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Abstract. Let p be a prime number. In order to calculate the Selmer group of a p-isogeny v : E — E’
of elliptic curves, we determine the image of a local Kummer map E'(K)/vE(K) — H1 (K, kerv) over a finite
extension K of Q). We describe the image using a filtration on a unit group of a local field and the valuation of a
coefficient of a leading term in a formal power series of an isogeny.

1. Introduction.

Letv : E — E’be anisogeny of elliptic curves over a number field . We are interested
in its Selmer group Sel(v) which is a subgroup of H'!(K, ker v) generated by the elements
whose local images in H!(KC,, ker v) are in Im 8, for all primes v. Here §, is a connecting
homomorphism of an exact sequence over /C,

l—kerv— E—SE —> 1.

So 8, fits in an exact sequence
1 — E'(Ky)/VE(Ky) 25 H' (K, kerv) — H'(K,, E)

for each v. Let p be a prime number. We assume v is a p-isogeny, namely ker v is a group
of order p. In order to study such Selmer group Sel(v), one of the difficult problems is to
know Im §, for primes v over p. If E has good reduction at v and v does not divide p, then
Imé, = Hulr (ICy, kerv), where Hulr(ICU, kerv) = ker(H'(KC,, kerv) — Hl(ICZ’, kerv)).
But if v divides p then the equation does not hold. This paper is devoted to the study of Im §,
for v over p. In [1], BerkoviC treated the case when E has a complex multiplication and
v € End(E), and expressed Im §, as a subgroup of K¢ /KCo”, under the assumption /C, D Hp
and E(/Cy) D ker v. In this paper we treat the case when v is a general p-isogeny.

We also assume that K, D ), and E(Ky) D kerv. Let O, be the ring of integers of
Ky, 9, the maximal ideal of O, and U the unit group of O,. Let U O=UandU’ =1+ zm;
fori > 1. This gives a filtration on the unit group of 1, KX D U° > U! 5 U? > ---. Ttalso
induces a filtration KX /K, " © €% > €' o ... > cPeot! = {1}, where C' = U /K*P N U’
for i > 0 and e is the ramification index of K, overQ,(¢,). On the other hand let E
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be a minimal Weierstrass model over O,,, E be the set of points with nonsingular reduction
and E; = {(x,y) € E(Ky) |v(x) < —=2i,v(y) < —3i}fori > 1. This gives filtrations
E(Ky) D Eg D Ey--- and E'(Ky) D Ej D E| D ---. The filtration on E’(/C,) induces the
filtration E'(K,)/vE(Ky) D D > D! o .., where D' = E/(K,)/vE(Ky) N E/(Ky) for
i > 0. Let ¢ be the index such that the generator of ker v is contained in E;(KCy,) \ E;41(KCy).
We regard §, as a homomorphism

Sy E'(ICy) JVE(Ky) —> KS/KSP
by identifying
H' (KK, kerv) = H' (K, pp) = KX /KXP.
Then &, maps the filtration on E’(C,)/vE(KCy) to that on ¥ /K5?. By investigating this
map, we will show the following theorem.
THEOREM. 1) If E has ordinary good reduction over IKC,,, then
c!  if w(kerv) = {0}
Imé, = ) .
ceor  if w(kerv) # {0}
where 1 is the reduction map.
2) If E has supersingular good reduction over IC,,, then
Ims, = C' TP,

3) If E has multiplicative reduction over IC, and p # 2, then E has split multiplicative
reduction and

Ims KX/KoPif kerv = (¢p)
mé, = .
if kerv=(¢,¢q) fori=0,---,p—1.

We here remark that if £ has bad reduction, Im §, is not necessarily contained in C 1 , as
in the case 3). In the case 2), Im §, can be written by using the parameter 7. In §5, we give
some examples and calculate that values of 7 for them.

ACKNOWLEDGMENT. The author wishes to thank Professor M. Kurihara for many
valuable comments and suggestions.

2. Preliminaries from formal groups.

2.1. The map § of formal groups. Let K be a finite extension of Q,, v be a nor-
malized valuation on K, Ok the ring of integers of K, Mg the maximal ideal in Ok and
k = Ok /M the residue field. We pute = v(p). Let £, be a primitive p-th root of unity. Let
Sk, S’K be formal groups over Og. Assume that there is an isogeny v : §x — S/K overK.
We regard v as a power series v(z) = ajz + az? + - € Okllz]).

LEMMA 2.1.1 (cf. [1], Lemma 1.1.1). Let ¢(z) be an isogeny of formal groups de-
fined over a commutative ring of characteristic p. Then there exists an integer h > 0 such
that ¢(2) is a power series in zph.
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PROOF. See [3], Chap. 1, §3, Theorem 2.

By the above lemma, we define the height of an isogeny over O as follows.

1) If there is a positive integer & such that v(z) = W(z”h) mod Mg, where ¥ (z) =
bz +byz? + -+ € Okllzll, by ¢ Mk and b; € Ok, then the height of v is defined to be .
We denote 4 by ht(v).

2) Ifv(z) = 0mod Mk, then the height of v is defined to be infinity.

We also define a height of a formal group Fx to be the height of [ p], the multiplication
by p on Fx. We assume that ht(v) = 1 and that the points of ker v are defined over K. For an
algebraic extension L, we define §x (L) = Fx (My). For a point P of Fx (L), we denote by
z(P) the corresponding element of M. We will denote Fg (K) simply by Fx. We define a
decreasing filtration on Fg by i = S(Dﬁ’k). So we have §x = S}{ ) S%( O Put®g =
3’,(/1)51(. The filtration on Fx induces a filtration on ® g . Namely put Z)"K = 3:/11< /vSk N F,
then we have a filtration D g = 33}( D) @%{ Dol

LEMMA 2.1.2 (cf.[1], Lemma 2.1.1). Fori such that p {i, we have a; | a;.

PROOF. If a; ¢ Mk, it is obvious. In the case a; € Mk, by Corollary 1 in p. 112
of [3], there exists a dual isogeny U of v, thatis V o v = [p]. So we have a; | p. Put R =
Ok /(ay) and consider an isogeny v = vmod(ay) : §k/(a1) — §/(a1). Then R is a ring of
characteristic p, and we have an isogeny v(z) = v(z) mod(a;) = aiz+---+apz’+---over R.
Since a; = 0, ht(v) # 0. By Lemma 2.1.1, v(z) is a power series in z”. Hence for i such that
p ti, a; =0, thatis aj | a;.

We define
. v(a1) _
p—1
The following lemma shows that ¢ is an integer.

LEMMA 2.1.3 (cf. [1], Lemma 1.1.2). For any non-zero point P € kerv, the valua-
tion of z(P) does not depend on the choice of P. In fact P is in §% \ FF, where t is in the
number defined above.

PROOF. Letz = z(P), then v(z) = a1z + a2z®> + --- + apz? +--- = 0. By Lemma
2.1.2, we have aj | a; for p 1 i. So v(a1z) = v(apz?). Hence we have v(z) = % =,
since v(ap) = 0.

LEMMA 2.1.4 (cf.[1], Lemma 1.1.2).

1) If1 <i < pt, then

o i i

e M
L if pli.

2) Ifi>pt+1,then® =1.

3)

P oM ~ 7/ p7..
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PROOF. 1) Ifl1 < j < t,then v(§/) C FP/.So v : §/ /g — Frijgritlis
induced by v. This is identified with ¥ : k — k, V(x) = a,x?, for x € k. Since k is perfect, v
is an isomorphism. If i = pj, then 33’”/@‘9]+l = 1. If p { i then D' /®'+1 o~ /3”“ o~
« 2) )=+ 1 o@Eh) € FICTV S0 gl gt o gD gD
is induced by v. Put a; = n;((p l)u where g is a prime element of K andu € O;;. Then
vV : k — k can be regarded as v(x) = ux for x € k. So v is an isomorphism. Hence
v S'j — 3/j+(p71)t is an isomorphism. So if i > pt + 1, then Z)i

3) Fori = pt,v(§%) C FE' Sovinduces ¥ : F /3’“ — 3/‘”’/3""Jrl and D(x) =
ux + apx? for x € k. This is extended to v : k — 12. Because H!(k, k) = 1, we have
k/v(k) =~ H'(k,ker?d). Since kerv C § \ &', kerd =~ Z/pZ as Gal(k/k)-modules.
Using the fact that & is finite, we have k/v(k) ~ H'(k, kerv) ~ H'(k,Z/pZ) ~ Z/ pZ.

For [P] € Dk, let Q € Fx(K) be a point such that P = v(Q). Let K’ = K(Q) be
a definition field of Q over K. We prepare the next lemma for Theorem 2.1.6 which is the
general p-isogenies’ case of Theorem 2.1.1 in Berkovic [1]. Since ht(v) = 1, we can write

v(z) —z(P) = (bo+ b1z +---+2")U(2),

where b; € Ok and U(z) € Ok[[z]]*, by Weierstrass preparation theorem. So z(Q) is a
solution of the equation of degree p. Since kerv C Fx (K), K'/K is a Galois extension of
degree < p. Let G = Gal(K’'/K). For o € G, o(Q) can be written as 6(Q) = Q& T,
where T € kerv and @ is the formal group law of §. For a prime element = of K’, define
ig(0) = vg/(o () — ). Then it does not depend on the choice of 7. By calculating ig (o),
we give a simpler proof of Theorem 2.1.6 than that of [1]. The idea of this proof is adviced
by Kurihara.

LEMMA 2.1.5. Let [P] € D \ D, then

1) Ifl1 <i < ptandpti,then K'/K is a totally ramified extension of degree p and
iclo)=pt —i+1foro eG.

2) Ifi = pt, then K'/K is an unramified extension of degree p.

PROOF. 1) Let vg/(z(Q)) = j then vg/(z(v(Q))) = pj. If vk = vk theni =
vk (z(P)) = pj. This contradicts to p 1 i. So K'/K is a totally ramified extension of degree
p. Let y = z(Q) and g be a prime element of K. We can choose integers a, b such that
ai+bp =1. Thenw = y“nK is a prime element of K’. We have ig (o) = UK/(U(”) D+1=

Vg ("‘”T”K 1)+ 1. Letkerv 5 T # 0 and € = z(T). Then vg/(y) = i, vg/(£§) = tp and
K

c(y) =y®& =y+E&+ y, where vK/(y) > vg/(y + &). Therefore o () = a(y)“nK =

O +E+pY)inl = 0" +ay* g + y)nh, where vg (v') > vgr(ay®TIE) > v (y9). So
a a—1 /

v (TP = 1) = v (PR 1) = v (§) vk (y) = pir—i. Henceig(0) = pi—i+1.

2) Since a; = nl(ffl)tu, where u € Og,v(rkx) = n,lét(ux + o Fapx? + ).

Let z(P) = n,’;t,B, where 8 € (92. Because P ¢ v§k, by Hensel’s lemma, the solution
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of B = ux + apx” mod Mk is not contained in k. So the solution is contained in a finite
extension over k of degree p. Since u # Omod Mk, ux + ap,x? mod M is separable. So
we have a solution in an unramified extension over K of degree p.

We will consider the special case that §x is isomorphic to G, that is §x = U I =
1 + Mg . We take v to be the p-th power. We assume K > ¢, and let eg = ﬁ, ’K =yl =
1+ ME, Dy = Ci = U'/K*P NU" and t = ey. We fix an arbitrary formal group and
denote it by §x again. Then we will consider the correspondence of Fx to G,,. We use the
same notation v, t and Dg for §x. Let [P] € Dg and v(Q) = P. If Fx(K) D kerv and
K > ¢, the definiton field K’ of Q is a Kummer extension over K, that is K’ = K({/«),
where [a] € K*/K*P. We can define the map § : D — K*/K*P by §([P]) = [«]. Then
we have the next theorem.

THEOREM 2.1.6. Assume that §x O kerv and K 3 ¢p. If [P] € D \ D for
| <i<ptandptiori=pt,then $([P]) € CLHOIP\ CiHonpl

PROOF. Let K’ be a definition field of Q, where v(Q) = P. If 1 <i < ptand p 11,
then by Lemma 2.1.5, 1), K'/K is a totally ramified extension and ig(c) = pt —i + 1. On
the other hand K’ is regarded as a Kummer extension K ({/a), where o € C ;( \C {;r]. Then
[] = 8([P]). Since K'/K is a totally ramified extension, by applying the Lemma 2.1.5, 1)
to the case when §x = Gy, that is, v is p-th power map and t = ep, we have ig(c) =
peo — j + 1. So by comparing the two representation of ig (o), we have j =i 4 (eg — 1) p.
If i = pt then by Lemma 2.1.5, 2), K’ is an unramified extension. So §([P]) = [«], where
[a] € COP\ coPt!

COROLLARY 2.1.7. §(®L)=Cy ™7,

PROOF. By Theorem 2.1.6, § induces an injection and by Lemma 2.1.4 this ia an iso-
morphism of finite groups,

. . : _ : _ k if i,1<i<pt
,K/z),lj.l ~ C:K-i-(eo t)p/CtK+(e0 Hp+l pJf P

1 if pli,1 <i < pt,

Z)’k = C;;r(eoft)p =1 fori>tp+1
and
1 e 1
R P~ c0P y 0Pt ~ 7 pZ.

Hence we have §(D}) = C11{+(€0—t)p‘

3. Elliptic curves over K.

3.1. The map § of elliptic curves. Let E and E’ be elliptic curves defined over K, v :
E — E’ be an isogeny of degree p defined over K and V : E’ — E be a dual isogeny of
v. We assume E(K) D kerv and E'(K) D kerv. Then we easily see K > ¢, by using Weil
pairing.
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An exact sequence

1— kerv — E — E' — 1

induces an exact sequence

1 — E'(K)/VE(K) 2L HY(K. kerv) —> HY(K. E)

where §; is a connecting homomorphism. We fix an isomorphism ker v 2 u,,. Then we have
an isomorphism

K HY(K, kerv) — HY (K, j1,) .

By Kummer theory, there is an isomorphism
8 KX/K*P = HY(k, 1) .

Lets =8, ok 0d).

Put K’ = K(v"'(E(K))). Then K’/K is an abelian extension of exponent p, hence
a Kummer extension. So there is a subgroup B of K* /K *P such that K’ = K (¥/B). Put
Dx = E'(K)/vE(K).

LEMMA 3.1.1. The image §(Dg) does not depend on the choice of the isomorphism
k. In fact we have §(Dk) = B.

PROOF. Let[P] € Dk, [P] #0and v(Q) = P.Put L = K(Q) and 6([P]) = [a].
By a commutative diagram

D, —— H'(L,kerv) —— HYL,p,) —— LX/L*P

T W T 1

871
Di —2 s H'(K.kerv) —— H'(K,pp) ——> K*/K*P,

we have o € L*P. So L = K (¥/a) since [L : K] = p, this implies & € B. Conversely let

@ € Band L = K(/a). Then there exists Q € v~ I(E(K)) such that L = K(Q). By the

above diagram, §([v(Q)]) = [«].

3.2. The case of good reduction. Let E be a minimal Weierstrass model over Og
and 7 : E(K) — E (k) be a reduction map. Define E¢(K) = 7 Y Ens(k)), E1(K) = kerm
and fori > 1, E;(K) = {(x,y) € E(K)|v(x) < =2i,v(y) < —3i}. Letv: E — E'be an
isogeny of degree p over K such that E’ is a minimal Weierstrass model over Og. Assume
that kerv C E(K) and kerv C E'(K). We define E[(K) by the same way of E;(K) for
i >1.Let Dg = E'(K)/vE(K) and D’}( = E{(K)/vE(K)NE/(K) fori > 0, then we have
a filtration Dg D D% D D}{ DEEE

We make change of variable z = —x/y. By rraapping (x,y) to z, E1(K) (resp. E’I(K))
is isomorphic to the formal group E (k) (resp. E'(Mk)). Let @ be a finite subgroup of
E(Mk) such that kerv N E;(K) ~ ®. Then there exists a formal group & and an isogeny
p : E — ® both defined over Ok such that ker b = @ by Theorem 4 in p. 112 of [3]. Since
E’ is a minimal model over Ok, & = E’. Since ® ~ kerv or & = {0}, ht()) = 1 or 0.
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If ht(D) = 1, we denote D by v. Then we define Dx = E'(Mk)/vEOMg) N E' (Mk).
By mapping (x, y) to z, E;(K) ~ EON) and E/(K) ~ E'(9), for i > 1. Then the
map induces D}, =~ Dk, where Dt = E'(I)/vEMg) N E'(O). By Lemma 3.1.1,
8(D}) = 8(Dk).

LEMMA 3.2.1. If E has ordinary (resp. supersingular) good reduction, then E' has
ordinary (resp. supersingular) good reduction.

PROOF. By Cor. 7.2 of Chap. 7 in [9], isogenous elliptic curves both have good re-
duction or neither have. Let D be a dual isogeny of D. Since VoD = [p] : E — E and
Dod=[pl: E' — E’, E and E' have the same height.

In this case E = Ep and E' = E|. We define ¥ : E — E’ to be an isogeny such that
ker v = m(kerv). By Remark 4.13.2 of Chap. 3 of [9], v is defined over k. Then we have a
commutative diagram,

(3.1)

1 1

| |

kerv —— ker v

| |
[ — E(K) — > Eo(K) —=— E (k) -1

| | s
| — E/(K) — E)(K) ——  E'(k) —— 1

l l l

E/(K)/VE((K) —— D% —"— E'()/DEk) — 1

! ! !

1 1 1

LEMMA 3.2.3. If kerd = {0}, then D% /D} = 1.

PROOF. Since v is injective and #E (k) = #E'(k) (see e.g. [2], Chap. 25), v is an
isomorphism. So D(I)(/(E{(K)/VE1(K)) = 1 by (3.1). Hence DOK/D1 ~ vEy(K) N
E{(K)/VE((K). Letx € Eo(K). If v(x) € vEo(K) N E}(K) then m(v(x)) = 1. Since
E(k) ~ E'(k), 7 (x) = 1. Hence x € E1(K). So vEo(K) N E{(K)/vE((K) = 1.

LEMMA 3.2.4. If ker # {0}, then E|(K)/vE(K) = 1 and E}|(K.)/VE1 (Kyr) =
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PROOF. Ifker¥ # {0} then ker b >~ kerv. Sov : E{(K) — E|(K) is injective. Then
the isogeny ¥ : E(Mg) — E'(Mk) as formal groups is height 0. By the similar argument
of Lemma 2.1.4, 2), ¥ is an isomorphism. Hence E{(K)/vE|(K) = 1. Let 7’ : Eo(K,,) —
E (k) be a reduction map. The minimal model of E/Ok,, is equal to that of E/Ok. So
7’ (kerv) = m(kerv) # {0}. Therefore we can apply the same argument to E1 (K, ).

LEMMA 3.2.5. If kerD # {0}, then §(D%) = CR”.

PROOF. Let Res; be a restriction map of HY(K,kerv) to H'(K,,, kerv). Then we
will first prove that 81(D%) = ker(Resy), where §; was defined in §3.1. Since E;(KW)/
VE|(K,r) = 1 by Lemma 3.2.4 and E'(k)/VE (k) = 1, D%W = 1 by the exact sequence

E{(Ku)/VE\(Kuy) —> D% > E'(k)/VE(k) —> 1.
Since the diagram below is commutative

R
HY(K, kerv) = HY (K, kerv)

dl I

0 0
Dy —_— Dy .

81 (D(,)() C ker(Res). In order to prove equatlity, we consider an exact sequence

1 — E/(k)/aE(k)ﬁ H'(k,kerv) — H'(k, E).

Since Hl(k, E) = 1 (see e.g. [2], Chap. 25), 51 is an isomorphism. By Lemma 3.2.4,
E{(K)/vE((K) = 1. So D(,)( ~ E'(k)/DE(k) ~ H'(k,ker?) ~ ker(Res;). Here, the
last isomorphism is a consequence of the exact sequence

1 — H'(k,kerv) — HY(K, kerv) — H'(K,,, kerv).

Hence 81(D(1)<) = ker(Resy).

Next, let §> be defined in §3.1 and Res; be a restriction map of HYK, Wp) to
H'(Kur, tp). By Lemma 2.1.5, 2), 82(C") C ker(Resy). Since C¢¥ ~ Z/pZ by Lemma
2.1.4,3) and | ker(Res)| = |[H'(Kyr/K, itp)| = p, we have 8,(C¢") = ker(Res,).

We fix an isomorphism ker v 2~ . Then we have an isomorphism « and a commutative
diagram

H'(K,kerv) —~— H'(K,u,)
Resll lResz
H' (K, kerv) ——— H'(Kur, 1p) -

Therefore « o 81 (D%) = «(ker(Res))) = ker(Resz) = 8(C7). Since § = 8, o« 0 81 and
Im § does not depend on the choice of ¥ by Lemma 3.1.1, we have 8(D([)() = C;?p.
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THEOREM 3.2.6. 1) If E has ordinary good reduction over K, then

CP" if kerd # {0
s(pg)=1{ K / kery 210)
Cy if kerv = {0}.
2) If E has supersingular good reduction over K and the generator of ker v is con-
tained in E{(K) \ E;+1(K), then

5(Dg) = CII(+(€0—I)P.
PROOF. 1) If E has ordinary good reduction, then there is an exact sequence
| — X, — E[p] = E[p] — 1

where 7 is a reduction mod 9 and the kernel X, is a cyclic group order p. If ker v = {0}
then DY = D) by Lemma 3.2.3. Since t = e, §(Dg) = C by Corollary 2.1.7. If
ker v # {0} then we can apply Lemma 3.2.5 to this case.

2) If E has supersingular good reduction then E[p] = {0}, so ker v = {0}. By Lemma
3.2.3, D% = DL. S0 8(Dg) = CxH™"” by Corollary 2.1.7.

4. Multiplicative reduction case.

4.1. Multiplicative reduction case.

LEMMA 4.1.1. If E has multiplicative (resp. additive) reduction over K, then E’ has
multiplicative (resp. additive) reduction.

PROOF. Let/ be a prime number distinct from p, and let T;(E) and T;(E’) be the Tate
modules. Then v : Tj(E) — Tj(E’) is an isomorphism. The action of Gal(K /K) is com-
patible with v. So the representations p : Gal(K /K) — Aut(T;(E)) and p’ : Gal(K/K) —
Aut(T;(E")) have the same images. By [4], E has semistable reduction if and only if Im p|; is
unipotent, where / is the inertia group of Gal(K /K). This is equivalent to the unipotentness
of Im p’|;. Hence E’ has semistable reduction. By Lemma 3.2.1 the reduction type of E is
equal to that of E’.

If E has multiplicative reduction, then v(j(E)) < 0. So by [10], Chap. 5, Theorem 5.3,
there exists a unique ¢ € K*, with v(g) > 0 such that E is isomorphic over K to the Tate
curve E,. Then we define the isomorphism by ¢ : E;, — E. By Lemma 4.1.1, E’ also
has multiplicative reduction. So we can define an isomorphism v’ : E,; — E’ over K for
a unique ¢’ € K* with v(g’) > 0. Let L be a unique quadratic extension over K which is
unramified. Since E, (resp. E,) is defined over K by [10], Chap. 5, Theorem 3.1 (a), E,
(resp. E,) is a quadratic twist of E (resp. E') that is, ¥ (resp. y) is defined over L. If ¢
(resp. ¥') is defined over K, E (resp. E’) has split multiplicative reduction, otherwise it has
non-split multiplicative reduction.

Let ¢ : K*/(q) — E, (resp. ¢’ : K*/(q") — E,) be an isomorphism defined by
a power series of g (resp. ¢') as in [10], Chap. 5, Theorem 3.1 (¢). This isomorphism is
compatible with the action of Gal(K /K).
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For ¢~ !(kerv), there exists a Tate curve Eq/w_l(ker v) and an isogeny E; — E,/
¥ ~!(ker v). Then v induces an isomorphism Eq/iﬁ’1 (kerv) — E/kerv. So Eq/l//f1 (kerv)
must be E,, since E is a unique Tate curve isomorphic to E’.

Then there exists an isogeny KX/(q) — IZX/(q’) whose kernel is (¢ o q))_l(ker V).
The kernel of multiplication-by- p map of kx/(q) is (g;;, {/q), wherei =0,---,p—1.So
(¥ o ¢)"!(kerv) is one of the 1-dimensional subspaces of this F,-vector space ({;,, Uq).
Hence it is (g;; £/q) or (¢p).

LEMMA 4.1.2. Assume that p # 2, kerv C E(K) and ¢, € K. Then both E and E’
have split multiplicative reduction.

PROOF. Assume that E has non-split multiplicative reduction. Let Ny /g : L™ /g% —
K */q*” be a norm map. Then by [10], Chap. 5, Corollary 5.4, for u € L* /g%, ¥ o ¢(u) €
E(K) is equivalent to Nk (u) € g%/q*%. Since (¥ o ¢)~'(kerv) = (£} ¢/q) for i =
0,---,p—1lor(,) and kerv C E(K), it must be Nz, (/q) € q%/q*% or Ny jk (¢p) =
¢ 5 € q%/q*%. Since p # 2, this is a contradiction. So E has split multiplicative reduction.

In this case, ¥ is an isomorphism over K. So the induced isomorphism E, / v (kerv) —
E/kerv is defined over K, that is, v’ is an isomorphism over K. Hence E’ has split multi-
plicative reduction.

By the above lemma, we can identify E (resp. E) with E, (resp. E,/). Hence we have
the next proposition.

PROPOSITION 4.1.3. Assume that p #2,kerv C E(K) and {,, € K. Then
Imé =K>*/K>*P if kerv = ({p)
Imé =1 if kerv=(¢hyq) fori=0,---,p—1.
PROOF. Ifkerv = (¢,), then ¢’ = ¢” and the isogeny is written by
v:K*/(q) — K*/{q")
zmod (g) —> z” mod (¢”) .
For any [z] € K*/{(q), we have Ko (z2]) = K (/7). Hence by Lemma 3.1.1, Imé§ =
K>*/K*P,
Ifkerv = <§1i7 q), thenq’ = §1’; {/q and v is written by
v:K*/lq) — K*/{q")
zmod (g) —> zmod (¢}, {/q) -
For [z] € KX/(Q’I’; Yq), Ko~ NzD)) = K (¢/q). Our assumption ker v C E(K) implies

(¢, 4/q) C K*/(g). So we have g/g € K. Hence K (v~!([z])) = K. So by Lemma 3.1.1,
Imé =1.



ISOGENIES OF DEGREE p OF ELLIPTIC CURVES 257

5. The calculation of Im §.

5.1. p-isogenies over Q. In this section we consider elliptic curves E and E’ over Q
and a p-isogeny v : E — E’ over Q. Take L = Q(ker v, 11,). Let K be a completion of K at
a place of IC above p.

LEMMA 5.1.1 K /Q,(up) is an unramified extension. So eg = vg (p)/(p — 1) = 1.

PROOF. Following Mazur [6], §5, we consider the following character. Let yx
Gal(Q/Q) — Aut(kerv) =~ F; be defined by T° = x(o)T, where (T) = kerv. Since
Q(kerv)/Q is an abelian extension, x factors through Gal(Q?’/Q). By local class field
theory, there exists an isomorphism p : U(Q,) =~ Gal(Qi’,b /Q’;,’ ) and we restrict x to
Gal(Qi’,b /Qp). So we have a homomorphism

e 1 U(Qp) —> Gal(Q¥/Q,) =5 F .

Since U(Qp) =~ Z; >~ Gal(Qp (upe)/Qp), € is the cyclotomic character. Then there exists
k € Z such that x = e*«, where « is an unramified character at p. Then the character group
which corresponds to Q(u ) (resp. Q(kerv)) is (&) (resp. (x)). So the character group which
corresponds to C is (g, x) = (e, a).

5.2. Thecaseof p =5. We study an elliptic curve E over Q with a 5-isogeny v over
Q. By Lecacheux [5], the j-invariant of such a curve is j = —(n? — 10n 4 5)3/n, where
n € Q and E is isomorphic to a curve

Y2=X3>—(G5n—10n +n2)iX +(—n —4n +n2)d—2
48 864
with discriminant A = —nd>, where d = n* — 22n + 125. Let K = Q(us, kerv) and

K = Qs(us, kerv).

EXAMPLE 5.2.1. We taken = 10, then j = —25/2, A = —2-5%and E 1) over Q is
written by
) 3 25 1475
Yo=X"—-——X+—.
48 864
By [5], the coordinate of a generator P of kerv is (xp, yp) = (5+162ﬂ, 4'5()J21()‘f5). So
K = Q(¢s,+/—1). Since ep = 1 by Lemma 5.1.1, the ramification index of K /Qs is 4. By

Tate’s algorithm [11], we can verify that a minimal model of E 10y over Ok is written by

5 5945
Yr=x'-x+ 595
48 864
Then E(10) has additive reduction over Ok with type IV and vg (A) = 4. By this change of
coordinates, we have vk (xp) = vg (yp) = 0. Putzp = —xp/yp. We have vg (zp) = 0.

Let L be an extension over K with the ramification index 3. Since j = 0 mod 5, E has
supersingular good reduction over Or. Let 7y, be a prime element of Or. Then a minimal
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model over Oy, is written by

) 3 5 59
YV2=x-—x+_—
487} 864u,
where u| = 712/«/5. By this change of coordinates, we have vy (xp) = —2and vy (yp) = —3.
Then 7 = vz (zp) = 1. Hence (D) = C; T °P7 = €', by Theorem 3.2.6.
EXAMPLE 5.2.2. Ifn = % A= —;—z and j = —% and E(sz) over Q is written
by
5 3 9153 421.5%
y?=x3- -
28.3 211.33°
If EEIO) is 5-isogenous to E(jg) over Q, then E(%) is isomorphic to EEIO) over Q(+/—1). The

generator of kerv is (xp, yp) = (—%, #). So K = Q(¢s). By change of coordinates,

E(%) over Ok is written by
91 -SX 421-5
768 55296

r?=x3 -

We have vg (xp) = vg (yp) = 0.
Let L be an extension over K with the ramification index 3. By change of coordinates,
we have vy (A) = 0. So E s, is good reduction over Or. By this change of coordinates,
2

vr(xp) = —4 and vy (yp) = —6. So t = vy (zp) = 2. Hence §(Dy) = C,; 0797 = (¢,

EXAMPLE 5.2.3. Ifn =7, j=4096/7, A = —2°.53.7 and E(7) over Q is written
by
) 5 20 250
Y2=x-"x+==.
3 27
Then generator of kerv is (xp, yp) = (%ﬁ, V50 + 204/5). So K = Q(¢s, v/ —2). Since
ep = 1, the ramification index of K /Qs is 4. By change of coordinates, vk (A) = 0. Therefore
E (7 has good reduction over K and a minimal model of E(7) is written by
4 105
Y2=X3——X+—f.
3 27
By this change of coordinates, vk (xp) = vg(yp) = 0. Sot = vk(zp) = 0. Because
J # 0modS5, E(7) has ordinary good reduction. Since kerv ¢ E7),(K),Im§ = C%P = C?

by Theorem 3.2.6.
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