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Abstract

In this paper we survey three approaches to computing the homology of a finite
dimensional compact smooth closed manifold using a Morse-Bott function and discuss
relationships among the three approaches. The first approach is to perturb the function
to a Morse function, the second approach is to use moduli spaces of cascades, and the
third approach is to use the Morse-Bott multicomplex.

With respect to an explicit perturbation (which can be used to derived the Morse-
Bott inequalities), the first two approaches yield the same chain complex up to sign.
The third approach is fundamentallyfidgirent. It combines singular cubical chains
and Morse chains in the same multicomplex, which provides a way of interpolating
between the singular cubical chain complex and the Morse-Smale-Witten chain com-
plex.
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1 Introduction

Functions with non-isolated critical points often arise in situations where there is some sort
of symmetry or a group action. In such situations the concept of a Morse-Bott function and
the homology groups associated to a Morse-Bott function developed by Raoul Bott in the
1950’s have proved to be extremely useful [9] [10] [13].

A Morse-Bott functionf : M — R on a finite dimensional compact smooth closed man-
ifold M is a function that is nondegenerate in the directions normal to its critical subman-
ifolds (Definition 3.1). Bott found several applications of relationships he discovered be-
tween the Betti numbers of the critical submanifolds of the Morse-Bott fundtiand the
Betti numbers of the underlying manifoM. These relationships are encoded in the Morse-
Bott inequalities (Theorem 3.5), which generalize the Morse inequalities (cf. Section 3.4
of [3]). A Morse function is a Morse-Bott function with isolated critical points, and the
Morse inequalities give relationships between the critical points of the Morse function and
the Betti numbers of the underlying manifold.

The theory developed by Marston Morse in the 1920’s originally gave information about
the Betti numbers of manifolds [35], but more modern versions of Morse theory determine
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CW-structures and chain complexes. In particular, the Morse Homology Theorem, which
was proved several decades after the Morse inequalities, says that the critical points and
gradient flow lines of a Morse function determine a chain complex that computes the ho-
mology of the underlying manifold. The Morse inequalities follow as a direct consequence
of the Morse Homology Theorem (cf. Section 3 of [5]), and thus one would expect that
the chain complex determined by a Morse function should contain more information and
have more applications than the Morse inequalities. This is indeed the case. Numerous
applications of the Morse chain complex and its infinite dimensional analogues, pioneered
by Floer, have been found in manyf#irent contexts.

Correspondingly, one would expect that a chain complex determined by a Morse-Bott
function that computes the homology of the underlying manifold should contain more in-
formation and have more applications than the Morse-Bott inequalities. However, to find
these applications one must first understand how a Morse-Bott function determines a chain
complex. This understanding is complicated by the fact that there are seviradmti chain
complexes associated to a Morse-Bott function, and there are multiple ways that a Morse-
Bott function can be used to compute the homology of the underlying manifold.

In this paper we will survey three of the many approaches that have been discovered for
using a Morse-Bott function to construct a chain complex that computes the homology of
the underlying manifold. The following three approaches to Morse-Bott homology will be
discussed, together with relationships among the three approaches.

1. Perturb the Morse-Bott function to a Morse function and use the Morse-Smale-Witten
chain complex of the perturbed function.

2. Pick auxiliary Morse functions on the critical submanifolds and use the cascade chain
complex defined using the auxiliary functions.

3. Use the Morse-Bott multicomplex, which provides a common framework for both
Morse chains and singular cubical chains.

In Section 3 we will explain how the first approach can be used to prove the Morse-Bott
inequalities following [5]. In Section 4 we will describe the construction of the cascade
chain complex and explain how the cascade chain complex can be viewed as the Morse-
Smale-Witten chain complex of a specific perturbation of the Morse-Bott function follow-
ing [7]. Section 5 will discuss the Morse-Bott multicomplex developed by Banyaga and
Hurtubise using singular cubical chains and fibered product constructions [6]. The Morse-
Bott multicomplex is fundamentally fierent from other approaches to Morse-Bott homol-
ogy. It provides a common framework for singular cubical chains and Morse chains, and
thus it provides a way of interpolating between the singular cubical chain complex and the
Morse-Smale-Witten chain complex.

Other approaches to Morse-Bott homology that will not be discussed in detail in this pa-
per include: the spectral sequence associated with the filtration of the manifold determined
by a Morse-Bott function, the de Rham cochain complex of Austin and Braam [2], and the
Morse-Bott chain complex defined using currents due to Latschev [30]. One common dis-
tinguishing feature of both Morse and Morse-Bott homology is that the boundary operators
that define the homology are expressed in terms of moduli spaces of gradient flow lines.
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We will not discuss the spectral sequence associated with the filtration of the manifold be-
cause currently there is no known way to relate thEedentials in that spectral sequence to
moduli spaces of gradient flow lines.

The paper by Austin and Braam [2] was a source of inspiration for the results discussed
in Sections 3 and 5, and connections with their work are discussed in those sections. (A pa-
per by Fukaya [24] also served as a source of inspiration for the results discussed in Section
5.) However, the Austin-Braam approach usefedéntial forms to construct a comulti-
complex that computes the de Rham cohomology of the manifold with reéficients,
whereas the three approaches discussed in detail in this paper all concern homology with
integer coéficients. Finally, the Morse-Bott chain complex defined by Latschev [30] is part
of the program of Harvey and Lawson [25] to approach Morse theory using the de Rham-
Federer theory of currents. Although their approach to Morse theory is very interesting, it is
also quite diferent from the other approaches discussed in this paper and will not be further
reviewed.

2 The Morse-Smale-Witten chain complex

In this section we briefly recall the construction of the Morse-Smale-Witten chain complex
and the Morse Homology Theorem. For more details see [3].

Let Cr(f) = {p e M|df, = 0} denote the set of critical points of a smooth function
M — R on a finite dimensional smooth manifol. A critical point p € Cr(f) is said to
be nondegeneratef and only if the HessiarHp(f) is nondegenerate. Thedex 1p of a
nondegenerate critical poiqt is defined to be the index of the symmetric bilinear form
Hp(f), i.e. the dimension of the subspaceTgM whereH(f) is negative definite. If all
the critical points off are non-degenerate, théns called aMorse function.

If f:M — R isa Morse function on am-dimensional compact smooth Riemannian
manifold (M, g), then thestable manifold W{(p) and theunstable manifold W{(p) of a
critical point p € Cr(f) are defined to be

WE(p)
Wi (p)

{xe M{lim ¢i(X) = p)
{xeM| lim ¢i(x) = p}

where g is the 1-parameter group of flBomorphisms generated by minus the gradient
vector field, i.e.—Vf. The Stabl@Jnstable Manifold Theorem for a Morse Function says
that the tangent space psplits as

ToM=TMaTyM
where the Hessian is positive definite BjM dﬁprW]?(p) and negative definite ongM def
TpW{(p). Moreover, the stable and unstable manifoldg afe surjective images of smooth
embeddings
ES:ToM - WP(p)c M
EV:TUM — WH(p)c M.
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Hence,Wg(p) is a smoothly embedded open disk of dimensior 1,, andW(p) is a
smoothly embedded open disk of dimensign

If the stable and unstable manifolds of a Morse functio — R all intersect transver-
sally, then the functiorf is calledMorse-Smale For any metriggy on M the set of smooth
Morse-Smale functions is dense in the space of all smooth functioné by the Kupka-
Smale Theorem (cf. Theorem 6.6 and Remark 6.7 of [3]), and for a given Morse function
f : M — R one can always find a Riemannian metriclrso thatf is Morse-Smale with
respect to the chosen metric (cf. Theorem 2.20 of [1]). MoreovérisfMorse-Smale and
p,q e Cr(f) thenWs(g, p) = W{(9) nW§(p) is an embedded submanifold igif of dimension
Aq—Ap, and wheng - 1, = 1 the number of gradient flow lines fromto p is finite (cf.
Corollary 6.29 of [3]).

If we choose an orientation for each of the unstable manifolds, dhen there is an
induced orientation on the normal bundles of the stable manifolds. Thus, we can define an
integer associated to any two critical poimt&ndq of relative index one by counting the
number of gradient flow lines from to p with signs determined by the orientations. This
integer is denoted bw;(q, p) = #M:(q, p), where M;(q, p) = Ws(g, p)/R is the moduli
space of gradient flow lines dffrom g to p. TheMorse-Smale-Witten chain complexs
defined to be the chain complek.(f),d.) whereCy(f) is the free abelian group generated
by the critical pointsy of indexk and the boundary operaté : Cy(f) — Cy_1(f) is given
by

aa@ = D ni@pp

peCry-1(f)

whereCry_1(f) denotes the set of critical points with indiex 1.

Theorem 2.1(Morse Homology Theorem)The pair(C.(f),d.) is a chain complex, and
the homology ofC.(f),d.) is isomorphic to the singular homology.(V;Z).

Note that the Morse Homology Theorem implies that the homologZoff(), 0.) is inde-
pendent of the Morse-Smale functidn M — R, the Riemannian metric, and the chosen
orientations.

There are many dierent ways to prove the Morse Homology Theorem. The approach
in [3] uses the Conley index and Conley’s connection matrix to give an explicitisomorphism
between the Morse homology groups and the singular homology groups. Another approach
is to first show that the unstable manifolds of a Morse-Smale fundtidd — R determine
a CW-structureX on M, and then show that the chain compl€x (X),5¢") determined by
the CW-structure is the same as the Morse-Smale-Witten chain con@le?,©.). Both of
these steps are nontrivial. For instan@g" is induced from a connecting homomorphism
in the homology exact sequence of a triple, wher@ass defined by counting gradient
flow lines. (See Section 7.1 of [3] for a more complete discussion of the technical details
encountered when using this approach.)

However, in spite of the diculties, it is possible to prove that the unstable manifolds
of a Morse-Smale functiofi: M — R determine a CW-structupé on M and the following
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diagram commutes
a
Ci(f) —= Ca(f)

NP

c 02 ¢, ()

for everyk € Z,, where the vertical maps are induced by identifying critical points with
their unstable manifolds. For more details concerning this approach see the recent papers
by Qin [36] [37] and the references therein. For a list of other approaches to proving the
Morse Homology Theorem see the introduction to [3].

3 Perturbing a Morse-Bott function to a Morse function

The chain groups in the Morse-Smale-Witten chain complex are finitely generated because
a Morse functionf : M — R on a finite dimensional compact manifold has a finite number

of isolated critical points. If the critical points df are not isolated, them has an infi-

nite number of critical points and the Morse Homology Theorem does not apply. In this
case, some additional assumptions/anduxiliary data are required to construct a chain
complex, a multicomplex, or a spectral sequence.

Let f : M — R be a smooth function whose critical set ©r¢ontains a submanifol@d
of positive dimension. Pick a Riemannian metricdrand use it to spliT.M|c as

whereT,C is the tangent space Gfandv.C is the normal bundle . LetpeC,V e T,C,
W e TpM, and letHp(f) be the Hessian of at p. We have

Ho(F)(V,W) = V- (W- ) =0

sinceV, € TpC and any extension o/ to a vector fieldV satisfiesd f(W)|c = 0. Therefore,
the HessiaH(f) induces a symmetric bilinear fortay(f) onv,C.

Definition 3.1. A smooth functionf : M — R on a smooth manifold/ is called aMorse-
Bott function if and only if the set of critical points Cf{ is a disjoint union of connected
submanifolds and for each connected submanifld Cr(f) the bilinear formH(f) is
non-degenerate for gl e C. The Morse-Botindex of a critical submanifoldC C Cr(f) is
defined to be the index ¢f(f) for anyp e C.

Note: The Morse-Bott index is well defined by the Morse-Bott Lemma (cf. Section 3.5 of
[3]).

A well known theorem says that on a compact closed smooth manifold the space of
smooth Morse functions is open and dense in the space of all smooth functions (cf. Theorem
5.31 of [3]). So, one approach to computing homology from a Morse-Bott function would
be to perturb the Morse-Bott function to a Morse function and apply Theorem 2.1 (Morse
Homology Theorem) using a metric & such that the perturbed function is Morse-Smale
with respect to the chosen metric.
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Perturbing a Morse-Bott function to a Morse function using abstract perturbations and
defining a Morse-like chain complex associated to the perturbed function is a standard tech-
nique used in gauge theory with respect to the Chern-Simons functional and in Floer theory
with respect to the symplectic action functional. In the setting of a Morse-Bott function
f: M — R on a finite dimensional orientable compact smooth manifdldAustin and
Braam defined a more explicit perturbationfafM — R to a Morse functior: M — R by
introducing Morse functions on the critical submanifolds [2].

Austin and Braam used their perturbation technique to compare the homology of a fil-
tered cochain complexC(, 0*) they defined using éierential forms on the critical subman-
ifolds of a Morse-Bott-Smale functioh: M — R (Definition 4.4) with the Morse-Smale-
Witten cochain complex@*(h) ® R,d*) of the perturbed functioh : M — R (Proposition
3.10 of [2]). Austin and Braam’s cochain compleX*(9*) has the structure of a comulti-
complex (Definition 5.1), which determines a spectral sequence coming from the filtration
[27]. By exhibiting a chain morphism between the filtered cochain complé€xgd*) and
(C*(h)®R, ") that induces an isomorphism of tle terms of the spectral sequences de-
termined by the filtrations, Austin and Braam prove that there is also an isomorphism on
the E* terms, and hence an induced isomorphism on the homology of the filtered cochain
complexes. This proves that both cochain complexes compute the de Rham cohomology of
M.

Corollary 3.9 of [2] states without proof that the polynomial Morse-Bott inequalities
follow from the fact that the comulticompleC{,d*) computes the de Rham cohomology
of M. A proof of the Morse-Bott inequalities along those lines would most likely involve an
analysis of the spectral sequence determined by the comulticomplex, and hence would not
be as immediate as proving that the polynomial Morse inequalities follow from the existence
of a CW-complex determined by the Morse function or the Morse Homology Theorem (cf.
Section 3.4 of [3] and Section 3 of [5]). However, Banyaga and Hurtubise showed in [5]
that it is possible to apply the perturbation technique used by Austin and Braam together
with the polynomial Morse inequalities to prove the polynomial Morse-Bott inequalities
without appealing to the full Morse-Bott multicomplex.

The polynomial Morse-Bott inequalities

Let M be a compact smooth manifold of dimensionand define thé&!" Betti number
of M, denotedby, to be the rank of th&" homology groupHy(M;Z) modulo its torsion
subgroup. Letff : M — R be a smooth Morse function avl, and letvx denote the number
of critical points off of indexk forallk=0,...,m.

Definition 3.2. ThePoincaré polynomial of M is defined to be
m
P(M) = > bitk,
k=0

and theMorse polynomial of f is defined to be

M(f) = Zmlvktk.

k=0
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For a proof of the following theorem using the fact tHatM — R determines a CW-
complex homotopic tdM with vk cells of dimensiork for all k=0,...,msee Section 3.4 of
[3]. For a similar proof that uses the Morse Homology Theorem instead of the CW-complex
see Section 3 of [6].

Theorem 3.3(Polynomial Morse Inequalities)For any Morse function ft M — R on a
compact smooth manifold of dimension m we have

Mi(f) = Pe(M) + (1 +DR()

where Rt) is a polynomial with non-negative integer gigents. That is, R) = Zﬂjolrktk
where i € Z satisfiesg>0forallk =0,...,m- 1.

Now let f : M — R be a Morse-Bott function, and assume that

|
cr(h = |ci,
j=1

whereCay,...,C are disjoint connected critical submanifolds.

Definition 3.4. The Morse-Bott polynomial of is defined to be
[
MB(f) = ) P(Ct"
=1

where; is the Morse-Bott index of the critical submanifdj andPy(C;) is the Poinca
polynomial ofC;.

Bott proved a version of the following result stated in terms of Betti numbers of homol-
ogy with local codficients in an orientation bundle in place of any orientation assumptions
[9] [11].

Theorem 3.5 (Morse-Bott Inequalities)Let f: M — R be a Morse-Bott function on a
finite dimensional orientable compact smooth manifold, and assume that all the critical
submanifolds of f are orientable. Then there exists a polynon{@/virth non-negative
integer cogficients such that

MB(f) = Py(M) + (1L + t)R(t).

Bott proved his version of this theorem by studying how the homotopy type of the
“half-spaces”MY = f~1(-c0,y] change as/ crosses critical values. In [5], Banyaga and
Hurtubise gave a proof of Theorem 3.5 via a dynamical systems approach by expanding on
the perturbation technigue used by Austin and Braam in [2].
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Outline of the Banyaga-Hurtubise proof

Chose a small tubular neighborhobgaround each connected componéng Cr(f) for all
j=1,...,1 with local coordinatesy, v, w) consistent with those from the Morse-Bott Lemma
(cf. Section 3.5 of [3] or [4]). Pick a Riemannian metric bhsuch that the charts from
the Morse-Bott Lemma are isometries with respect to the standard Euclidean méRAi¢ on
and then pick positive Morse functioriis: C; — R that are Morse-Smale with respect to the

restriction of the Riemannian metric @ for all j = 1,...,l. The Morse-Smale functions
f; : Cj — R exist by the Kupka-Smale Theorem.
Foreveryj = 1,...,| extendf; to a function onTj by makingf; constant in the direction

normal toC;. LetT; c T; be a smaller tubular neighborhood®jfwith the same coordinates
asTj, and letp; be a smooth nonincreasing bump function that is constant in the direction
parallel toCj, equal to 1 orTj, and equal to 0 outside dfj. For a smalk > 0 the function

h: M — R given by
|
h= f+s[2pjfj}
=1

is a Morse function close té, and the critical points ofi are exactly the critical points of
the f; for j=1,...,1. Moreover, ifp € Cj is a critical point off; : C; — R of index/l’p, then

p is a critical point ofh of index /IB =Aj+ /1{3. A well-known folk theorem (cf. Section
2.12 of [1]) says that it is possible to perturb the Riemannian metriMavutside of the
union of the tubular neighborhoods for j = 1,...,I so thath satisfies the Morse-Smale
transversality condition with respect to the perturbed metric.

This explicit perturbation and choice of metric makes it possible to compare the Morse-
Smale-Witten chain complex d¢f with those off; for j = 1,...,1. In particular, for every
n=0,...,mwe have the following description of th# Morse-Smale-Witten chain group
of hin terms of the Morse-Smale-Witten chain groups of théor j=1,...,1.

Ca(h) = € cu(f)

Aj+k=n

Now let M(fj) denote the Morse polynomial df : C; — R, and note that the relation
A = 5 + A}, implies that

|
Me(h) = > My(f)tt.
=1
The polynomial Morse inequalities (Theorem 3.3) say that

Mi(h) = Pe(M) + (1 + )Ra(t)

and
M (fj) = P(Cj) + (1 +t)Ry(t)

where R, (t) and R;(t) are polynomials with non-negative integer foments for all j =
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1,...,1. This leads to the following straightforward computation.

|
D P(Cyth
=1

MB(f)

-

=1

' |
Z Mt(fj)tﬁj —(2+1) Z R (Ot
j=1 =1

Mi(fj) = (L+ R (t)]tﬂi

|
= M(h)- @+ > RiotY
=1

|
= P(M)+(L+DR(D) - (1+1) > Ry(O)t"
=1

|
= P(M)+(1+1) [Rh(t) - YRy (t)tﬁi]
=1

It remains to show that the polynomial multiplying €X) in the last line has non-
negative integer cdicients. This is accomplished by first noting that the proof of the
polynomial Morse inequalities from the Morse Homology Theorem shows that the polyno-
mial R;(t) is given by

Ri(®) = Z(vi —Z)t
k=1

wherecj =dim Cj, vlj< =rankCy(f;), andz‘i is the rank of the kernel of the boundary operator

62 : Ck(fj) = Ck-1(fj) in the Morse-Smale-Witten chain complexfpf C; — R. The proof

of Theorem 3.5 is then completed by using the close relationship between the dynamics of
the gradient flow lines of, f;, andhto show thafs; ,x_n2, > Z) foralln=1,...,m, where

21 is the rank of the kernel of the boundary operaipr Cyx(h) — Cy_1(h) in the Morse-
Smale-Witten chain complex ¢f: M — R.

Comparison with Bott’s proof

Bott's proof of the polynomial Morse-Bott inequalities was based on studying what he
called “half-spacesMY = f~1(-c0,y] [12]. The homotopy type oY is the same on any
intervala < y < b that doesn’t contain a critical value, and whecrosses a critical value
the homotopy type changes by the attachment of disk bundles whose dimensions are given
by the Morse-Bott indexes of the critical submanifolds in the levefs&t) (cf. Appendix
B of [20]).

Bott’s original version of the polynomial Morse-Bott inequalities avoided any orienta-
tion assumptions by using Betti numbers with localfiogents in an orientation bundle in
place of the standard Betti numbers. The orientation bundles of the critical submanifolds he
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considered are determined by disk bundles given by the unstable part of the gradient flow
near the critical submanifolds. When these disk bundles are orientable the Betti numbers
with local cosdficients in the orientation bundles reduce to the standard Betti numbers of the
critical submanifolds. For more details see the original papers by Bott or Appendix C of
[20].

It is interesting to note that Bott’s version of the Morse-Bott inequalities reduces to
the conclusion of Theorem 3.5 when the disk bundles given by the negative part of the
gradient flow near the submanifolds are orientable, whereas the proof given by Banyaga
and Hurtubise assumes thisit and the critical submanifolds are orientable. That is, the
tangent space d¥l along a critical submanifol@ has a decomposition

T.M=T.Cev,Cev.C,

and Banyaga and Hurtubise assumed tha¥l andT..C are orientable in order to prove
Theorem 3.5. On the other hand, it is the assumption that the bun@lés orientable

that allows one to conclude that the Betti numbers with locafftments in the orientation
bundle used by Bott reduce to the Betti numbers considered in Theorem 3.5. These two
conditions are distinct whery C is not orientable.

4 Cascades

A second approach to computing homology using a Morse-Bott function involves intro-
ducing Morse functions on the critical submanifolds and defining chain groups generated
by the critical points of the Morse functions that agree with those defined in the previous
section. However, the boundary operator is defined by counting the number of “cascades”
between two critical points of relative index one, which are defined without reference to the
perturbed function. Roughly speaking, a cascade between two critical points is a concate-
nation of some gradient flow lines of the Morse-Bott function and pieces of the gradient
flow lines of the Morse functions on the critical submanifolds. Cascades were introduced
by Frauenfelder in [22] [23], and cascade-like objects were introduced independently in the
context of holomorphic curves by Bourgeois in [14] [15]. Cascades have since been used
by several authors studying symplectic and contact homology [15] [16] [17] [19]. We begin
our discussion of cascades with the following definitions from [7].

Cascades and Morse-Bott-Smale transversality

Let f : M — R be a Morse-Bott function on a finite dimensional compact smooth manifold,
and let

|
cr(f)=] |c;.
=1

whereCay,...,C are disjoint connected critical submanifolds of Morse-Bott indgx. ., A
respectively. Letf; : C; — R be a Morse function on the critical submanifdy for all
j=1,...,1. For a critical point € C;j of fj: C; — R denote the Morse index ofrelative to
f; by /lé, the stable manifold of relative to f; by Wfsj () € Cj, and the unstable manifold
of g relative tof; by W?j (@) <C;.
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Definition 4.1. If q € Cj is a critical point of the Morse functiori; : C; — R for some
j =1,...,1, then thetotal index of g, denotediy, is defined to be the sum of the Morse-Bott
index ofC; and the Morse index af relative tofj, i.e.

Aq=Aj+ A,

Definition 4.2. Forq e Cr(f;), pe Cr(f)), andn e N, aflow line with n cascades frong to
pisa - 1-tuple:

(%) 1<k<n» (tk) 1<k<n-1)
wherex, € C*(R, M) andt, € R, = {t € R| t > 0} satisfy the following for alk.

1. Eachxy is a non-constant gradient flow line 6fi.e.
%) = (70w,
2. For the first cascade(t) we have
Jim_x(t) € Wi (@ < C;.
and for the last cascadg(t) we have
tIi_)rQ0 Xn(t) € Wi (p) € Ci.

3. For 1<k < n-1 there are critical submanifolds;, and gradient flow linegy €
C*(R,Cj,) of fj,, i.e.
SO = (VI
such that lim, . Xk(t) = Yk(0) and lim_, _o Xkr1(t) = Y (t).
Whenj =i aflow line with zero cascades fronq to p is a gradient flow line off; from g

to p.
Nor—— \U -

\\ l’l(t) yl(tl)
><, n() y N\
y1(0>
Yalts) (1)
\
\ \yz(t) CJQ
\
Y 7s(t) 2(0)
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Note: In the preceding definition the parameterizations of the gradient flowgsof
the Morse functiond;, : C;, — R are fixed in (3) by linp,. Xk(t) = yk(0), and the entryy
records the time spent flowing along the critical submanifo)d (or resting at a critical
point). However, the parameterizations of the cascaggy. .., X,(t) are not fixed. Hence,
there is an action dk" on a flow line withn cascades given by

(%)) 1<k<ns () 1<k<n-1) = (Xt + SK)) 1<k<n» (L) 1<k<n-1)
for (s1,...,S) € R".

Definition 4.3. Forq € Cr(f;), p € Cr(f;), andn € N we denote the space of flow lines from
g to p with n cascades bW;(q, p), and we denote the quotient\8f5(q, p) by the action of
R" by

MG(a. p) = Wi(a, p)/R"™.

Theset of unparameterized flow lines with cascades frormg to p is defined to be

M@, p) = | | M5(a.p)

nez,

where MG(a, p) = W;(a, p)/R. We will say that an element 0M°(q, p) beginsat g and
endsat p.

Somewhat surprisingly, under the right conditions moduli spaces of cascades have prop-
erties similar to moduli spaces of gradient flow lines of a Morse-Smale function. In partic-
ular, under various assumptions it is possible to prove M&tg, p) is a smooth manifold
of dimensioniy—1p -1, and every sequence M°(q, p) has a subsequence that converges
to a broken flow line with cascades. These two fundamental properties imply that there
are only a finite number of cascades between any two critical points of relative index one,
and hence it is possible to define a boundary opew@ftdny counting cascades. (Proving
directly thatoS o 8¢ = O requires a stronger result. Namely, tiéd€(q, p) has a compactifi-
cation consisting of broken flow lines with cascades whgn 1, = 2.)

These fundamental properties were proved by Frauenfelder in [22] under the assump-
tions that the Riemannian metric & and the Riemannian metrics on the critical sub-
manifolds meet certain generic conditions that imply that a particular Fredholm operator is
surjective. They were also proved by Banyaga and Hurtubise in [7] under the assumptions
that the Morse-Bott function satisfies the Morse-Bott-Smale transversality condition and
the unstable and stable manifolds of the Morse functions on the critical submanifolds are
transverse to certain beginning and endpoint maps.

Definition 4.4 (Morse-Bott-Smale TransversalityA Morse-Bott functionf : M — R is
said to satisfy thdlorse-Bott-Smale transversalitycondition with respect to a given Rie-
mannian metrigg on M if and only if for any two connected critical submanifol@sand
C’, W{(q) intersectdVg(C’) transversely irM, i.e. W{(q) h WR(C") € M, forallge C.

The Morse-Bott-Smale transversality condition depends on both the function and the
Riemannian metric, and it may not be possible to perturb the metric to make a given Morse-
Bott function satisfy the Morse-Bott-Smale transversality condition. For some interesting
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examples see Section 2 of [30]. This is quit&a&tient from the situation encountered with

the Morse-Smale transversality condition where it is always possible to perturb either the
function or the metric to make the condition hold. (Of course, one can always perturb
the Morse-Bott function to a Morse function to make the Morse-Bott-Smale transversality
condition hold, but that approach was already discussed in the previous section.)

Moduli spaces of gradient flow lines and cascades

There are many technical consequences of the Morse-Bott-Smale transversality condition
that have implications for moduli spaces of gradient flow lines. For instance, the moduli
space of gradient flow lines between two critical submanif@gdandCy of a Morse-Bott-
Smale functionf : M - R

Mi(Ci. Cie) = (WH(C) NWE(C)) /R

is a manifold of dimensiony — A + dim Cx — 1 (cf. Lemma 3.5 of [6]), and the beginning
point map
d- 1 M¢(Ck,Ci) — Cx

sending a gradient flow line to its starting point is a submersion (cf. Lemma 5.19 of
[6]). In fact, the moduli space of gradient flow lin@d (Cy,Cy') has a compactification
M;:(Ci,Cy) consisting of broken gradient flow lines, which is a smooth manifold with
corners, and the beginning point map

o_: /T/(f(Ck,Ck/) — Cg

is both a submersion and a stratum submersion (cf. Corollary 5.20 of [6]).

These consequences of the Morse-Bott-Smale transversality condition were used by
Banyaga and Hurtubise to construct smooth manifolds with corners defined in terms of it-
erated fibered products over the beginning and endpoint maps [6] and over the beginning
point map and the endpoint map composed with the gradient flow along the critical sub-
manifolds [7]. In the second case, the iterated fibered products can be viewed as spaces of
cascades from one critical submanifold to another. This leads to the condition that the be-
ginning and endpoint maps from the iterated fibered products are transverse to the unstable
and stable manifolds of the Morse functions on the critical submanifolds; a condition that
is always satisfied by an arbitrarily small perturbation of the Morse functions on the critical
submanifolds [7].

Theorem 4.5. Assume that f satisfies the Morse-Bott-Smale transversality condition with
respect to the Riemannian metric g on M, € — R satisfies the Morse-Smale transver-
sality condition with respect to the restriction of g tQ for allk = 1,...,1, and the unstable

and stable manifolds \}‘j\(q) and V\/fsi(p) are transverse to the beginning and endpoint maps.

1. When =0, 1the setM5(q, p) is either empty or a smooth manifold without boundary.
2. For n> 1the setM5(q, p) is either empty or a smooth manifold with corners.

3. The seM®(q, p) is either empty or a smooth manifold without boundary.
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In each case the dimension of the manifoldds- 1, — 1. When M is orientable andds
orientable for all k=1,...,1, the above manifolds are orientable.

At first glance, it may seem strange thef;(q, p) is a smooth manifold with corners for
n> 1 whereas
M@, p) = | M@ p)

nezZ,

is a smooth manifold without boundary. However, the proof of the above theorem in [7]
shows that the smooth manifolds with corn@ar§(q, p) glue together to form the manifold
without boundaryM®(q, p), similar to the way that the manifold with boundary §§) can

be glued to £, 0) to create the manifold without boundarycp, o).

Compactness for moduli spaces of cascades

In order to define a boundary operator by counting the number of cascades between two
critical points, the compactness properties of the manifel®{q, p) must be addressed.

As one might expectM®(q, p) in general won't be compact unlesg— 1, = 1, because

a sequence inM°(qg, p) may converge to a broken flow line with cascades frgno p.
However, the precise definition of a “broken flow line with cascades” turns out to be more
subtle than the definition of a “broken gradient flow line”.

For a Morse-Bott functionf : M — R, a broken gradient flow line is simply a con-
catenation of gradient flow lines. As such, a broken gradient flow line can be repre-
sented by am-tuple (Xi,...,Xn) Wherex, is a gradient flow line off for all 1 <k<n
and lim_,c Xk (t) = lim{-_e Xk+2(t) for all 1 < k <n-1. The second condition can be inter-
preted as saying that the time spent flowing along each intermediate critical submanifold is
0, and hence there is an obvious identification of the broken gradient flow line represented
by (x1,...,Xn) with the (non-broken) flow line witin cascades &)1<k<n, (tk)1<k<n-1) Where
tc=0forall1<k<n-1.

This identification is compatible with the topology of the space of cascAd¥s, p)
and the topology of the space of broken gradient flow Iim_ds(Cj,Ci). That is, sup-
pose{yk} € M;(Cj,Cj) is a sequence of unparameterized gradient flow lines of a Morse-
Bott-Smale functionf : M — R, with d_(yx) € W}Jj(q) ¢ Cj andd.(yx) € Wy (p) ¢ C; for

all k, that converges to a broken gradient flow Iine/Tmf(W%_ (q),Wf;(p)) represented by
(X1,...,X%n). Then the proof of Theorem 4.5 shows that the sequénge viewed as a
subset ofM®(q, p), converges to the unparameterized flow line with cascades represented
by ((%)1<k<n, (tk)1<k<n-1) Wherety = 0 for all 1< k< n-1. Thus, the broken gradient
flow lines fromW‘fJj (@ cCjto Wfsi(p) C C; are already included in the space of (unbro-
ken) cascaded°(q, p) in the sense that the above identification induces an embedding
Mf(W?j (q),WfSi(p)) — M°®(q, p) making the following diagram commute.

M (W (6. W3 (P))—— s (W (). W (p)

M(a, p)
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Note: There are several equivalent ways of defining the topology on the space of broken
gradient flow Iines/\/(f(W}Jj (q),Wﬁ(p)), see Section 2 of [26] or [31] for more details.

So, what is a “broken flow line with cascades”? Upon further analysis it turns out that a
“broken flow line with cascades” should (roughly speaking) be a concatenation of unparam-
eterized flow lines with cascades that either flows along an intermediate critical submanifold
for infinite time or rests at an intermediate critical point of one of the Morse functions on
the critical submanifolds for infinite time. This description of the sp&ce(q, p) of bro-
ken flow lines with cascades fromto p (and its topology) was made precise by Banyaga
and Hurtubise in [7] by identifying the set of broken flow lines with cascades with a set of
compact subsets of a compact metric space, whose topology is determined by the fHlausdor
metric.

Definition 4.6. Let (X,d) be a compact metric space andigtandK, be nonempty closed
subsets oK. TheHausdorff distancebetweerK; andKs is defined to be

dn(K1,Kp) = max{ sup inf d(xg,X2), sup inL d(xl,xz)}

X1€K1 X2€K2 X2€K2 X1€K1

= inf{e > 0] K1 € N.(K3) andK> C N.(K3)}
whereN,(K) = Uyek {x € X[ d(x,Y) < &}.

An unparameterized gradient flow line of a Morse-Bott functionM — R can be
identified with its image irM, and this image will be a compact subsetbfliffeomorphic
to R = RU{+oo} as long as we include the limits of the gradient flow in the image. However,
an unparameterized flow line with cascades may “rest” at an intermediate critical point, and
hence the map that sends an unparameterized flow line with cascades to its image might
not be injective. In order to get an injective map one needs to keep track of thettimes
spent flowing along or resting on the intermediate critical submanifolds. This leads to a
continuous injection

ME(,p) < PEM)x T
whereP(M) denotes the space of all compact subsetsl@ndl is the number of critical
submani@gs. All these ideas can then be extended to the space of broken flow lines with
cascadesVt (g, p) by considering the images of broken gradient flow lines of the Morse

functionsfy : Cx — R on the critical submanifolds and allowing theto beco. From this
point of view, the topology on the space of unparameterized broken flow lines with cascades

is the topology the set inherits as a subspace®oiM) xﬁl, i.e. the topology determined by
the Hausddt metric.

In [7] Banyaga and Hurtubise used these ideas to prove the following theorem.

Theorem 4.7. The spac&c(q, p) of broken flow lines with cascades is compact, and there
is an injection that restricts to a continuous embedding

M@, p) > M (g, p) (M) xR .

Hence, every sequence of unparameterized flow lines with cascades from g to p has a sub-
sequence that converges to a broken flow line with cascades from q to p.
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The following fundamental property is a straightforward consequence of this theorem.

Corollary 4.8. If 1q—1p =1, thenM(q, p) is compact and hence a finite set.

The cascade chain complex

We are now in a position to use the moduli spadd$(q, p) to define a cascade chain
complex C¢(f),0°) whose boundary operator is determined by counting cascades. Let
Cr= U'J-:lcr(fj) be the collection of critical points of the Morse functiofis. C; — R,
let Cry  Cr be the collection of critical points whose total indexjsand letCi(f) be the
free abelian group generated by the elementSrin We would like to define a boundary
operator

95 CE(f) - CELy()

by counting the number of elements M °(q, p), whereq € Crx andp € Cry_1, either over
Zy or overzZ with signs determined by some orientations.

The approach taken in [21] is to count the cascades@yewnhich gives a chain com-
plex that computes the homology ifwith codficients inZ,. One reason for only counting
the cascades mod 2 in [21] is that the approach used there to construct the moduli spaces
MC(q, p) doesn’t readily yield orientations on the moduli spaces. In contrast, the approach
used by Banyaga and Hurtubise to prove Theorem 4.5 shows that the moduli spaces are
orientable wherM and the critical submanifolds are orientable, and it is possible to define
a coherent system of orientations for the moduli spaces.

However, even though it would be possible to define a coherent system of orientations
for the moduli spaced1°(q, p), the main theorem in [7] is a correspondence theorem that
says that wheny —Ap = 1 there is a bijection

ME(a, p) & Mn, (9, p)

between the moduli space of cascades and the moduli space of gradient flow lines of the

perturbed function
|
h, 9" +8[ij f,-]
=1

discussed in Section 3 far > 0 suficiently small. So, the approach taken in [7] is to
use the Correspondence Theorem to transfer the orientatiofndia, p) to M(q, p) and
then define the boundary operatijroverZ by counting cascades with signs given by the
induced orientations.

This approach shows immediately ti#§t d¢ = 0 and

H,.(CS(f),8%) ~ H.(C.(hy), ™) ~ H.(M;Z).

Moreover, it proves that the chain complex defined using cascades is the same as the Morse-
Smale-Witten chain complex of the perturbed functipn M — R, i.e. the generators of

the two chain complexes are the same and the boundary operators agree up to sign. This is
a much stronger result than the statement that the two chain complexes compute the same
homology.
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Remark. It should be noted that Bourgeois and Oancea used a similar approach to orienting
moduli spaces of cascades in the context of symplectic homology [16] [17]. That is, they
proved a correspondence theorem between moduli spaces of cascades and moduli spaces
of flow lines of a perturbed function, and then they oriented the moduli spaces of cascades
using their Correspondence Theorem. In particular, see Theorem 3.7 (Correspondence The-
orem) in [17] and the discussion that follows.

Proving the Correspondence Theorem using the Exchange Lemma

The proof of the Correspondence Theorem in [7] has several steps. Starting with a Morse-
Bott functionf : M — R, a Riemannian metrig on M such thatf satisfies the Morse-Bott-
Smale transversality condition with respectgt@nd are > 0 small enough so that a list of
conditions are met, Banyaga and Hurtubise first show that there exists a small perturbation
of the metric to a metrig Such that, : M — R satisfies the Morse-Smale transversality
condition with respect tg for all 0 < &’ < &. The perturbation can be chosen small enough

so thatf satisfies the Morse-Bott-Smale transversality condition with respegata the
hypotheses of Theorem 4.5 still hold. Hence, there exists a mgtiech that moduli
spaces of cascades are defined bndsatisfies the Morse-Smale transversality condition
forallO<¢ <e.

Banyaga and Hurtubise then prove the following lemma.

Lemma4.9.LetpgeCrwithAg—1p=1andlet0O<e <e. Ifhy :M—->Randh.:M—-R
are Morse-Smale with respect to the same Riemannian metric, then the number of gradient
flow lines of i from g to p is equal to the number of gradient flow lines ofrbm q to p.

This lemma shows that with respect to the perturbed mgtfiorii above there is a trivial
cobordism

M, (9, p) X (0,€]

such that
th(q’ p) X {8/} ~ th/ (q’ p)

for all 0 < &’ < &. The next step is to analyze what happeng’as 0. This is sometimes
referred to as “degenerating the asymptotics”.

Lemma 4.10. Let {¢,};7, be a decreasing sequence such that &, < ¢ for all v and
lim, &, =0. Let gp € Cr, and suppose that,, € My, (g, p) for all v. Then there ex-
ists a broken flow line with cascades ﬂc(q, p) and a subsequence fim(y,,)};” ,; that
converges to Iify) in the Hausdaoff topology.

The proof of this lemma (which does not requitg— 1, = 1) uses techniques similar to
those used to prove that the space of broken flow lines with cascades is compact with respect
to the Hausddf topology (Theorem 4.7). If we use the Hausffitmpology on

) M (@p) (M)

£€(0,e]

(where an element o¥1, (g, p) is identified with its image, includingandp), then Lemma
4.10 says that the boundary of this space is contained in the union of the images of the
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cascades inV°(qg, p). However, it is still possible that two distinct sequences of gradient
flow lines fromq to p might converge the same cascade’as> 0 or some of the cascades

in M°®(qg, p) might not be near any of the gradient flow lineshpf, even where’ > 0 is
extremely small. So, the proof of the Correspondence Theorem requires a much more
detailed analysis than is provided by Lemma 4.10.

To conduct this more detailed analysis Banyaga and Hurtubise turned to the Exchange
Lemma, which can be viewed as a generalization of Palleemma. Thel-Lemma applies
to a critical pointp of a Morse-Smale system, and it says (roughly speaking) tizatsfan
invariant submanifold that intersedf¥S(p) transversally theWV!(p) must contain points
that are close ttN. TheA-Lemma is an essential tool for the dynamical systems approach
to studying compactified moduli spaces of Morse-Smale flows (cf. Sections 6.2 and 6.3 of
[3]), and the Exchange Lemma allows the dynamical systems approach to be extended to
Morse-Bott-Smale systems.

The Exchange Lemma comes out of geometric singular perturbation theory, and it ap-
plies to “fast-slow” dynamical systems. Following the notation in [28], a fast-slow system
of differential equations in local coordinates is of the form

/

X

y

where’ = d% xeR", yeR!, €is a real parameter, and bothandg areC* (and hence
bounded) on some neighborhood of 0. Theoordinates are called the fast variables and
they coordinates are called the slow variables because in the liraita® we have

f(x,y,€)
€g(x.y,€)

X f(x.y,0)
y =0

where thex coordinates can vary bytremains constant. Alternately, wher O is close
to 0,y is close to 0 and thg coordinates change slowly, whereas theoordinates can
change more quickly.

In the setup contained in [7], each critical submanifold has a neighborhood with coor-
dinates ¢, v,w) coming from the Morse-Bott Lemma, where theoordinates are the coor-
dinates along the critical submanifold and thea) coordinates are the coordinates in the
directions normal to the critical submanifold. The Morse function on the critical subman-
ifold depends only on tha coordinates, which are the slow variables, and the Morse-Bott
function depends only on the,{v) coordinates, which are the fast variables. In fact, the
Riemannian metric is chosen so that on a neighborhood of the critical submanifold

Vhe = Vf + &V

whereVf L V. Thus, the gradient flow equation of the Morse-Smale funclibyin the
local coordinatesy,v,w) near the critical submanifold is

VW) = (V)W)
U= &(VF)U)
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which is a fast-slow system.

Several versions of the Exchange Lemma with various levels of generality have been
proved by many dferent authors, cf. [29] [33] [40] [41]. The lemma gives a relationship
between the dynamics of a fast-slow system whenO and the dynamics of the system
whene = 0. Roughly speaking, the lemma says that a manifdéydhat is transverse to the
stable manifold/\5(C) of a normally hyperbolic critical submanifold of the system with
€ = 0 will have points that flow forward in time under the fast-slow system wit0 to be
near subsets of the unstable maniféif(C) of the system witte = 0.

With respect to the setup in [7], we have a flow line witbascades

(%) 1<k<n, (tk) 1<k<n-1)

with intermediate critical submanifolds;,,...,C;, and local coordinatesi{v,w) near an
intermediate critical submanifold;,. In the local coordinates the critical submanif@lg
consists of thes componentg(u,0,0)}, the stable manifol®Vz(Cj,) is given by the ¢,w)
components(u,0,w)}, and the unstable manifold?(C;,) is given by the ¢,v) components
{(u,v,0)}. Away from the critical submanifolds the gradient flow linggt) of f = hy and
X (t) of h, agree. However, near the critical submanif@lg the gradient oh. with £ # 0
may be nonzero in thecomponents, whereas the gradient a$ zero in theu components.
So, near the critical submanifold the gradient flow lixjgt) of h. can diverge from the
gradient flow linexk(t) of f = hq.

(t) 8

v

1

\ !

U 1
v N

The Exchange Lemma says thaMp intersectsiVi(C;,) transversally near the image
of x(t), then there must be points Mg that flow forward in time under the gradient flow of
h, with £ # 0 to be near the image af.1(t). Thus, there is a gradient flow line bf passing
throughMp whose image is near the image of the casca@ex{,1,tk). This is shown in
the diagram where the gradient flow linelgpfnear the image of the cascade is the dashed
curve lying above the unstable manifd(@, v, 0)}.



164 David E. Hurtubise

Using these ideas, Banyaga and Hurtubise proved the main theorem in [7], which im-
plies that the cascade chain complex is the same as the Morse-Smale-Witten chain complex
of h, up to sign.

Theorem 4.11(Correspondence of Moduli Spaced)et pq e Cr(h;) with Ag—1p = 1.

For any syficiently smalle > O there is a bijection between unparameterized cascades and
unparameterized gradient flow lines of the Morse-Smale functianvh— R between q
and p,

Mg, p) & Mn.(a, p).

The Correspondence Theorem allows us to identify the space of casetiig) with the
left side boundary of the trivial cobordism

M, (@, p) %[0, ],
which will have the opposite orientation as the right side boundary.

Corollary 4.12 (Correspondence of Chain ComplexeBdr & > 0 syficiently small, the
Morse-Smale-Witten chain compl@&k(hg),af") associated to the perturbation

I
h, = f+8[2pjfj]
j=1

of a Morse-Bott function f M — R is the same as the cascade chain comfX ), 5°)
up to sign. That is, the chain groups of both complexes have the same generators and
8=,

5 The Morse-Bott multicomplex

The approaches discussed in the previous sections require choosing auxiliary Morse func-
tions on the critical submanifolds in order to define a chain complex generated by the critical
points of the chosen Morse functions. The approach discussed in this section does not in-
volve choosing any auxiliary Morse functions. Instead, the chain groups are generated by
singular topological chains on the critical submanifolds. Keeping track of the degrees of
the singular topological chains, the Morse-Bott indexes of the critical submanifolds, and
homomorphisms defined using moduli spaces of gradient flow lines between the critical
submanifolds leads to an algebraic structure known as a multicomplex, which generalizes
the notion of a double complex.

Multicomplexes and assembled chain complexes

Definition 5.1. Let R be a principal ideal domain. A first quadranulticomplex X is a
bigradedR-module{X; g} pqez, With differentials

d] . Xp’q d Xp_j’q+j_1 for a” J = 0, 1,. .o

that satisfy
Z didj=0 foralln.

i+j=n
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A first quadrant multicomplex such thaf = 0 for all j > 2 is called adouble complex(or
abicomplex).

A first quadrant multicomplex looks similar to a spectral sequence, but flezatitials are
all defined on the ® page and we may hawg od; # 0 whenj > 0.

A First Quadrant Multicomplex

dy
Xo3 X13 X23 X33
do do‘&\\\\\\\ do do
\dz\ \dz\
dy cody dy
X022 X12 =——X22 X32
do do‘&\\\\\\l”do ds do
dy : % %
Xo1 X1 = X1 X31
do do\' ‘do d3 do
“d2 Sdo
dy % %
Xo,0 X10 X20 X30

A multicomplex can bassembledo form a filtered chain complex@(X)., d.) by sum-
ming along the diagonals. That is, if we define

(CX)k = @ Xpg

p+a=k

andox = do®---@dg for all ke Z,, then the relations in Definition 5.1 imply th@&to dx.1 =
0.

Note: The chain complex@X).,d.) has a filtration given by

Fs(CX) = @ Xpq

p+g=k
p<s

which determines a spectral sequence. However, fliereintials in this spectral sequence
are not necessarily induced from théfdientialsd; whenj > 2 [27].
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The Assembled Chain Complex

X30—>

s
ey
Y

I I [I Il Il
(CX)3— 2~ (CX); —2~ (CX); — 2 (CX)o —2> 0

A heuristic view of the Morse-Bott multicomplex

Let f : M —» R be a Morse-Bott-Smale function on amdimensional compact smooth
closed Riemannian manifol, and letB; C Cr(f) be the union of the critical submanifolds
of Morse-Bott index for i = 0,...,m. The compactified moduli spagel(B;, Bi_;) of broken
gradient flow lines off from B; to Bi_; for j = 1,...,i is a smooth manifold with corners
and the beginning point map

d_: M(Bi,Bi_j) — B;

is a submersion and a stratum submersion (cf. Corollary 5.20 of [6]). Thus, every smooth
mapo : P — B; from a smooth manifold with corneBis transverse and stratum transverse

to 0_, and the fibered produéxg H(Bi, Bi_;) of o andd_ overB; is a smooth manifold

with corners (cf. Lemma 5.21 of [6]).

Pxg M(Bi,Bi-j) - = = M(Bi, Bi-)
I

la_

[
v (o
P Bi

(Similar spaces were used in the proof of Theorem 4.5 on moduli spaces of cascades).
Composing the projection map onto the second component®kg M(B;, Bi_j) with the
endpoint ma@, : M(B;, Bi-j) — Bi_j gives a map

N J— d,
P xg, M(Bi, Bi_j) = M(Bi,Bi-j) — Bi_j.

Moreover, if P has dimensiorp, thenP xg, M(Bi, Bi—j) has dimensiomp+ j—1, which is
independent of the dimension of the connected compone@sandB;._;.
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Up to this point, the discussion has been rigorous. We will now make explicit an un-
warranted assumption that has been assumed implicitly by other authors (cf. [24] [32]). If
the above fibered product had a preferred finite triangulation, then summing over the re-
strictions of the above map to the simplices making up the finite triangulation would define
a singular chairdj(c) in Bi_j. Moreover, if every smooth manifold with corners under
consideration came with a preferred finite triangulation (or cubulation), then this fibered
product construction would define a homomorphigm Sp(B;j) — Sp.j-1(Bi-;j) from the
singularp-chains onB; to the singulamp + j — 1-chains onB;_;j (or singular cubical chains
if we were given preferred finite cubulations). These maps would then yield the following,
wheredg is comes from the usual singular boundary operator.

Heuristic View of the Morse-Bott Multicomplex

Sa(Bo) <2 S3(By) <2 Sa(Bp) <2 Sa(Bs)

9o | do 9o do
. \62 \(92
P o~ o~
S2(Bo) <—— S2(B1) < 52(52) <= Sy(B3)
do 5\06 : '5\06_ 95 do
2 2~
P o~ o
S1(Bo) =—— S1(B1) =~ S1(B2) ~—— S1(Ba)
do 6\06 - 3\06 o5 do
2 2~

\ .
So(Bo) <" So(Br) =" So(B2) <" So(Ba)

Of course, smooth manifolds with corners don'’t usually come with preferred triangu-
lations, and there is no preferred (or induced) finite triangulation on the fibered product of
finitely triangulated spaces (cf. Example 5.17 of [6]). Still, it might be possible to pick
finite triangulations on all the (uncountably many) spaces under consideration, prove that
the relations in Definition 5.1 hold with respect to the chosen triangulations, and then show
that the homology of the resulting assembled chain complex is independent of the chosen
triangulations. However, there seem to be many techni@tulities involved with making
this approach rigorous on the level of chains. Fortunately, by expanding the collection of al-
lowed domains for the singular chains it is possible to construct a Morse-Bott multicomplex
without choosing any triangulations.

The Banyaga-Hurtubise approach to the Morse-Bott multicomplex

Singular homology is usually defined using maps from the staridaimiplexAk. However,

other equivalent versions of singular homology have been defined using maps from domains
other thanAK. For instance, there is singular cubical homology, which is based on maps
from the unitk-cubel¥ [34], and there is also a version of singular homology based on
maps from permutahedra [39]. In order to create a singular homology theory that allows
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for even more general domains Banyaga and Hurtubise make the following definitions in
Section 4 of [6].

For each integep > O fix a setCj, of topological spaces, and I8, be the free abelian
group generated by the elementsXf i.e. Sp = Z[Cp]. SetS, = {0} if p<0orCp=0.

Definition 5.2. A boundary operator on the collectiorS. of groups{Sp} is a homomor-
phismdy, : Sy, — Sp_1 such that

1. Forp>1andP e Cy, C Sp, dp(P) = XxnkPx whereny = +1 andPx e Cp_1 is a
subspace of for all k.

2. dp-100p:Sp— Sp_2is zero.

The pair §.,0.) is called achain complex of abstract topological chainsand elements
of Sp are callecabstract topological chainsof degreep.

Definition 5.3. Let B be a topological space ammle Z,. A singular C,-spacein Bis a
continuous map : P — B whereP € C,, and thesingular Cy-chain group Sp(B) is the
free abelian group generated by the sing@gispaces. Defin8p(B) = {0} if S, = {0} or
B = 0. Elements of5,(B) are calledsingular topological chainsof degreep.

For p > 1 there is a boundary operatd : Sy(B) — Sp-1(B) induced from the boundary
operatord, : Sp — Sp-1. If o P — Bis a singulaiCp-space inB, thendp(o) is given by
the formula

OEPITYE
k

where

3p(P) = Z Nk Px.
k

The pair 6.(B),d.) is called achain complex of singular topological chains

Example: Singular N-cube chains. Pick some large positive integét and letIN =
{(X1,...,xn) €RN[O< x; < 1, j=1,...,N} denote the uniN-cube. For every & p< N let

C,, be the set consisting of the facesl dfof dimensionp, i.e. subsets of¥ wherep of the
coordinates are free and the rest of the coordinates are fixed to be either 0 or 1. For every
0< p<NletS;, be the free abelian group generated by the elemen®,ofFor P € C,

define

P
9p(P) = Y (~1)! [Plj=1— Plx=o] € Sp-1
j=1

wherex; denotes thq’th free coordinate oP. It is easy to show thal, 100, =0, and
hence the faces df¥ are abstract topological chains. Thus, a continuous ¢rapP — B
from a face ofiN of dimensionp into a topological spacB is a singulaCp-space inB, and
the boundary operator appliedd® is

p
dp(op) = Z:(—l)j |opl=1— opl=0] € Sp-1(B)
=1
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whereoply -0 denotes the restrictionrp : Ply—0 — B andoplx,-1 denotes the restriction
O-P . Pli:]_ e d B.
For instance, ifp = N = 2 the abstract topological chaif has boundary,

Ay

B,

B,
and the singula€,-spacer : 12 — B has boundary

92(0) = (-1)[ola, — ol ] + [Tl — B, ).

Note that this diers from the usual boundary operator on singular cubical chains because
there are several flerent domains of the same dimension. Normally, singular homology

is defined by picking a uniqgue domain in each dimension and then defining the boundary
operator using inclusion maps. For instance, the boundary operator on singular cubes found
in [34] is defined using the following inclusion maps whes 2.

Ay

To account for the multiple domains in each dimension, Banyaga and Hurtubise define
degeneracy relations in the form of a subgray{B) c Sy(B) that identifies maps that are
“essentially” the same. They then prove the following theorem.

Theorem 5.4(SingularN-Cube Chain Theorem)The boundary operator for singular N-
cube chaingp : Sp(B) — Sp-1(B) descends to a homomorphism

dp : Sp(B)/Dp(B) = Sp-1(B)/Dp-1(B),

and
Hp(S.(B)/D.(B),d.) ~ Hp(B; Z)

forall p <N.
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Fibered products and moduli spaces as abstract topological chains

Since most of the homomorphisms in the Morse-Bott multicomplex are defined using fibered
products of compactified moduli space of gradient flow lines, the next step is to show that
the compactified moduli spaces of gradient flow lines of a Morse-Bott-Smale function are
abstract topological chains and a boundary operator on abstract topological chains extends
to fibered products.

Let f : M — R be a Morse-Bott-Smale function on amdimensional compact smooth
closed Riemannian manifol, and letB; C Cr(f) be the union of the critical submanifolds
of Morse-Bott index fori =0,...,m. To simplify the notation in the following we will drop
the subscript o@ and assume that for eack 0,...,mthe components d; are all of the
same dimension. In general one needs to group the components by their dimension and
then define the degree and boundary operator on each group.

Definition 5.5. Let B; be the set of critical points of index For anyj = 1,...,i the degree
of M(B;,Bi_j) is defined to bg +b; — 1 and the boundary operator is defined to be

IM(B;,Bi_j) = (-1)*® Z M(Bi, Bn) xg, M(Bn, Bi_j)
i—j<n<i
whereb; = dim Bj and the fibered product is taken over the beginning and endpoint maps

In order to check thal o 9 = 0 we need to know how extends to fibered products.

Definition 5.6. Suppose thatCp}p-0 is a collection of topological spaces that is closed
under the fibered product construction with respect to some collection of maps, and assume
that S.,d.) is a chain complex of abstract topological chains based on some subset of the
collection{Cp}pso. If o = Yk Nikoik € Sp,(B) is defined fon = 1,2 whereoj : Pix — Bis

a singulaiCy, -space for alk, then thefibered product of o; ando, overB is defined to be

P1xgP2 = Z NykNzj PrkXB P2j
k.j
wherePy = 3 N1 kP1k € Sp, andP2 = 31y jP2j € Sp,. Theboundary operator applied
to the fibered product is defined to be

A(P1 xg P2) = 0P1 xg P2 + (=1)P*PPy xg 0P;.
If oj = 0 for eitheri = 1 or 2, then we defin®; xg P, = 0.

The following lemmas from Section 4 of [6] show that the fibered product of abstract topo-
logical chains is an abstract topological chain and the compactified moduli spaces of gra-
dient flow lines of a Morse-Bott-Smale function are abstract topological chains. The signs
(-1)*b and (1)P*? in Definitions 5.5 and 5.6 are essential to the proofs of these two
lemmas.

Lemma 5.7. The fibered product of two singular topological chains is an abstract topo-
logical chain, i.e. the boundary operator on fibered products is of degree -1 and satisfies
000 = 0. Moreover, the boundary operator on fibered products is associative, i.e.

0((P1xp, P2) Xg, P3) = d(P1 x, (P2 x8, P3)).
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Lemma 5.8. The degree and boundary operator fo(B;, Bi-j) satisfy the axioms for ab-
stract topological chains, i.e. the boundary operator on compactified moduli spaces of
gradient flow lines from Definition 5.5 is of degre& and it satisfie® o d = 0.

The Morse-Bott-Smale multicomplex

Fix someN > dim M, and for anyp > O let Cy, be the set consisting of the faces|&f of
dimensionp and the connected components of degreé fibered products of the form

QXBil m(Bil, Bi,) X8, ﬂ(Biz, Bi,) X, XB

In

L M(Bi, ,.Bi,)

wherem>i; >i,>--->i,>0,Qis aface o N of dimensiomg< p,c: Q— Bi, is smooth,
and the fibered products are taken with respeatamd the beginning and endpoint majs
andd,.. Lemma 5.1 of [6] shows that the elementsXfare all compact smooth manifolds
with corners. LetS, be the free abelian group generated by the elemen@,oéand let
Sy (Bi) denote the subgroup of the singulay-chain grouSp(B;) generated by those maps
o . P — B; that satisfy the following two conditions:

1. The mapr is smooth.

2. If Pe Cp is a connected component of a fibered product, thend, oz, wherer
denotes projection onto the last component of the fibered product.

Definition 5.9. Define theMorse-Bott degreeof the singular topological chains 8 (B;)
to bep+i. For anyk = 0,...,mthe group of smooth singular topological chains of Morse-
Bott degreek is defined to be

C(f) = P seiB).
i=0

If o : P — B is a singulaiCp-space inSy’(B;), then for anyj = 1,...,i composing the
projection mapr, onto the second component Bipg, M(B;, Bi-;) with the endpoint map
d. : M(Bi,Bi_j) — Bi_j gives amap

04

F’XBi m(Bi, Bi_j) E) ﬂ(Bi, Bi—j) —> Bi_j.

Lemma 5.3 of [6] shows that restricting this map to the connected components of the
fibered producP xg M(B;, Bi-j) and adding these restrictions (with the sign determined
by the orientation when the dimension of a component is zero) defines an elgieent

S%,,_1(Bij).

Definition 5.10. Fork = 1,...,m define a homomorphis@: C,(f) — Cr_1(f) as follows.
If o€ Sy (B)) is a singulaiSy-space oB; wherep = k—i, then

o) = P oj(o)
j=0
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wheredyg is (-1)K times the boundary operator on singular topological chains defined above,
0j(0) =04 0m: Pxg M(Bi,Bi-j) — Bi_j for j = 1,...,i, anddj(c) = 0 otherwise. The map
0 extends to a homomorphism

9: @sk .(B.)—>EBSK 1-i(B).

The following is Proposition 5.5 of [6].
Proposition 5.11. For every j=0,...,m we havezézoaqaj_q =0.

Defining the Morse-Bott-Smale multicomplex over the integers requires a coherent sys-
tem of orientations on the elements@f (cf. Section 5.2 of [6]) and a collection of de-
generacy relations that identify maps fronffeient domains that are “essentially” the same
(cf. Section 5.3 of [6]). The degeneracy relations are expressed in the form of subgroups
Dy (Bi) € S5 (Bi), and the chain groups that make up the Morse-Bott-Smale multicomplex
are defined to b&y(Bi)/Dy(B;). Lemma 5.10 of [6] shows that the homomorphisiis
on Sy (B;) induce homomorphisms o8 (B;)/Dy (Bi), which we denote using the same
notation.

Definition 5.12. Define

Cp(Bi) = Sy (Bi)/Dy'(Bi)
to be the group ohon-degeneratesmooth singular topological chains 8f(Bi). The
groupCy(f) of k-chainsin the Morse-Bott chain complex dfis defined to be the group of
non-degenerate smooth singular topological chains of Morse-Bott diegtee

(%U)—GBCwKﬂ) GBS " {(Bi)/DRi(B).

The boundary operator in the Morse-Bott-Smale chain complex
m m
- D Si(B)/Dy(B) — EP Sy (B)/Dy 4 (B)
i=0 i=0

is defined to bé = &' 9;.

The Morse-Bott-Smale Multicomplex

[S2]

0
C1(Bp) — Co(B) 0
o 0202 e
% 4 % 4
C2(B1) —2> C1(By) o, Co(By) B
P o o
(&) @ (&) (&)

do

C3(Bo) N C2(Bo) N C1(Bo) o Co(Bp) ——=0
I [I I [l
Ca(f) —2— Cy(f) —2—~ Cy(f) —2=Co(f) —2=0
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Since the homomorphism® are induced from the homomorphisms in Definition 5.10,
Proposition 5.11 shows that the relations that define a multicomplex are satisfied.

Maps between Morse-Bott-Smale multicomplexes

The Banyaga-Hurtubise approach to constructing the Morse-Bott-Smale multicomplex has
several advantages. For instance, it does not require picking any triangulations. Hence,
all the maps in the multicomplex are well defined at the chain level and there is no need
to prove that the homology of the multicomplex is independent of arbitrarily chosen trian-
gulations. Moreover, Lemma 5.1 of [6] shows that all the fibered products used to define
the multicomplex are compact smooth manifolds with corners, without having to perturb
any maps used in the construction. Other approaches require perturbing the beginning and
endpoint map$_ andd., which would then necessitate proving that the homology of the
resulting complex is independent of the chosen perturbations [24].

While the multicomplex constructed by Banyaga and Hurtubise does not depend on any
extraneous choices, it obviously does depend on the Morse-Bott-Smale fuhcfidr- R
and the Riemannian metric di. However, Theorem 6.17 of [6] shows that the homology
of the assembled chain complex does not depend on the Morse-Bott-Smale function or the
Riemannian metric oM. The proof of Theorem 6.17 of [6] follows standard continuation
arguments found in papers on Floer homology. In particular, given two Morse-Bott-Smale
functionsf; and f, on M a continuation map is defined between the multicomplexes deter-
mined by the two functions using moduli spaces of time dependent gradient flow lines, i.e.
moduli spaces of gradient flow lines of a functibgy, : M xR — R where

tIir_n Foi(x,t) = fi(x)+1
t|Im F21(X, t) = fz(X) -1
—+00

forall xe M.

However, the time dependent moduli spaces of gradient flow lines are not allowed do-
mains for the singular topological chains in Morse-Bott-Smale multicomplex. So, Banyaga
and Hurtubise adapt the techniquerepresenting chain systemg$rom [8] in order to de-
fine their continuation maps. Roughly speaking, a representing chain system consists of
singular topological chains (defined on the allowed domains) that represent the fundamen-
tal classes of the moduli spaces of time dependent gradient flow lines (which are compact
smooth manifolds with corners). This means that the continuation maps are only defined at
the chain level after choosing a representing chain system. However, Corollary 6.12 of [6]
shows that the induced map between the homologies of the assembled chain complexes is
independent of the representing chain systems. So, the continuation maps are well defined
at the level of homology and independent of any of the choices made to define them at the
chain level.

The following two corollaries proved in Section 6 of [6] show that standard arguments
from Floer homology can be applied to the Morse-Bott-Smale multicomplex.

Corollary 5.13. For any two Morse-Bott-Smale functions f, : M — R the time-dependent
gradient flow lines from;fto f, determine a canonical homomorphism

(FZI)* . H*(C*(fl)>a) - H*(C*(f2)96)s
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i.e. the map(F21). is independent of the choice of the functiosy FM xR — R and the
representing chain system used to define the chain(fap; : C.(f1) — C.(f2).

Corollary 5.14. For any four Morse-Bott-Smale functiong: M — R, where k= 1,2,3,4,
the canonical homomorphisms satisfy

(Fa3): o (F31)« = (F42)« o (F21)«

and
(F32). o (F21)« = (F31)«.

The preceding two corollaries and the SinguNtCube Chain Theorem (Theorem 5.4)
imply the following, which is Theorem 6.17 of [6].

Theorem 5.15. The homology of the Morse-Bott chain compl€x(f),d) is independent
of the Morse-Bott-Smale function: M — R. Therefore,

H.(C.(f),9) ~ H.(M;Z).

Interpolating between singular N-cube chains and Morse chains

When the functionf : M — R is Morse-Smale the critical s& is a discrete set of points
for alli =0,...,m, and the group€,(B;) are trivial for all p > 0. When the function is
constant the entire manifoll is a critical submanifold of Morse-Bott index zero. In this
caseB; = 0 for all i > 0, and the group€,(B;) are trivial for alli > 0. These two cases
appear in the diagram of a general Morse-Bott-Smale chain complex as follows.

Co(By)

01

Co(B1)

01

p P 9 P P
-+ — Cg(Bg) — C2(Bg) — C1(Bo) — Co(Bo) —= 0

Y

0

In the first case the homomorphish is the Morse-Smale-Witten boundary operator, and

in the second case we have the chain complex of sindgNHembe chains, which computes

the singular homology o by Theorem 5.4. Thus, the Morse-Bott-Smale multicomplex
provides a means of interpolating between the Morse-Smale-Witten chain complex and
the chain complex of singulaX-cube chains. Moreover, Theorem 5.15 shows that the
homology of these two chain complexes are the same, and hence the results in [6] give a
new proof of the Morse Homology Theorem (Theorem 2.1).
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