge group�

We will argue that the following deformation of the tree level superpo�
tential will give us a classical vacuum with the desired properties

Wtree � hT � gU � �TU � �	���

The classical vacua have to satisfy the F��atness conditions

hT � �TU � � �

hT � �gU � ��TU � � � �	�	�

which have two solutions T � U � � and T � � g
� 
 U � �

h
� � In addition we

have to satisfy the D��atness conditions

�Qy
j
I
�QI
i �

�ji
�
�Qy
k
K
�QK
k � �X

y
ikX

kj �
�ji
�
Xy

klX
lk � �	���
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where we have taken into account that the SU��� generators are traceless�
Using gauge and SU��� �avor rotations we can parametrize the solution to
these equations as follows�

�Q �

�
� � � � � �
� � � � � �

�
� X �

�
BBBBBB�

� �� � � � �
��� � � � � �
� � � �� � �
� � ��� � � �
� � � � � ��
� � � � ��� �

�
CCCCCCA

�

�	�
�

where D��atness requires j�j� � �j��j� � �j��j��

From this we can see easily that the gauge group is broken to Sp����
First the �Q break SU��� � SU��� and the subgroup of SU��� that leaves
invariant the lower four�by�four block of X is Sp���� At the same time �	
out of the �
 matter �elds are eaten up by the Higgs mechanism� The two
remaining matter �elds are massive singlets under the Sp���� Hence
 at low
energies the theory becomes pure glue�

The anomalous Konishi variations give

hT � �TU � S �

hT � �gU � ��TU � �S � �	���

with S � � �
���� trfW�W

� such that we have

T �
g

��

�
���

s
� �

��

gh
S

�
�

U �
h

��

�
���

s
� �

��

gh
S

�
� �	���

The perturbative part of the e�ective superpotential can then again be
determined by using gradient equations
 it turns out to be

Weff �
gh

��

�
���

s
� �

��

gh
S

�
� S log gh� �S log

�
�

�
�
�

�

s
� �

��

gh
S

�
� C�S� �

�	����

As can be seen from �	��� the upper ��� sign corresponds to the un�Higgsed
branch
 whereas the lower ��� sign corresponds to the Higgsed branch�

To determineC�S� we match the e�ective superpotential to the Veneziano�
Yankielowicz potential of the �classically� unbroken gauge group on the Hig�
gsed branch� We know that on the Higgsed branch below the Higgsing



��� BRANDHUBER� ITA� NIEDER� OZ� AND R �OMELSBERGER

scale the theory is described by pure Sp��� glue� If we take for the purpose
of matching the bare parameters g � h then the unique Higgsing scale is
 � T ��� � U��� � ��g
������ The strong coupling dynamics of Sp��� are
described by

WV Y � �S

�
� log

S

���
� �

�
� �	����

where the scale �� of the Sp��� is related to the scale �� of the SU��� by
the usual matching of scales at the Higgsing scale  as�

��
 

���

�

�
��
 

��

� �	����

Demanding that the e�ective superpotential reproduce the potential �	����
below O�S�� we �x the C�S�� We �nd the full e�ective superpotential

Weff � �	S log
S

���
� �S � �S log � �

�S log gh�
gh

��

�
���

s
� �

��

gh
S

�
�

��S log

�
�

�
�
�

�

s
� �

��

gh
S

�
� �	����

If we want to recover the superpotential for the theory with � � � we have to
go to the un�Higgsed branch which corresponds to the upper ��� sign� We
emphasize again that we have used the semiclassical region of the Higgsed
branch to determine the integration !constant" C�S�
 but once we have
obtained the full e�ective superpotential we can use its analytic structure
and move freely among the branches�

In the �� � limit on the un�Higgsed branch we thus obtain

Weff � 	S

�
� log

S

���
� �

�
� S log gh � �	����

This e�ective superpotential precisely reproduces the 	 vacua which were
found e�g� in ���� by instanton calculations

S � ��� �gh�
�
� e��ik�� � �	��	�

� Dynamical SUSY Breaking

We now want to see how the chiral ring and the Konishi anomaly can be used
to understand theories with dynamical supersymmetry breaking� Naively
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we cannot apply the method we used in the previous sections
 since there
is no supersymmetric vacuum� However
 one can deform the original tree
level superpotential to get supersymmetric vacua in which we can make a
reliable calculation of the e�ective superpotential� One can then analyze the
behavior of the vacua when switching the deformation o� again�

To be speci�c we discuss a variant of the Izawa�Yanagida�Intriligator�
Thomas �IYIT� model ���
 ��� which features dynamical supersymmetry
breaking �DSB�� The model is N � � supersymmetric Sp�Nc� gauge theory
with �Nf � ��Nc��� fundamental chiral multiplets Q

i
a
 �a � �� ���� �Nc� i �

�� ���� �Nf �
 and a gauge singlet chiral multiplet Sij
 which is antisymmetric
in the indices i� j� The gauge invariant matter �elds of this theory are the
mesonM ij � QiQj and Sij� Note that we will denote both the gauge singlet
and the glueball super�eld by S� However
 the former always carries �avor
indices
 so no confusion should arise� We consider the above theory with a
tree level potential given by

Wtree � �SijM
ij �mJ ijSij � �����

where J � �lNf
� i�� is the symplectic form� This model has been studied

in ����� The e�ective superpotential is

Weff � X


Pf M � ��Nc��

�
� �SijM

ij �mJ ijSij � �����

Integrating out the Lagrange multiplier �eld X and the gauge singlet Sij we
get�

Pf M � ��Nc��� M �
m

�
J � �����

From these equations it follows that the above superpotential has a minimum
only when

�m
�

�Nc��
� ��Nc�� � �����

This is the condition on the bare parameters for unbroken supersymmetry�

��� Massive Deformation

We now turn to the problem to derive ����� without knowing the super�
potential ������ In order to guarantee the existence of a supersymmetric
vacuum
 we can deform the tree level superpotential in such a way that
there is a classical vacuum in which all matter becomes massive� This al�
lows to implement the strong IR dynamics and the full quantum theory has

�The Pfa�an of M is de�ned here as Pf M � �

�N
f
Nf �

�i�j������jNfM
i�j� ���M

iNf
jNf � such

that Pf J � ��
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supersymmetric vacua� When turning those deformations o�
 we will see

that all the vacua run away
 unless ����� is satis�ed�

We deform the above theory by giving the gauge singlets Sij a mass
�SijS

ij� The tree level superpotential is

Wtree � �SijM
ij �mJ ijSij � �SijS

ij � ���	�

where Skl � SijJ
ikJ jl� This potential has many vacua� Two of them will

be important in the following� The vacuum with all squarks massless at
M ij � m

� J
ij and Sij � �� It exists also for � � �� The other one is the

massive vacuum
 with Q � � and Sij � � m
���J

���ij � Around the second
classical vacuum we can integrate out the massive �elds
 such that in the IR
we are left with pure gauge theory�

To obtain the Konishi relations we consider the variations ��Q
i � 	ijQ

j


and ��Sij � 	ij
lmSlm� These give rise to the following respective relations

��hSijM
kjiS � �ki S �

�hSijM
kliS �mJklhSijiS � ��hS

kliShSijiS � � � �����

After straightforward algebra one can solve for the expectation values of
the chiral operators


Sij � �A� i���ij � Aab � �ab

�
m

��
� �a

r
m�

����
�

S

��

�
� a� b � �� ���� Nf �

M ij � �mJ ij � ��Sij�
� � ���
�

where we used �avor rotations to bring A to diagonal form and �a denotes a
choice of a vector with components ��� The number of �� entries in �a will
be denoted by N�

f � Note that N
�
f � � corresponds to the massive vacuum


as can be seen in the classical limit of S small� N�
f � Nf corresponds to the

classical vacuum
 which exists also for � � ��

The expectation values of the chiral composites then read


hSijM
ijiS � Nf

S

�
� �����

hJ ijSijiS � N�
f

m

�

�
�

�
�
�

�

r
��

��S

m�

�
�N�

f

m

�

�
�

�
�
�

�

r
��

��S

m�

�
�

hSijS
ijiS � N�

f

m�

���

�
�

�
�
�

�

r
��

��S

m�

��

�N�
f

m�

���

�
�

�
�
�

�

r
��

��S

m�

��

�

Integrations with respect to the various parameters then gives the pertur�
bative part of the e�ective superpotential W pert

eff � By matching W
pert
eff to the



CHIRAL RINGS� SUPERPOTENTIALS AND ��� ��


VY potential
 which describes the pure gauge dynamics around the classical
vacuum Q � � and Sij � �

m
���J

���ij 
 gives the following e�ective superpo�
tential


Weff � �Nf �

�
S log

��

S
� �

�
�NfS log

�
�S

�m

�
�Nf

�
m�

��
�
S

�

�

��N�
f �N�

f �
m�

��

r
��

��

m�
S �

�S log

�


�
�

�
�
�

�

r
��

��

m�
S

�N�

f
�
�

�
�
�

�

r
��
��

m�
S

�N�
f

�
�������

The derivative �SWeff �S� � � then leads to

log

�

� m

���

�Nf

r

�
�

�
�
�

�

r
��
��

m�
S

�N�

f
�
�

�
�
�

�

r
��
��

m�
S

�N�
f

�
��� � ������

For N�
f � Nf this can be solved explicitly to give

S � e��ik��Nc�����
m�

�

�
�� e��ik��Nc����

��

m

�
�

Sij � �
m

��

�
�� e��ik��Nc����

��

m

�
�J���ji �

M ij � e��ik��Nc��� �� J ji � ������

In total we �nd Nc � � vacua for each point of the parameter space� The
massive vacuum can be found in the limit of small ���
m� The classical
vacuum which exists also for � � � corresponds to the points m
��� �

e��ik��Nc����

For generic points in the parameter space with N�
f arbitrary the zero

mass limit gives run�away vacua� Only for N�
f � Nc � � and m
��� �

e��ik��Nc��� we �nd �nite expectation values in the �� � limit� The vacuum
with S � Sij � � and M ij � e��ik��Nc����� J ij stays �nite
 whereas the
Nc other vacua still run away� We recover the quantum constraint on the
parameters ������

As is by now familiar we expect to recover ����� directly if we calculate
the e�ective superpotential for the theory with � � � by switching branches
and taking the limit �� �� The other branch corresponds to N�

f � Nf and

sending � to zero gives

Weff � NfS log
���

m
� ������
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It is interesting that S appears just as a Lagrange multiplier for the con�
straint ����� in this superpotential� A similar appearance of S in the e�ective
superpotential was observed in �����

This method can be generalized to other models with dynamical super�
symmetry breaking� A mass term will typically produce a supersymmetric
quantum vacuum� In the limit of turning o� the mass
 one can see how the
quantum vacua run away
 except for some vacua
 which might stay �nite for
certain choices of the other parameters� We can see here the mechanism by
which the Witten index jumps
 when the highest couplings in the tree level
superpotential are switched o��

��� An Alternative Derivation

In this section we will derive ����� using the Konishi anomaly without using a
mass deformation� Our strategy will be to assume unbroken supersymmetry

so that we can use the Konishi anomaly relations and derive an e�ective
superpotential as a function of S� Minimizing this e�ective superpotential
with respect to S should lead to ������

To obtain the Konishi relations we consider the variations ��Q
i � 	ijQ

j


and ��Sij � 	ij
lmSlm� These give rise to the following respective relations

��hSijM
kjiS � �ki S �

�hSijM
kliS �mJklhSijiS � � � ������

The equations ������ contain a lot of valuable information� As usual
 they
enable us to derive the dependence of Weff on the bare parameters� Rewrit�
ing ������ as

�Weff

��
� Nf

S

�
�

�
�Weff

��
�m

�Weff

�m
� � � ������

we can solve for Weff to get

Weff �S� ��m� � NfS log
�

m
�C�S� � ����	�

However
 due to the factorization of the chiral vevs we can also rewrite the
conditions in ������ as

�hSijiShM
kjiS � �ki S �

�hSijiShM
kliS �mJklhSijiS � � � ������

and solve for hSijiS and hM ijiS � We get

hM ijiS �
m

�
J ij� hSijiS �

�

�

S

m



J��

�
ji
� ����
�
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We have now gathered enough information to turn to the derivation of the
full Weff �S� ��m�� First
 we think of �Sij as a mass for the fundamental
chiral multiplets and integrate them out� This will give us an e�ective super�
potential as a function of �S� Sij � ��m�� Note that in this model the canonical
mass term for the fundamentals is �

�mijQ
iQj such that the canonical mass

is expressed as mij � ��Sij � A perturbative evaluation then yields

W pert
eff � � �Nc � ��S log

�

�
� S logPf

�
��

�
Sij

�
�W ����S� Sij � ��m� �

������

Note that we have already taken into account the contribution of the bare
coupling � enabling us to replace the UV cuto� by the dynamically generated
scale� The part W ��� will be determined by the requirements that �a� the
extremal value of Sij satisfy the second equation of ����
� and that �b�
the superpotential obtained after integrating out Sij have the appropriate
dependence on the bare parameters ����	�� Both requirements uniquely �x
the e�ective action to

W pert
eff � � �Nc � ��S log

�

�
� S logPf

�
��

�
Sij

�
�mJ ijSij � ������

Indeed
 after integrating out Sij and replacing the �rst part by the appro�
priate Veneziano�Yankielowicz term
 we �nd

Weff � �Nc � ��S

�
log
��

S
� �

�
� S logPf

�
�S

m�



J��

�
ji

�
�NfS � ������

which has the appropriate dependence on the bare parameters� After taking
into account that Nf � Nc � � the e�ective superpotential simpli�es to

Weff � �Nc � ��S log
���

m
� ������

This is the expected expression ������� Minimizing with respect to S gives
the relation �m

�

�Nc��
� ���Nc��� � ������
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A Proof of One Loop Exactness of the Konishi Anomaly

In this appendix we want to show how the proof for the one loop exactness
of the generalized Konishi anomaly works� We follow the idea of �	�� We
concentrate on the normal Konishi anomaly for SQCD with one �avor for
concreteness� It is easy to generalize this proof to other cases�

There are two �avor symmetries U���Q and U��� 	Q together with an

R�symmetry U���R� Those symmetries are broken by the tree level super�
potential and by anomalies� By promoting the coupling constants to chiral
super�elds
 which transform under those symmetries
 we can restore those
symmetries� The charges are summarized in the following table

U���Q U��� 	Q U���R
Q � � �

�
�Q � � �

�
W� � � �
m �� �� �

�
� �� �� ��

�
��N�� � � �N � �

�

�A���

We want to calculate the lowest component of the Konishi anomalies for

Q �� Q� 	Q and �Q �� �Q� �	 �Q� �A���

Let us concentrate on the �rst Konishi anomaly� We want to calculate the
divergence of the supercurrent associated with the �rst transformation in
�A���

�D�J � �D�QyeVQ �
�Wtree

�q
q �O��� ��� �A���

in a slowly varying background gaugino �eld� The lowest component of this
expression is a chiral operator� This chiral operator depends �modulo �Q
exact operators� only on other chiral operators and it depends only holo�
morphically on the coupling constants� Furthermore we assume
 a smooth
weak coupling behavior
 i�e� the coupling constants can only appear with
positive integer powers� The scale � can only appear in positive integer pow�
ers of ��N��
 because the leading non�perturbative e�ects at weak coupling
are due regular instantons and
 in particular
 we do not expect fractional
instantons to contribute� We also assume
 that all �elds can only appear
with positive powers
 i�e� that there is no singularity at the origin in �eld
space�

The divergence �D�J has the charges ��� �� ��� Charge conservation then
gives constraints on the powers in which all the �elds and coupling constants
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can appear

nQ

�
� ��

�
�

�
A� n 	Q

�
� ��

�
�

�
A� nW�

�
���
�

�
A� nm

�
�����

�
�

�
A� n�

�
���
��
��

�

�
A� n
�N��

�
� �

�
�N��

�

�
A �

�
���
�

�
A

�A���

The �rst two equations imply n 	Q � nQ� Subtracting four times the �rst

equation from the third equation
 we get

nW� � �nm � �n� � ��N � ��n
�N�� � �� �A�	�

For N � � this implies
 that n
�N�� � �
 i�e� there are no nonperturbative
contributions� This
 together with the �rst equation of the charge conserva�
tion
 leaves us with three kinds of solutions

nQ n 	Q nW� nm n� n
�N��

�� � � � � � �
�� � � � � � �
�� � � � � � �

�A���

We now need to determine
 which kinds of diagrams can contribute in
each of those three cases� To this end we need to look at the Feynman rules�
Since we want to calculate correlators with only chiral �elds as external legs

which depend holomorphically on the coupling constants
 there are only
three kinds of vertices
 that can contribute�


 The vertex of the current

�Wtree

��
� � �A�
�


 The vertex due to the superpotential

��Wtree

��
�� �A���


 The coupling to the gaugino

�yW��
� � �A���

The �rst two kinds of vertices come with a coupling constant
 whereas
the third kind corresponds to the insertion of background gaugino �eld�
Therefore
 the number of vertices in a diagram is given by

V �
X
j

ngj � nW� � �A����
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where the coupling constants are denoted by gj � The number of propagators
can be determined by counting the number of internal legs on those vertices

P �
�

�

�
�X

j

ngj lj � �nW� � n�

�
A � �A����

where lj is the number of legs �bosonic and fermionic� on the vertex j� We
can combine those two results to get the number of loops L in a diagram


L � � � P � V � � �
�

�

�
�X

j

ngj �lj � ��� n�

�
A � �A����

Inserting the previous results �A��� into this formula we see
 that there
are only tree level and one loop diagrams contributing to the lowest compo�
nent of the Konishi anomaly
 i�e� the anomaly is one loop exact and we can
trust our expressions� This argument can easily be generalized to theories
with di�erent gauge groups and matter content
 and also to the generalized
Konishi anomaly� It is easy to see that a su�cient condition for the one loop
exactness of the generalized Konishi anomaly is

�C�adj� �
X
I

�C�rI� � �� �A����

where the sum is over all matter �elds and �C�r� is the index of the rep�
resentation r� This condition is satis�ed in most of the cases we study�
However
 if �A���� is not satis�ed
 one needs to study the full set of charge
conservation equations
 in analogy to �A���� Sometimes the one loop ex�
actness can fail
 e�g� for too small gauge groups or for a su�ciently large
number of external legs
 � dependent terms can appear
 which correspond
to non�perturbative corrections to Konishi anomalies� We have not found
an argument for the absence of such terms in general
 but for the purpose
of calculating superpotential such corrections do not appear in the examples
studied in this paper�

	This is the number of momentum loops� not the number of index loops in a ribbon
graph�
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