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Abstract: This paper studies non-vanishing of quadratic twists of automorphic forms f on
GL(2) over Q at various points inside the critical strip. Given any point wg inside the critical
strip, and € > 0, we show that at least Y12/17-¢ of the quadratic twists L(f, xg,s) with |[d| <Y
do not vanish inside the disc |w — wo] < (log¥V)"17¢. {Here d = 1 mod4 is a fundamental
discriminant and x4 denotes the Kronecker symbol.) If we assume the Ramanujan conjecture
about the Fourier coefficients of f (in particular, if f is holomorphic) then % above can be
replaced with 1.

This should be compared with a result of Ono and Skinner [10] which states that if f is
a holomorphic newform of even weight and trivial character, then at least 3» Y/logV of the
quadratic twists L(f, xq4,s) are nonzero at the central critical point. A slightly weaker result
had been proved earlier by Perelli and Pomykala [11]. By contrast, we make no restriction on
the holomorphy of f and the result holds even if f has non-trivial central character. Moreover,
we prove non-vanishing in a disc about any point in the critical strip. As in {11}, our tools are
the method of Iwaniec [4] and a mean value estimate of Heath-Brown [3].

1. Introduction

Let f be a cusp form which is a normalized eigenform for the Hecke operators,
of level NV, character w and weight k (k& is a positive integer and k = 1 if f is
real-analytic due to our normalization). We have an expansion

o _ [ Zonsraln)e(n2) if f is holomorphic
1z) = Zn;o a(n)2/yK,(2r|nly)e(nz) if f is real analytic.

Here e(z) = exp(2riz), z =z + 1y and K, denotes the Bessel function of degree
v. It is known that

la(n)| < d(n)ntk-1/2ta (1.1)
D7 Ja(n)] < 20D/ (1.2)
In|<a
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where d(n) denotes the number of positive divisors of n. If f is holomorphic, the
Ramanujan-Petersson conjecture is known and we may take o = 0. By a recent
result of Kim and Shahidi [6], we have o < 2 if f is real analytic.

Let x4 denote the quadratic character {d/-). Then the Dirichlet series

L(fxars) = 3 a(mxat)n™ = [[0 = a@)xapp™) (0 = Ap)xalplp™) ™

n>l r

converges absolutely for R(s) > 1(k +1) and has an analytic continuation as an
entire function of s. If d is a fundamental discriminant (i.e. d is squarefree and
=1 (mod4) or d = 4dy. dy squarefree = 2.3 (mod 4)) and (d,N) = 1, we
have the functional equation

A(}f(S)L(fg Xd S) = wdAZ_Sf(k — S)L(f_~ Xd. k— ’S)

where
A, = d\/-ﬁ/ilw if f is holomorphic
d d\/?\?/fr if f is real analytic,
Ple) = I'(s) if f is holomorphic
(9) =\ T(£E)0(552) if f is real analytic
and

Wy = led(—-N)w(d}, wy € C, ]w‘l] = 1.

We are interested in the average value of the L-function L{f, x4,s) in the critical
strip. In [9], Chapter 6, it was shown that if f is holomorphic and k = 2. then

Z L(f. xa: 1)(1 - g) =cY + O(Y(log y)~3)

d=a (mod 4N).Jd|<Y

for some ¢ # 0 and 3 > 0 where the sum ranges over all d (i.e. not only over
fundamental discriminants). It follows that there are infinitely many fundamental
discriminants d such that L{f x4 1) # 0 and this was the first such result for
forms f with non-trivial Nebentypus character w. The methods of [9] were a
refinement of those of [8]. In [12]. Stefanicki showed that the method of Iwaniec
[4] could be used to prove a similar asymptotic formula ranging over fundamental
discriminants and with a sharper error term. An analogous result was established
by Friedberg and Hoffstein [2] for automorphic forms on G L(2) over number fields
using metaplectic Eisenstein series.

In this paper we use the method of Iwaniec [4] to prove the following estimate.
Let a=1 (mod4). (a.4N) = 1. Set

DE={neN:sgnn)=+, n=a (mod4N)}

and
D,=D} u Dj.
Let F be a smooth compactly supported function in R™ with positive mean value

J.° F(t)dt and let u denote the Mébius function.
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Theorem 1.1. Let ¢ > 0. Let wo € C satisfy Rwy € [k/2,(k + 1)/2) and for

each d € DY | |d| <« Y choose wy € C in the disc |w — wel < A def 1/(log Y)1+=.
Then

S W)L xas wa) F (%) = oY + O(|T(wo) | ' AY /2 Jog ¥ loglog ¥ )
de D,

where ¢ = ¢(f, F,wq, a) # 0.

The proof is essentially the same as in [4]. However, it is necessary to keep
track of the appearance of o and for this reason, we write out the details.

Theorem 1.2. With the same notation and hypotheses as above,

Z Nz(\di)iﬁ(f,xd,wd)}? <& \f(wg)r?yl%%-%.
de D |di<Y

These mean-value estimates have the following consequence for zeros of
L(f. xa.5).

Theorem 1.3. With notation as in Theorem 1.1, there are >, yi-20—¢ fun-
damental discriminants [d| < Y such that L{f,x4,s) has no zero in the disc
iS — w()i < A

Thus, using o < 5/34, we get > Y12/17=¢ non-vanishing quadratic twists.
If we assume the Ramanujan conjecture, we get > Y17% such twists. Theorem
1.3 follows from Theorem 1.1 and 1.2 by the Cauchy-Schwartz inequality.

Remarks

1. It is often possible to obtain an asymptotic formula in Theorem 1 when
we restrict summation to D} or D . Indeed, it is always possible if Rwq # k/2.
If Rwy = k/2, then either DY or D, will yield an asymptotic formula. The
general formula is given in the final section.

2. For a general L-function which can be represented by an Euler product
let us write L,y(s) for the Euler product with p-factors for pla removed. Then
the constant in Theorem 1.1 is given by

1

F. I e
olf. o, ) 2N§(4N)(2)

Lay(w®, dwg — 2k + 2)71 P(2uyg) X
x fan (wo) Liany (Sym®(f). 2w0)/ F(t)dt
0

where ((s) is the Riemann zeta function, L(w?s) is the Dirichlet L-function
associated to the character w?, P(s) is a certain function which depends on f and
which is represented by an absolutely convergent Euler product for Rs » k—1+42a
and does not vanish for ®s > k, fin(s) is a certain function which depends on
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f and which does not vanish for ®s > k/2 and L{Sym?(f),s) is the L-function
attached to the symmetric square of f.

3. Several authors have shown that in some cases, a positive proportion of
the twists are nonzero. For this, we refer the reader to works of James, Kohnen,
Vatsal, Ono and Skinner (see [1] for the references). Also, Ono and Skinner [10]
showed that for holomorphic newforms with trivial character, there are at least
» Y/logY quadratic twists for which the L-function does not vanish at the
central critical point. These methods do not appear to work for other points or
for non-holomorphic forms as they rely on the relationship of the central critical
value to the Shimura lift and on the existence of Galois representations.

2. Preliminaries
Consider the integral

1 F . . a8
S(f: xarw, X) = o7 o) F(w-%—s)L(f,Xd,wﬁLs)X*?‘
>
‘We have
S(f.ixaw, X)) = Z a(n)xa(n)n "W (w _})
nzl
where . ;
Ww X) = 5— f(w+s)X"‘*—S-
27’72 (v) 8

[ Jx u¥lexp(—u)du if f is holomorphic
T Sy v TR (u) du if f is real analytic.

For d squarefree, =1 (mod 4), the functional equation implies that
T(w)L(f. xa,w) = S(f, xa w. X) + wa AR 2 S(f xa b — w, AZX 7).
As in Iwaniec [4], we obtain
. d :
> uzﬂdﬁ)L(f,Xd,wd)F(%) = M¥ + Mf + R, + RE,.
deD¥

where for { =1, 2,

d?'g Wy —w
W T e ()
r<A(rdAN)= ciE D* ~2
and
RE = Z Z u{r) Z uz(ldl)':i—s(f*-)(db? wy, Agy2 ) F L £
i1 a ‘ T(wq) A o Y
b21,(b.4N)=1r{br>4 €D,

(2.1)
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Here, A is a power of Y to be specified later, 7 and b denote the multiplicative
inverses of » and b modulo 4N and

e e [ (fowa, 1) ifi=1

2 wa9a) =V (F b = wa, sgn(dwn (5 )w(a)) if i =2,

Every integer can be written uniquely as a product n = k;1?
(Im,4N) =1 and m squarefree. Then

m where plk; = p|4N,

2y = {xalm) it{d1)=1
xa(ml") {0 otherwise.

To ensure that the condition (d,!) =1 holds we introduce the sum 3_ a0y 1)
Also, we use the expansion '

1 ANpd
)(d(m) = Enpm 3 Z X,\,pm ( p )

2{pl<m

where
_J1 ifm=1 (mod4)
fm =i ifm=3 (mod 4)

and 4N is the multiplicative inverse of 4¥ modulo m. The introduction of this

expansion is a key factor of Iwaniec’s argument in [4].
This brings M to the form

R SR SRR UI 3D 0TI D

r<A(rAN)=1 n=kil?m.(n,r)=1 qll d,dr2qe DF
(2.2)
1 . 4N d n ldlr2g\ w®—wy
e N W , F A
Z I’(wé)gnm 2XNm(m)€( m ) ( Y Adrzg ) ( Y dr*q

2lpl<m

where a*(n) = a(n) or @(n) depending on whether ¢ =1 or 2. Let us set
. 1 2 £—1
A = min 57 qY*
Then we can write
MF = MTF + RY, + R,
where in MT p =0, in Riz, Am > |p| >0, and in R2 5, Am < |p| < m/2. The

following lemma is another key feature of {4] and it is very useful in estimating the
above sums.
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Lemma 2.1. Suppose that + is a periodic function of period v and || < 1.
Suppose « € R and a € Z. Then

Z a(n)e(lan) < z**logx

|ri<a

> Pmemane(an) < d(ayrt/2z(logz)’.

[niLz.(n.a)=1

We will also need the following standard bounds for the kernel function W
and its derivatives

' Xﬂ?(w"-f)'i HX <1
wr(z){w*’x) <« { xR -%) exp(—X) as X — oo, f real-analytic )
X??(w*—l) eXp(—X) as X — oo, f holomorphic {2‘3)

Kie XTI exp(—cX)

where ¢ is a positive constant,

3. The second moment

We have for d squarefree, =1 (mod 4), the functional equation

P)L(foxaw) = S(f,xaw, X) + wadl 2" S(f.xa k- w. AZX 7).

Using the exponential decay of W(w,n/X) we see that

2
n
Z Z a{n)xq(n)n” "W (w, f)
[di<Y.de DT 7
12
< Z Z a(n)x(g(n)n_“’W(w, %):
i<y, de DE 'n&X '
and this is

2
< (log X)* maxpre x Z
d|<Y.de Dy

Z G(n)xd(n}n,""I;{’(w’_)%)

M<n<2M
Now by [3], Corollary 3 this is
< (log X)*maxprex VMY + M)maxas<n<onr|d(n)n (k1) 2a-Fw 2

Simplifving, this is
<« Y¢© (X + Y).X2€+k+20—2§i?w-
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Now,

( 1 S(f.xa.w, X
S(fvxdswd,X) T e _<.‘}f._‘x_d...w7—>

T 2

dw,

lw—wo|=2A W — Wy
SO
ST EA(dDIS(S, xa. wa, X))
[d|<Y.de DE
29
<A™ ST uB(dDIS(f. xa wo + 20, X)) dB
O |dj<v.deDE

< YE(X + Y‘)Xk+26—23€wo+4,1\+2a

uniformly for wgs as above. Now using partial summation we deduce that

S RIS wa, X) A2
di<y.deDF
& Y2(2%w()—k)+€(X 4+ Y)X25+k+20+4)\—23€(wg)‘

Similarly

161

Z uz(ldi}ls(f Xd- b wy, X)]2 < Ye(X 4 }/)X?t’—k+2a+2§n('{vo)+6)\'

|dl<Y.de DE
Now, from the functional equation

D (wa) L{f, Xa» wa) A3" 5[
< |S(f. Xt wa, X)AZTF2 L 1S(F, xay b — wa, AZX Y.

Multiplying both sides by dX/X and integrating over X in the range (%Ad? Ag),

we find
§f(wd)L(f, Xd- wd)Ag’“d“k §2

Ag
ke dX
& / S(f. xa, wy, X)AZ4TR 2 2
) %A(,;' ( ) d ( X
A (- A2\ dX
+ / S(f, xd$k—wd.—d> —_—
o %Ad

X X

In the second integral we change the variable to u = A%/X. Then we extend the

range of integration in both integrals to obtain

T (wa) L(f, Xa, wa) A2 5|2

eNY o . _ dX
< [ SU s X)ATP 418wk = v X)) -
1
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Now summing over d, we deduce that

Y AT (wa) LS, xa, wa) AGTH YRR OR ARG,
|d|<Y.de DE

Using partial summation we obtain

Z p2UdDI LS, xa, wa)|? < |T(w)| 2y 1+e+2e
ld|<Y.de DF

4. Estimation of errors
Estimation of Rf, IN (2.1)
To estimate Ril we observe that

. . h)s( Aap
SUF* X W™, Agz) = > ’(—)—L?lxci(lllz)#{z Jul2) S| f* xa, w”,
(Ll Tl Z
I l2b
Here a*(n) = a(n) or &(n) depending on whether f* = f or f and similarly for
B*(n). We also assume that |[w —wo| = 2X. Since d is square-free in RE, we may
move the integration in the integral representation of

S f*».XdaW*a Adif"
)

to the left of zero, picking up the residue at s = 0, and apply functional equation
to obtain

. -~ A2l
{residue at s =0} — wy Ak S(f*, xa, k — w, _d_1_2.>_
Ade

We first estimate the non-residual contribution. Now,

. L ALDLY e kb e g
S(f ’Xd,k w, Ad}ﬂ - ZG’ (n)n Xd(n)w k—w 7A‘(2£l112 ’

n>1

We split the sum according to whether n < A2l1l2/Agz2 or not and use partial
summation with (1.2) and (2.3). We obtain

O((ld(b—Qllb)(1-1::)/2-}—8%11}" )

We sum over [y and [y to see that the contribution to S{f*, xapz, w*, Agz) is

<« AT N ar (L)B (1) | [ ldlldo \ 1R 2HR
! i lalb (llgg)w“ b?

< Idl (k+1)/2—Rw" bk-—l—??}%w'-i-adZ(b)
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using (1.1) and the fact that if f is real analytic, one of a(-) or 8() is bounded.
Multiplying it by A%.”", dividing by w —wy and summing over |d| <« Y/b? gives

< Y3/ Rupa—ig2 -1

Summing it over r|b and b > A gives

<« ‘4(}—3}/(&+3)/2—?Rw+€‘

It remains to estimate the contribution from the residue

Al LA xaw” HU = o (p)xa®)p™ )1 = B @)xa(p)p™")

at s = (1. Firstly we note that the b-contribution is

b2¥?{w —w) H( & d2 b)bZz\
pib

Hence, the contribution from the residue to Rfl is

Sasep? S ()L X Ol -

boA dj <<y /b2 jw = wal
* ® Rlw™ —w % Y % —
< S ao (5 A e () a0
b A ld]< Y /b2

<« |P(wp)| "t A1 20— 2R(w" —w)yltatetR{w’ —w)

by Theorem 1.2. To summarize, we have proved that

2
Z Z Z - dD S(f7 Xap2, w” Adb?)F(l-(js[,i) v

b21.(b.AN)=17[br>A deDi (w wa )L (w)
< A—3+<1}x(k+3)/2 Rw+e
+ ‘f(wo)I—IA—1—2a—2‘R(w’-w) Yl.;.a-i,-s-»%%(w*—w)i
Now, integrating over the circle |w — wy| = 2\ gives

Rizl < A3y (k+3)/2-Rwote + if\(wo)I—IA«I-QQ-N?(wS—wO)Y1+s+a+§R(w5_w0)‘

Estimation of Rﬁl in (2.2)
To estimate RfQ we will sum in (2.2) over m first. Let us write

n= kl Sglgm
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where k; and [ are as before and (m.l) =1, pllo = p|l, u*(lp) = 1. We rewrite
RE, as

1 Wy . [
L : w03 (St )i ()
2mi 1w-wa]:2A r(w} r<A. (Z;Ar)=1 ; % kl
F id‘r q A?L —u l21 —w” l
X Z dr?q Z Za Plo)(Ilo)™ 21,0y 0 XNM( 0)
(i.erQED(f lpl>1 o
Cwrol o, 4N pd A klPlgm dw
X Z a (m 2 (m)cmXNpq<m)6< mgg )I‘ (?L ? Ad? P u})—u)d-
mg-g-g
For T > |p|/Aly set
A(T) = > ()@ (M)EmX N pg (M)e ~Pilopd
mXNpy AN

m&T.(mANH=1

where m and [, are the multiplicative inverses of m and Ip modulo 4N. By
Lemma 1 .
AT) < d()(plg)zT*/>*=.

By partial summation

d_e—f 5 R _ _ﬁz{_gpd pd
A](T) e Z i (m)a (m)-7anV'pq(Tn)€< AN )e(‘al]\fzum)

|pl/ Alp<m<T.(m 4N {)=1
< d(l)(lpla) T+ (1 + d]A) <« BTHH

where B = d(I)(|plg)? Y*. Here we used |d| <« 72 and A < r2gY*~1 Let us set
¢ = ki?ly/Agyzq. Then

4N pd
?’7350

PUPITL I |
CRVALR NN AT
=4 (AIO Alg WL AL

x
—/ Ayt i W (w™. ety d(te) + g(t)W(w" . ct)]j< A,
olialo : ‘

/ T oW e (o)
|

plidl

Z uz(m)a*(m)XNpq(m)éme( )m‘“'*‘%l«V(w*‘cm)

by partial summation and integration by parts where g(t) = f,x Ay(uw)u= 3 (—w*—~
%)du. Notice that the integral defining ¢(t) converges and is bounded by Btk/2+s-1/2-%
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We see that in order to estimate the sum over m we need to estimate

/24 —Rw"—1/2
ol \" vl v clpl
B{ £l W wr, 2EL
) ( 5 w (w20,
and
b) B /' s R D/ 2R W (0 et)edt.
I 0

We estimate the contribution from (b) - the contribution from (a) is exactly the
same. We notice that by (2.3) it is enough to estimate

k—3)/24+e~R
BcRw —(k—1)/2—¢ clpl (h=yfete Vexp _ clp|
Aly 240y /-

Summation over |p! gives

—Rutk/24e
1= Rutk /24 el Aly
2 lo exp( o) S\ e

iplz1

so that after multiplying by A%~

dr2g ¥ /w — wy we see that the contribution is

1

AL, (g Y F AR e R e
jw — wy|

“Hdr2g

The sum over |d} is

i 1 v k/2424e—Rw
& Z idik/2+1+£-§?w_____ <& (T)
i <Y /72 fw = wal i

so that the total contribution is

21 3
1/24k/2-Rw (kl lo)[

r<Akyllo q|£

Hence. using (1.1} and summing over g,lp. [, k; and r < A yields

& A2}/lf2+vk;'2-§?w+£ .
Integration over the circle [w — wg| = 2A finally shows that
R."tQ <« AQ}}l/Q%-k;’?—?Ru*g-}-s
y .

Estimation of R, in (2.2)
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We will start by summing over d in (2.2). We set ¢y = Ag4ld|™! and rewrite Rfa
as

— /‘w_wOI:% Sooury Y C n)z S ()

(r;‘.éfw'?zl n(ii};:;n (;Ié Am< I’O! hE ¥
a ldir?q n
a F W w*, ———— | (P2qcsld))?
£) T (S (e o )0t
! d.dr2ge DE crldir?q

e(iipﬂ (w - i;f(w)’

We want to estimate the sum

(+) > (de (43;,;@) w_lwd

d.driqeD¥F

h(z)=F il W w, —o— V(a2 v
}r (,f?,‘qu (-7) f Q) *

Observe that the presence of F' restricts the range of summation to

where

},’

Y
Cerq id‘ < C2

if Supp(F) C (e1,¢2). For any T < e2Y/r?q we want to estimate
4N pd
d.dr2qeDZF JdI<T

To do so it is sufficient to estimate

(% % %) > h(:f:d)g(:td)e(w>

d.driqe DF mn
where g is smooth, compactly supported function in [M, 2M] with
¢V (z) <« ML

Here we take M = c3Y/r%q for some constant ¢3. By Poisson summation formula

(* x x) is equal to
e S - )
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where (@) denotes the Fourier transform of A(£x)g(+z). We assume for a mo-
ment that we can find two positive constants X, and X5, such that

Xy

(hg)(z) < T Xy

for some j > 2 (the constant in « depending only on F, W, and j). Then
integration by parts shows that

(hg)(t) < X1 X377 [t~

so that writing 4N4N = 14 em for some integer ¢ we see that

- u ZLR’Y,O X1X21-j
)l — — — -
( g)<4N m ) < lu— p/m —ep|?

Summation over u gives then
X, 17 el 7
(k%) <5 X3 X5 ooy .
To estimate (hg))(z) we must estimate

2 2 i i3
a4 TaN Gyt g n
F ( Y x)( y )¢ (2] v Tepriqx )\ riq

$~2ég—i4+§}?(w” —w)—ig (T‘Zq)%(w‘ —uw}
W lia) (m*,

n n isx——ig
cyriqr r2q

using iy =j and & ~ Y/r?q. By (2.3), the fact that z ~ Y/r2q and assumption
about g we estimate

1 2 R{w* —w)
< E(T q:s)

R{w™ —~v) 1 X,

() . el Ay Rt -wy [ T = et S

where
R{w™ ~v} -
n « n Y
X, == YR -0 axp —c= ), Xo = ¢ — positive constant.
1 (Y) P Y 2 qua po O
Hence

1—j Ip; 7 y1-¢ n R(w* —v) v Riv—w
(k%) < X1 X, ](E) & 2 exp| —cy n (w™ =)y Ry —w)
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since A =r?qY™1 < |p|/m, and we obtain the same estimation for () (multi-
plied only by the factor log Y say). We return to the estimation of (x). Let ¢1(z)

be a smooth function such that g,(|d|) = 1/w — w4 and g,(z) < A~!. By partial
summation, using the estimation of (xx) we deduce that

Y L Yi-es n .
L 1 }&- ex e e R{w —-z/)YgR(y-w)
(*) <« (7,2(2 + ) ;r q p( Y)n

for any j > 2. Summing over r,|p| <« m. and q gives

Zn?"“"exp( Y>Y2 SRRy

by choosing j large enough. Integrating over the circle |w —wg| = 2) we conclude
that

RE <« L.

5. Main term

We now consider the sums M Tf. As p = 0 in these sums, only the terms with
m =1 in (2.2) give a nontrivial contribution. Thus we rewrite M T, éi as

dza kl( )““0 D (o VI Y71 C') B ST (3)

{21 (lLAN)=1 q|i r<A(rdND=1
2 2
Z - 1 F(ldig; q)““’( ;gl )(Cfld*'f‘Qq}wénu)o
d«dr?qu;t F(wo) l i
(Z lalkn)| 3 1a®)] D |u(@)] Y u(r)
I>1 gl r<A
/ " . 1
2. IF (M}Tf q)l(klzg)-m“(Cf§d|?‘ZCI)WW_W>mf
d.driqe DF [T (wo)
o I G ¥k - f‘(’wg) k‘llz
x k 22 watwg (. dr2 Wy g T we — 1ty al "(Lf(w*‘
[( 1 ) (fi | q) F(’L{)d) d Cf|d§‘r2

(i ot )

We begin by estimating the above error term. The expression in the square
brackets is bounded by

by 12 Rlws —v) k12 2\ A 2 \2X" 2
&« g exp —clm Atk 57 (|d|r7g)"" max{logY, logk11°}



Average values of quadratic twists of modular L-functions 169

by (2.3) and the fact that |d|r?q ~Y. Here A* =0 if i =1, A* = X if i = 2 and
¢y is some positive constant. Summation over d contributes

—R{wo—uv}+2A* Y ~RwotReALE"
S e o (1
r<q

ldi<Y/r2q

so that the sum over d above is

Y1~¥?wo+3?f/ k}{?
< -—Tq——)\(kllz)'m max{log Y, log kle}exp<—CQ-Y—)
for some positive constant ¢z. In order to sum over { we will use the following
estimate

(%) > la(i?)] < 2.

1<z

Indeed, we notice first that

() Y la®)?

1<z

are the partial sums of the coefficients of the (not normalized) Dirichlet series
attached to the Rankin-Selberg convolution (on GL3) of Sym?(f) x Sym?(f).
The normalized Rankin-Selberg L-function has a meromorphic continuation to
the whole s-plane with simple poles at s = 1,0, [5]. Hence it follows that (xx) is
bounded by z?*~1. We use Cauchy-Schwarz inequality to deduce (x). Using (%)
and summing over 7, ¢, and k; (breaking the sum over k1/* at Y') we find that
the error term is
< NYTH IR0 160V ]oglog V.

We return to the evaluation of the main term. Summation over d gives

we - we

Y1+w5—w0 Cf k132 .
= = FOYW I w; o "W ¢
Z 4Nr2q [{wp) / (*) (2}}0, CfYt) t

d.drge DE
. 12 !
+0 Y”"‘“ﬁ'wo)/ F(t)W wg.——w ghlwe—wo) )l gt |.
/Cfo

We use (x), (2.3) and partial summation to find that the above error term is

< A}/k/?-%?wo%»s )

We use

-1
>t = @Il (1-5)  + o

r<A (rdNly=1 |l
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to rewrite the main term above as

.
We —wWe }/1+w§—wg

o f

* T{wp) 4NCan)(2)

® 712\ —2w, * ’1‘7152
/F(z Vvl > H(l-f- Lar (%)l 2wo W(wg,-cjf—y-i) dt

)

(LAN)=1 pli
+ O<A—l}fl+§?(w5 —~wp) Z a(n o~ Rws Z l:u
n=ky1? gl

7 . Ri{ws —we)
/’F(t)ﬂ (u H)t

fiv= S a*(h)(%)kﬁ.

ky.plk =p|4N

where

As before, using (), (2.3) and partial summation we find that the error term
above is
« A-lylth/2-Ruote

Consider the functions

B*(S) déf H (1 pil(a*(p2)p—s +a*(p4)p—2s +)>

pf 4N

Ap(9) (1= a"@)’p™) T = 57 0) ) T (LW (T ) -

T (o + 4xs)

L&N}(S) =
pf AN

where w* = w or @ depending whether f* = f orf. Then

B*(s) = (Q)me( s)

P(s) =[] <1+p—];—1<1+111§(3) _1))'

pf AN

where

The function Lz‘4m(s) is related to the symmetric square L-function of f* by
Liany (Sym?(£*),8) = Lig)(w*?, 25 — 2k + 2) L3 (5)-

It is known that L(Sym?(f),s) is entire and satisfies an appropriate functional
equation [13]. Now, we see that P*(s) converges absolutely for Rs > k — 1 + 2a
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and does not vanish for Rs > k — 2 by (1.1). The sum of fiy(s) converges

absolutely for s > (k—1)/2 4+ a and does not vanish there. Now replacing W
by its integral, we see that the main term is

wU U
y1+u0 wo f / / ’UJ + 8
! T C(4N 3 | FO| 5 [ fintwi+9)

Lian)(Sym?® f*, 2w} + 2s)
L(g) ((J.?*Q, 4s e 4'&’5 - 2;@’ -+ 2)

P (2u + 28)T(w + 5)(c, Y1) % )dt.

Here v > 0. Moving the line of integration to the line Rs = —1/4+k/2— Rwj we
get the residue from a possible simple pole at s = 0 (which gives the main term)
and an error term

« Y3/4tk/2-Ruo

Here we used that L(Sym?®(f*), 2w}, + 2s) has only polynomial growth for Rs >
—1/4 + k/2 — Rw{ by Phragmén-Lindelof principle and functional equation. To
summarize, we have shown that

> et xawar( )

d.deD¥

. 1 L(4N}(5ym [, 2wg)
=Y '(41\74{4,\,)( 2) P(2wo) fan (wo) 7 2 (@2, dwg — 2k + 2) /F(t>dt

o . 1 I'(k = wo) 4o
—{»—YIJ{J\ Zug'sndw ( >wa - = Is wy
gn(djun Y ( )41:\,4{45\3)(2) I {wq) !

Logny (Sym? f,2k — 2wg)
. * (AN Py : 0

((k — wo)P* {2k — 2 F(tydt
X fan( wo) P ( wo) L(z)(u'}z, 2k — 4wg + 2) / ®)
+0(Y3/4+k/2—§?w0 o+ Ys(AZy’(k-fvl)J/Z—%wg + A-—lyl-{»ij—g?wO
+A-1—20y1+a+A—3+a}/(3+k3/2—ﬁwo)

AV IHR/2=R0 100 Y Joglog Y)

where the second term above is present only if Rwg < k/2+41/4. Also f* and P~
in the second term correspond to f. We take 4 = Y3 to write the error as

O(Y T +e 4 Y HHk/2-Rwo 140 ¥ 1oglog V).

Summation over d € D, eliminates the second term so the Theorem 1.1 follows.
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