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Abstract. Let p be a prime number. In order to calculate the Selmer group of a p-isogeny ν : E → E′
of elliptic curves, we determine the image of a local Kummer map E′(K)/νE(K) → H 1(K, ker ν) over a finite
extension K of Qp . We describe the image using a filtration on a unit group of a local field and the valuation of a
coefficient of a leading term in a formal power series of an isogeny.

1. Introduction.

Let ν : E → E′ be an isogeny of elliptic curves over a number field K. We are interested
in its Selmer group Sel(ν) which is a subgroup of H 1(K, ker ν) generated by the elements
whose local images in H 1(Kv, ker ν) are in Im δv for all primes v. Here δv is a connecting
homomorphism of an exact sequence over Kv

1 −→ ker ν −→ E
ν−→E′ −→ 1 .

So δv fits in an exact sequence

1 −→ E′(Kv)/νE(Kv) δv−→H 1(Kv, ker ν) −→ H 1(Kv, E)
for each v. Let p be a prime number. We assume ν is a p-isogeny, namely ker ν is a group
of order p. In order to study such Selmer group Sel(ν), one of the difficult problems is to
know Im δv for primes v over p. If E has good reduction at v and v does not divide p, then
Im δv = H 1

ur (Kv, ker ν), where H 1
ur(Kv, ker ν) = ker(H 1(Kv, ker ν) → H 1(Kurv , ker ν)).

But if v divides p then the equation does not hold. This paper is devoted to the study of Im δv
for v over p. In [1], Berkovič treated the case when E has a complex multiplication and
ν ∈ End(E), and expressed Im δv as a subgroup of K×

v /K×p
v , under the assumption Kv ⊃ µp

and E(Kv) ⊃ ker ν. In this paper we treat the case when ν is a general p-isogeny.
We also assume that Kv ⊃ µp and E(Kv) ⊃ ker ν. Let Ov be the ring of integers of

Kv,Mv the maximal ideal of Ov and U the unit group of Ov . Let U0 = U and Ui = 1 +Mi
v

for i ≥ 1. This gives a filtration on the unit group of Kv , K×
v ⊃ U0 ⊃ U1 ⊃ U2 ⊃ · · · . It also

induces a filtration K×
v /K×p

v ⊃ C0 ⊃ C1 ⊃ · · · ⊃ Cpe0+1 = {1}, whereCi = Ui/K×p∩ Ui
for i ≥ 0 and e0 is the ramification index of Kv over Qp(ζp). On the other hand let E
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be a minimal Weierstrass model overOv, E0 be the set of points with nonsingular reduction
and Ei = {(x, y) ∈ E(Kv) | v(x) ≤ −2i, v(y) ≤ −3i} for i ≥ 1. This gives filtrations
E(Kv) ⊃ E0 ⊃ E1 · · · and E′(Kv) ⊃ E′

0 ⊃ E′
1 ⊃ · · · . The filtration on E′(Kv) induces the

filtration E′(Kv)/νE(Kv) ⊃ D0 ⊃ D1 ⊃ · · · , where Di = E′
i (Kv)/νE(Kv) ∩ E′

i (Kv) for
i ≥ 0. Let t be the index such that the generator of ker ν is contained in Et(Kv) \ Et+1(Kv).
We regard δv as a homomorphism

δv : E′(Kv)/νE(Kv) −→ K×
v /K×p

v

by identifying
H 1(Kv, ker ν) � H 1(Kv, µp) � K×

v /K×p
v .

Then δv maps the filtration on E′(Kv)/νE(Kv) to that on K×
v /K×p

v . By investigating this
map, we will show the following theorem.

THEOREM. 1) If E has ordinary good reduction overKv, then

Im δv =
{
C1 if π(ker ν) = {0}
Ce0p if π(ker ν) 	= {0}

where π is the reduction map.
2) If E has supersingular good reduction over Kν, then

Im δv = C1+(e0−t )p .
3) IfE has multiplicative reduction overKv and p 	= 2, then E has split multiplicative

reduction and

Im δv =
{
K×
v /K×p

v if ker ν = 〈ζp〉
1 if ker ν = 〈ζ ip p

√
q〉 for i = 0, · · · , p − 1 .

We here remark that if E has bad reduction, Im δv is not necessarily contained in C1, as
in the case 3). In the case 2), Im δv can be written by using the parameter t . In §5, we give
some examples and calculate that values of t for them.

ACKNOWLEDGMENT. The author wishes to thank Professor M. Kurihara for many
valuable comments and suggestions.

2. Preliminaries from formal groups.

2.1. The map δ of formal groups. Let K be a finite extension of Qp, v be a nor-
malized valuation on K,OK the ring of integers of K,MK the maximal ideal in OK and
k = OK/MK the residue field. We put e = v(p). Let ζp be a primitive p-th root of unity. Let
FK,F

′
K be formal groups overOK . Assume that there is an isogeny ν : FK → F′

K overK .
We regard ν as a power series ν(z) = a1z + a2z

2 + · · · ∈ OK [[z]].
LEMMA 2.1.1 (cf. [1], Lemma 1.1.1). Let ϕ(z) be an isogeny of formal groups de-

fined over a commutative ring of characteristic p. Then there exists an integer h ≥ 0 such
that ϕ(z) is a power series in zp

h
.
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PROOF. See [3], Chap. 1, §3, Theorem 2.

By the above lemma, we define the height of an isogeny overOK as follows.
1) If there is a positive integer h such that ν(z) ≡ ψ(zp

h
)mod MK , where ψ(z) =

b1z + b2z
2 + · · · ∈ OK [[z]], b1 /∈ MK and bi ∈ OK , then the height of ν is defined to be h.

We denote h by ht(ν).
2) If ν(z) ≡ 0 modMK , then the height of ν is defined to be infinity.
We also define a height of a formal group FK to be the height of [p], the multiplication

by p on FK . We assume that ht(ν) = 1 and that the points of ker ν are defined overK . For an
algebraic extension L, we define FK(L) = FK(ML). For a point P of FK(L), we denote by
z(P ) the corresponding element of ML. We will denote FK(K) simply by FK . We define a
decreasing filtration on FK by FiK = F(Mi

K). So we have FK = F1
K ⊃ F2

K ⊃ · · · . Put DK =
F′
K/νFK . The filtration on FK induces a filtration on DK . Namely put Di

K = F′i
K/νFK ∩F′i

K ,
then we have a filtration DK = D1

K ⊃ D2
K ⊃ · · · .

LEMMA 2.1.2 (cf. [1], Lemma 2.1.1). For i such that p � i, we have a1 | ai .
PROOF. If a1 /∈ MK , it is obvious. In the case a1 ∈ MK, by Corollary 1 in p. 112

of [3], there exists a dual isogeny ν̌ of ν, that is ν̌ ◦ ν = [p]. So we have a1 |p. Put R =
OK/(a1) and consider an isogeny ν̄ = νmod(a1) : FK/(a1) → F′

K/(a1). Then R is a ring of
characteristic p, and we have an isogeny ν̄(z) = ν(z)mod(a1) = �a1z+· · ·+ �apzp+· · · overR.
Since �a1 = 0, ht(ν̄) 	= 0. By Lemma 2.1.1, ν̄(z) is a power series in zp. Hence for i such that
p � i, �ai = 0, that is a1 | ai .

We define

t = v(a1)

p − 1
.

The following lemma shows that t is an integer.

LEMMA 2.1.3 (cf. [1], Lemma 1.1.2). For any non-zero point P ∈ ker ν, the valua-
tion of z(P ) does not depend on the choice of P . In fact P is in FtK \ Ft+1

K , where t is in the
number defined above.

PROOF. Let z = z(P ), then ν(z) = a1z + a2z
2 + · · · + apz

p + · · · = 0. By Lemma
2.1.2, we have a1 | ai for p � i. So v(a1z) = v(apz

p). Hence we have v(z) = v(a1)
p−1 = t ,

since v(ap) = 0.

LEMMA 2.1.4 (cf. [1], Lemma 1.1.2).
1) If 1 ≤ i < pt, then

Di
K/D

i+1
K �

{
k if p � i

1 if p | i .
2) If i ≥ pt + 1, then Di

K = 1.
3)

D
pt

K /D
pt+1
K � Z/pZ .
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PROOF. 1) If 1 ≤ j < t , then ν(Fj ) ⊂ F′pj . So ν̃ : Fj /Fj+1 → F′pj /F′pj+1 is
induced by ν. This is identified with ν̃ : k → k, ν̃(x) = apx

p, for x ∈ k. Since k is perfect, ν̃

is an isomorphism. If i = pj , then D
pj
K /D

pj+1
K = 1. If p � i then Di

K/D
i+1
K � F′i

K/F
′i+1
K �

k.
2) If j ≥ t + 1, ν(FjK) ⊂ F

′j+(p−1)t
K . So ν̃ : F

j
K/F

j+1
K → F

′j+(p−1)t
K /F

′j+(p−1)t+1
K

is induced by ν. Put a1 = π
t(p−1)
K u, where πK is a prime element of K and u ∈ O×

K . Then
ν̃ : k → k can be regarded as ν̃(x) = ux for x ∈ k. So ν̃ is an isomorphism. Hence
ν : F

j
K → F

′j+(p−1)t
K is an isomorphism. So if i ≥ pt + 1, then Di

K = 1.

3) For i = pt , ν(FtK) ⊂ F
′pt
K . So ν induces ν̃ : FtK/F

t+1
K → F

′pt
K /F

′pt+1
K and ν̃(x) =

ux + apx
p for x ∈ k. This is extended to ν̃ : k̄ → k̄. Because H 1(k, k̄) = 1, we have

k/ν̃(k) � H 1(k, ker ν̃). Since ker ν ⊂ FtK \ Ft+1
K , ker ν̃ � Z/pZ as Gal(k̄/k)-modules.

Using the fact that k is finite, we have k/ν̃(k) � H 1(k, ker ν̃) � H 1(k,Z/pZ) � Z/pZ.

For [P ] ∈ DK , let Q ∈ FK(K̄) be a point such that P = ν(Q). Let K ′ = K(Q) be
a definition field of Q over K . We prepare the next lemma for Theorem 2.1.6 which is the
general p-isogenies’ case of Theorem 2.1.1 in Berkovič [1]. Since ht(ν) = 1, we can write

ν(z)− z(P ) = (b0 + b1z + · · · + zp)U(z) ,

where bi ∈ OK and U(z) ∈ OK [[z]]×, by Weierstrass preparation theorem. So z(Q) is a
solution of the equation of degree p. Since ker ν ⊂ FK(K), K ′/K is a Galois extension of
degree ≤ p. Let G = Gal(K ′/K). For σ ∈ G, σ(Q) can be written as σ(Q) = Q ⊕ T ,
where T ∈ ker ν and ⊕ is the formal group law of F. For a prime element π of K ′, define
iG(σ ) = vK ′(σ (π) − π). Then it does not depend on the choice of π . By calculating iG(σ ),
we give a simpler proof of Theorem 2.1.6 than that of [1]. The idea of this proof is adviced
by Kurihara.

LEMMA 2.1.5. Let [P ] ∈ Di
K \ Di+1

K , then
1) If 1 ≤ i < pt and p � i, then K ′/K is a totally ramified extension of degree p and

iG(σ ) = pt − i + 1 for σ ∈ G.
2) If i = pt, then K ′/K is an unramified extension of degree p.

PROOF. 1) Let vK ′(z(Q)) = j then vK ′(z(ν(Q))) = pj . If vK = vK ′ then i =
vK(z(P )) = pj . This contradicts to p � i. So K ′/K is a totally ramified extension of degree
p. Let y = z(Q) and πK be a prime element of K . We can choose integers a, b such that
ai+bp = 1. Then π = yaπbK is a prime element ofK ′. We have iG(σ ) = vK ′( σ(π)

π
−1)+1 =

vK ′(
σ(y)aπbK
yaπbK

− 1)+ 1. Let ker ν � T 	= 0 and ξ = z(T ). Then vK ′(y) = i, vK ′(ξ) = tp and

σ(y) = y ⊕ ξ = y + ξ + γ , where vK ′(γ ) > vK ′(y + ξ). Therefore σ(π) = σ(y)aπbK =
(y + ξ + γ )aπbK = (ya + aya−1ξ + γ ′)πbK , where vK ′(γ ′) > vK ′(aya−1ξ) > vK ′(ya). So

vK ′( σ(π)
π

−1) = vK ′( y
a+aya−1ξ+γ ′

ya
−1) = vK ′(ξ)−vK ′ (y) = pt−i. Hence iG(σ ) = pt−i+1.

2) Since a1 = π
(p−1)t
K u, where u ∈ O×

K, ν(π
t
Kx) = π

pt
K (ux + · · · + apx

p + · · · ).
Let z(P ) = π

pt

K β, where β ∈ O×
K . Because P /∈ νFK , by Hensel’s lemma, the solution



ISOGENIES OF DEGREE p OF ELLIPTIC CURVES 251

of β ≡ ux + apx
p mod MK is not contained in k. So the solution is contained in a finite

extension over k of degree p. Since u 	≡ 0 mod MK , ux + apx
p mod MK is separable. So

we have a solution in an unramified extension overK of degree p.

We will consider the special case that FK is isomorphic to Gm, that is FK = U1 =
1 + MK . We take ν to be the p-th power. We assume K � ζp and let e0 = e

p−1 , F
i
K = Ui =

1 + Mi
K , Di

K = CiK = Ui/K×p ∩ Ui and t = e0. We fix an arbitrary formal group and
denote it by FK again. Then we will consider the correspondence of FK to Gm. We use the
same notation ν, t and DK for FK . Let [P ] ∈ DK and ν(Q) = P . If FK(K) ⊃ ker ν and
K � ζp, the definiton field K ′ of Q is a Kummer extension over K , that is K ′ = K( p

√
α),

where [α] ∈ K×/K×p. We can define the map δ : DK → K×/K×p by δ([P ]) = [α]. Then
we have the next theorem.

THEOREM 2.1.6. Assume that FK ⊃ ker ν and K � ζp. If [P ] ∈ Di
K \ Di+1

K for

1 ≤ i < pt and p � i or i = pt, then δ([P ]) ∈ Ci+(e0−t )p
K \ Ci+(e0−t )p+1

K .

PROOF. Let K ′ be a definition field of Q, where ν(Q) = P . If 1 ≤ i < pt and p � i,
then by Lemma 2.1.5, 1), K ′/K is a totally ramified extension and iG(σ ) = pt − i + 1. On
the other hand K ′ is regarded as a Kummer extension K( p

√
α), where α ∈ CjK \ Cj+1

K . Then
[α] = δ([P ]). Since K ′/K is a totally ramified extension, by applying the Lemma 2.1.5, 1)
to the case when FK = Gm, that is, ν is p-th power map and t = e0, we have iG(σ ) =
pe0 − j + 1. So by comparing the two representation of iG(σ ), we have j = i + (e0 − t)p.
If i = pt then by Lemma 2.1.5, 2), K ′ is an unramified extension. So δ([P ]) = [α], where
[α] ∈ Ce0p

K \ Ce0p+1
K .

COROLLARY 2.1.7. δ(D1
K) = C

1+(e0−t )p
K .

PROOF. By Theorem 2.1.6, δ induces an injection and by Lemma 2.1.4 this ia an iso-
morphism of finite groups,

Di
K/D

i+1
K � C

i+(e0−t )p
K /C

i+(e0−t )p+1
K �

{
k if p � i, 1 ≤ i < pt

1 if p | i, 1 ≤ i < pt ,

Di
K = C

i+(e0−t )p
K = 1 for i ≥ tp + 1

and
D
pt
K /D

pt+1
K � C

e0p
K /C

e0p+1
K � Z/pZ .

Hence we have δ(D1
K) = C

1+(e0−t )p
K .

3. Elliptic curves overK .

3.1. The map δ of elliptic curves. LetE andE′ be elliptic curves defined overK, ν :
E → E′ be an isogeny of degree p defined over K and ν̌ : E′ → E be a dual isogeny of
ν. We assume E(K) ⊃ ker ν and E′(K) ⊃ ker ν̌. Then we easily see K � ζp by using Weil
pairing.
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An exact sequence

1 −→ ker ν −→ E −→ E′ −→ 1

induces an exact sequence

1 −→ E′(K)/νE(K) δ1−→H 1(K, ker ν) −→ H 1(K,E)

where δ1 is a connecting homomorphism. We fix an isomorphism ker ν � µp. Then we have
an isomorphism

κ : H 1(K, ker ν)
∼−→H 1(K,µp) .

By Kummer theory, there is an isomorphism

δ2 : K×/K×P ∼−→H 1(k, µp) .

Let δ = δ−1
2 ◦ κ ◦ δ1.

Put K ′ = K(ν−1(E(K))). Then K ′/K is an abelian extension of exponent p, hence
a Kummer extension. So there is a subgroup B of K×/K×p such that K ′ = K(

p
√
B). Put

DK = E′(K)/νE(K).

LEMMA 3.1.1. The image δ(DK) does not depend on the choice of the isomorphism
κ . In fact we have δ(DK) = B.

PROOF. Let [P ] ∈ DK , [P ] 	= 0 and ν(Q) = P. Put L = K(Q) and δ([P ]) = [α].
By a commutative diagram

DL −−−−→ H 1(L, ker ν) −−−−→ H 1(L,µp) −−−−→ L×/L×p�⏐⏐ Res

�⏐⏐ �⏐⏐Res

�⏐⏐
Dk

δ1−−−−→ H 1(K, ker ν)
κ−−−−→ H 1(K,µp)

δ−1
2−−−−→ K×/K×p ,

we have α ∈ L×p . So L = K( p
√
α) since [L : K] = p, this implies α ∈ B. Conversely let

α ∈ B and L = K( p
√
α). Then there exists Q ∈ ν−1(E(K)) such that L = K(Q). By the

above diagram, δ([ν(Q)]) = [α].
3.2. The case of good reduction. Let E be a minimal Weierstrass model over OK

and π : E(K) → Ẽ(k) be a reduction map. Define E0(K) = π−1(Ẽns(k)), E1(K) = kerπ
and for i ≥ 1, Ei(K) = {(x, y) ∈ E(K) | v(x) ≤ −2i, v(y) ≤ −3i}. Let ν : E → E′ be an
isogeny of degree p over K such that E′ is a minimal Weierstrass model over OK . Assume
that ker ν ⊂ E(K) and ker ν̌ ⊂ E′(K). We define E′

i (K) by the same way of Ei(K) for
i ≥ 1. LetDK = E′(K)/νE(K) andDiK = E′

i (K)/νE(K)∩E′
i (K) for i ≥ 0, then we have

a filtration DK ⊃ D0
K ⊃ D1

K ⊃ · · · .
We make change of variable z = −x/y. By mapping (x, y) to z, E1(K) (resp. E′

1(K))

is isomorphic to the formal group Ê(MK) (resp. Ê′(MK)). Let Φ be a finite subgroup of
Ê(MK) such that ker ν ∩ E1(K) � Φ. Then there exists a formal group G and an isogeny
ν̂ : Ê → G both defined over OK such that ker ν̂ = Φ by Theorem 4 in p. 112 of [3]. Since
E′ is a minimal model over OK , G = Ê′. Since Φ � ker ν or Φ = {0}, ht(ν̂) = 1 or 0.
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If ht(ν̂) = 1, we denote ν̂ by ν. Then we define DK = Ê′(MK)/νÊ(MK) ∩ Ê′(MK).
By mapping (x, y) to z, Ei(K) � Ê(Mi

K) and E′
i (K) � Ê′(Mi

K), for i ≥ 1. Then the
map induces DiK � Di

K , where Di
K = Ê′(Mi

K)/νÊ(MK) ∩ Ê′(Mi
K). By Lemma 3.1.1,

δ(D1
K) = δ(DK).

LEMMA 3.2.1. If E has ordinary (resp. supersingular) good reduction, then E′ has
ordinary (resp. supersingular) good reduction.

PROOF. By Cor. 7.2 of Chap. 7 in [9], isogenous elliptic curves both have good re-
duction or neither have. Let ˇ̂ν be a dual isogeny of ν̂. Since ˇ̂ν ◦ ν̂ = [p] : Ê → Ê and
ν̂ ◦ ˇ̂ν = [p] : Ê′ → Ê′, Ê and Ê′ have the same height.

In this case E = E0 and E′ = E′
0. We define ν̃ : Ẽ → Ẽ′ to be an isogeny such that

ker ν̃ = π(ker ν). By Remark 4.13.2 of Chap. 3 of [9], ν̃ is defined over k. Then we have a
commutative diagram,

(3.1)

1 1⏐⏐� ⏐⏐�
ker ν −−−−→ ker ν̃⏐⏐� ⏐⏐�

1 −−−−→ E1(K) −−−−→ E0(K)
π−−−−→ Ẽ(k) −−−−→ 1

ν

⏐⏐� ν

⏐⏐� ⏐⏐�ν̃
1 −−−−→ E′

1(K) −−−−→ E′
0(K)

π−−−−→ Ẽ′(k) −−−−→ 1⏐⏐� ⏐⏐� ⏐⏐�
E′

1(K)/νE1(K) −−−−→ D0
K

π−−−−→ Ẽ′(k)/ν̃Ẽ(k) −−−−→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 1 1 .

LEMMA 3.2.3. If ker ν̃ = {0}, then D0
K/D

1
K = 1.

PROOF. Since ν̃ is injective and #Ẽ(k) = #Ẽ′(k) (see e.g. [2], Chap. 25), ν̃ is an
isomorphism. So D0

K/(E
′
1(K)/νE1(K)) = 1 by (3.1). Hence D0

K/D
1
K � νE0(K) ∩

E′
1(K)/νE1(K). Let x ∈ E0(K). If ν(x) ∈ νE0(K) ∩ E′

1(K) then π(ν(x)) = 1. Since
Ẽ(k) � Ẽ′(k), π(x) = 1. Hence x ∈ E1(K). So νE0(K) ∩ E′

1(K)/νE1(K) = 1.

LEMMA 3.2.4. If ker ν̃ 	= {0}, then E′
1(K)/νE1(K) = 1 and E′

1(Kur)/νE1(Kur) =
1.



254 MAYUMI KAWACHI

PROOF. If ker ν̃ 	= {0} then ker ν̃ � ker ν. So ν : E1(K) → E′
1(K) is injective. Then

the isogeny ν̂ : Ê(MK) → Ê′(MK) as formal groups is height 0. By the similar argument
of Lemma 2.1.4, 2), ν̂ is an isomorphism. Hence E′

1(K)/νE1(K) = 1. Let π ′ : E0(Kur) →
Ẽ(k̄) be a reduction map. The minimal model of E/OKur is equal to that of E/OK . So
π ′(ker ν) = π(ker ν) 	= {0}. Therefore we can apply the same argument to E1(Kur).

LEMMA 3.2.5. If ker ν̃ 	= {0}, then δ(D0
K) = C

e0p

K .

PROOF. Let Res1 be a restriction map of H 1(K, ker ν) to H 1(Kur , ker ν). Then we
will first prove that δ1(D

0
K) = ker(Res1), where δ1 was defined in §3.1. Since E′

1(Kur)/

νE1(Kur) = 1 by Lemma 3.2.4 and Ẽ′(k̄)/ν̃Ẽ(k̄) = 1, D0
Kur

= 1 by the exact sequence

E′
1(Kur)/νE1(Kur) −→ D0

Kur

π−→ Ẽ′(k̄)/ν̃Ẽ(k̄) −→ 1 .

Since the diagram below is commutative

H 1(K, ker ν)
Res1−−−−→ H 1(Kur, ker ν)

δ1

�⏐⏐ �⏐⏐
D0
K −−−−→ D0

Kur
,

δ1(D
0
K) ⊂ ker(Res1). In order to prove equatlity, we consider an exact sequence

1 −→ Ẽ′(k)/ν̃Ẽ(k) δ̃1−→H 1(k, ker ν̃) −→ H 1(k, Ẽ) .

Since H 1(k, Ẽ) = 1 (see e.g. [2], Chap. 25), δ̃1 is an isomorphism. By Lemma 3.2.4,
E′

1(K)/νE1(K) = 1. So D0
K � Ẽ′(k)/ν̃Ẽ(k) � H 1(k, ker ν̃) � ker(Res1). Here, the

last isomorphism is a consequence of the exact sequence

1 −→ H 1(k, ker ν̃) −→ H 1(K, ker ν) −→ H 1(Kur , ker ν) .

Hence δ1(D
0
K) = ker(Res1).

Next, let δ2 be defined in §3.1 and Res2 be a restriction map of H 1(K,µp) to
H 1(Kur , µp). By Lemma 2.1.5, 2), δ2(C

e0p
K ) ⊂ ker(Res2). Since Ce0p

K � Z/pZ by Lemma
2.1.4, 3) and | ker(Res2)| = |H 1(Kur/K,µp)| = p, we have δ2(C

e0p

K ) = ker(Res2).
We fix an isomorphism ker ν � µp. Then we have an isomorphism κ and a commutative

diagram

H 1(K, ker ν)
κ−−−−→ H 1(K,µp)

Res1

⏐⏐� ⏐⏐�Res2

H 1(Kur , ker ν) −−−−→ H 1(Kur , µp) .

Therefore κ ◦ δ1(D
0
K) = κ(ker(Res1)) = ker(Res2) = δ2(C

e0p

K ). Since δ = δ−1
2 ◦ κ ◦ δ1 and

Im δ does not depend on the choice of κ by Lemma 3.1.1, we have δ(D0
K) = C

e0p

K .
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THEOREM 3.2.6. 1) If E has ordinary good reduction over K, then

δ(DK) =
{
C
e0p
K if ker ν̃ 	= {0}
C1
K if ker ν̃ = {0} .

2) If E has supersingular good reduction over K and the generator of ker ν is con-
tained in Et(K) \ Et+1(K), then

δ(DK) = C
1+(e0−t )p
K .

PROOF. 1) If E has ordinary good reduction, then there is an exact sequence

1 −→ Xp −→ E[p] π̄−→ Ẽ[p] −→ 1

where π̄ is a reduction mod MK̄ and the kernel Xp is a cyclic group order p. If ker ν̃ = {0}
then D0

K = D1
K by Lemma 3.2.3. Since t = e0, δ(DK) = C1

K by Corollary 2.1.7. If
ker ν̃ 	= {0} then we can apply Lemma 3.2.5 to this case.

2) If E has supersingular good reduction then Ẽ[p] = {0}, so ker ν̃ = {0}. By Lemma
3.2.3,D0

K = D1
K . So δ(DK) = C

1+(e0−t )p
K by Corollary 2.1.7.

4. Multiplicative reduction case.

4.1. Multiplicative reduction case.

LEMMA 4.1.1. If E has multiplicative (resp. additive) reduction over K, then E′ has
multiplicative (resp. additive) reduction.

PROOF. Let l be a prime number distinct from p, and let Tl(E) and Tl(E′) be the Tate
modules. Then ν : Tl(E) → Tl(E

′) is an isomorphism. The action of Gal(K̄/K) is com-
patible with ν. So the representations ρ : Gal(K̄/K) → Aut(Tl(E)) and ρ′ : Gal(K̄/K) →
Aut(Tl(E′)) have the same images. By [4],E has semistable reduction if and only if Imρ|I is
unipotent, where I is the inertia group of Gal(K̄/K). This is equivalent to the unipotentness
of Imρ′|I . Hence E′ has semistable reduction. By Lemma 3.2.1 the reduction type of E is
equal to that of E′.

If E has multiplicative reduction, then v(j (E)) < 0. So by [10], Chap. 5, Theorem 5.3,
there exists a unique q ∈ K×, with v(q) > 0 such that E is isomorphic over K̄ to the Tate
curve Eq . Then we define the isomorphism by ψ : Eq → E. By Lemma 4.1.1, E′ also
has multiplicative reduction. So we can define an isomorphism ψ ′ : Eq ′ → E′ over K̄ for
a unique q ′ ∈ K× with v(q ′) > 0. Let L be a unique quadratic extension over K which is
unramified. Since Eq (resp. Eq ′) is defined over K by [10], Chap. 5, Theorem 3.1 (a), Eq
(resp. Eq ′ ) is a quadratic twist of E (resp. E′) that is, ψ (resp. ψ ′) is defined over L. If ψ
(resp. ψ ′) is defined over K , E (resp. E′) has split multiplicative reduction, otherwise it has
non-split multiplicative reduction.

Let φ : K̄×/〈q〉 → Eq (resp. φ′ : K̄×/〈q ′〉 → Eq ′ ) be an isomorphism defined by
a power series of q (resp. q ′) as in [10], Chap. 5, Theorem 3.1 (c). This isomorphism is
compatible with the action of Gal(K̄/K).
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For ψ−1(ker ν), there exists a Tate curve Eq/ψ−1(ker ν) and an isogeny Eq → Eq/

ψ−1(ker ν). Thenψ induces an isomorphismEq/ψ
−1(ker ν) → E/ ker ν. SoEq/ψ−1(ker ν)

must be Eq ′ , since Eq ′ is a unique Tate curve isomorphic to E′.
Then there exists an isogeny K̄×/〈q〉 → K̄×/〈q ′〉 whose kernel is (ψ ◦ φ)−1(ker ν).

The kernel of multiplication-by-p map of K̄×/〈q〉 is 〈ζ ip, p
√
q〉, where i = 0, · · · , p − 1. So

(ψ ◦ φ)−1(ker ν) is one of the 1-dimensional subspaces of this Fp-vector space 〈ζ ip, p
√
q〉.

Hence it is 〈ζ ip p
√
q〉 or 〈ζp〉.

LEMMA 4.1.2. Assume that p 	= 2, ker ν ⊂ E(K) and ζp ∈ K . Then both E and E′
have split multiplicative reduction.

PROOF. Assume that E has non-split multiplicative reduction. Let NL/K : L×/qZ →
K×/q2Z be a norm map. Then by [10], Chap. 5, Corollary 5.4, for u ∈ L×/qZ, ψ ◦ φ(u) ∈
E(K) is equivalent to NL/K(u) ∈ qZ/q2Z. Since (ψ ◦ φ)−1(ker ν) = 〈ζ ip p

√
q〉 for i =

0, · · · , p − 1 or 〈ζp〉 and ker ν ⊂ E(K), it must be NL/K( p
√
q) ∈ qZ/q2Z or NL/K(ζp) =

ζ 2
p ∈ qZ/q2Z. Since p 	= 2, this is a contradiction. So E has split multiplicative reduction.

In this case,ψ is an isomorphism overK . So the induced isomorphismEq/ψ−1(ker ν)→
E/ ker ν is defined over K , that is, ψ ′ is an isomorphism over K . Hence E′ has split multi-
plicative reduction.

By the above lemma, we can identify E (resp. E′) with Eq (resp. Eq ′). Hence we have
the next proposition.

PROPOSITION 4.1.3. Assume that p 	= 2, ker ν ⊂ E(K) and ζp ∈ K . Then{
Im δ = K×/K×p if ker ν = 〈ζp〉
Im δ = 1 if ker ν = 〈ζ ip p

√
q〉 for i = 0, · · · , p − 1 .

PROOF. If ker ν = 〈ζp〉, then q ′ = qp and the isogeny is written by

ν : K̄×/〈q〉 −→ K̄×/〈q ′〉
zmod 〈q〉 �−→ zp mod 〈qp〉 .

For any [z] ∈ K×/〈q〉, we have K(ν−1([z])) = K( p
√
z). Hence by Lemma 3.1.1, Im δ =

K×/K×p.
If ker ν = 〈ζ ip p

√
q〉, then q ′ = ζ ip

p
√
q and ν is written by

ν : K̄×/〈q〉 −→ K̄×/〈q ′〉
zmod 〈q〉 �−→ zmod 〈ζ ip p

√
q〉 .

For [z] ∈ K×/〈ζ ip p
√
q〉, K(ν−1([z])) = K( p

√
q). Our assumption ker ν ⊂ E(K) implies

〈ζ ip p
√
q〉 ⊂ K×/〈q〉. So we have p

√
q ∈ K . Hence K(ν−1([z])) = K . So by Lemma 3.1.1,

Im δ = 1.
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5. The calculation of Im δ.

5.1. p-isogenies over Q. In this section we consider elliptic curves E and E′ over Q
and a p-isogeny ν : E → E′ over Q. Take K = Q(ker ν,µp). Let K be a completion of K at
a place of K above p.

LEMMA 5.1.1 K/Qp(µp) is an unramified extension. So e0 = vK(p)/(p − 1) = 1.

PROOF. Following Mazur [6], §5, we consider the following character. Let χ :
Gal(Q̄/Q) → Aut(ker ν) � F×

p be defined by T σ = χ(σ)T , where 〈T 〉 = ker ν. Since

Q(ker ν)/Q is an abelian extension, χ factors through Gal(Qab/Q). By local class field
theory, there exists an isomorphism ρ : U(Qp) � Gal(Qab

p /Q
ur
p ) and we restrict χ to

Gal(Qab
p /Qp). So we have a homomorphism

ε : U(Qp)
ρ−→ Gal(Qab

p /Qp)
χ−→ F×

p .

Since U(Qp) � Z×
p � Gal(Qp(µp∞)/Qp), ε is the cyclotomic character. Then there exists

k ∈ Z such that χ = εkα, where α is an unramified character at p. Then the character group
which corresponds to Q(µp) (resp. Q(ker ν)) is 〈ε〉 (resp. 〈χ〉). So the character group which
corresponds to K is 〈ε, χ〉 = 〈ε, α〉.

5.2. The case of p = 5. We study an elliptic curveE over Q with a 5-isogeny ν over
Q. By Lecacheux [5], the j -invariant of such a curve is j = −(n2 − 10n + 5)3/n, where
n ∈ Q and E is isomorphic to a curve

Y 2 = X3 − (5n− 10n+ n2)
d

48
X + (−n− 4n+ n2)

d2

864

with discriminant ∆ = −nd3, where d = n2 − 22n + 125. Let K = Q(µ5, ker ν) and
K = Q5(µ5, ker ν).

EXAMPLE 5.2.1. We take n = 10, then j = −25/2,∆ = −2 · 54 and E(10) over Q is
written by

Y 2 = X3 − 25

48
X + 1475

864
.

By [5], the coordinate of a generator P of ker ν is (xP , yP ) = ( 5+6
√

5
12 ,

√
50+10

√
5

4 ). So
K = Q(ζ5,

√−1). Since e0 = 1 by Lemma 5.1.1, the ramification index of K/Q5 is 4. By
Tate’s algorithm [11], we can verify that a minimal model of E(10) over OK is written by

Y 2 = X3 − 5

48
X + 59

√
5

864
.

Then E(10) has additive reduction over OK with type IV and vK(∆) = 4. By this change of
coordinates, we have vK(xP ) = vK(yP ) = 0. Put zP = −xP /yP . We have vK(zP ) = 0.

Let L be an extension over K with the ramification index 3. Since j ≡ 0 mod 5, E has
supersingular good reduction over OL. Let πL be a prime element of OL. Then a minimal
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model over OL is written by

Y 2 = X3 − 5

48π4
L

X + 59

864u1
,

where u1 = π6
L/

√
5. By this change of coordinates, we have vL(xP ) = −2 and vL(yP ) = −3.

Then t = vL(zP ) = 1. Hence δ(DL) = C
1+(3−1)·5
L = C11

L , by Theorem 3.2.6.

EXAMPLE 5.2.2. If n = 25
2 , ∆ = − 58

26 and j = − 121945
32 and E

( 25
2 )

over Q is written

by

Y 2 = X3 − 91 · 53

28 · 3
X − 421 · 54

211 · 33 .

If E′
(10) is 5-isogenous to E(10) over Q, then E( 25

2 )
is isomorphic to E′

(10) over Q(
√−1). The

generator of ker ν is (xP , yP ) = (− 35
48 ,

5
√

5
4 ). So K = Q(ζ5). By change of coordinates,

E( 25
2 )

over OK is written by

Y 2 = X3 − 91 · 5

768
X − 421 · 5

55296
.

We have vK(xP ) = vK(yP ) = 0.
Let L be an extension over K with the ramification index 3. By change of coordinates,

we have vL(∆) = 0. So E
( 25

2 )
is good reduction over OL. By this change of coordinates,

vL(xP ) = −4 and vL(yP ) = −6. So t = vL(zP ) = 2. Hence δ(DL) = C
1+(3−2)·5
L = C6

L.

EXAMPLE 5.2.3. If n = 7, j = 4096/7,∆ = −26 · 53 · 7 and E(7) over Q is written
by

Y 2 = X3 − 20

3
X + 250

27
.

Then generator of ker ν is (xP , yP ) = ( 5+3
√

5
3 ,

√
50 + 20

√
5). So K = Q(ζ5,

√−2). Since
e0 = 1, the ramification index ofK/Q5 is 4. By change of coordinates, vK(∆) = 0. Therefore
E(7) has good reduction overK and a minimal model of E(7) is written by

Y 2 = X3 − 4

3
X + 10

√
5

27
.

By this change of coordinates, vK(xP ) = vK(yP ) = 0. So t = vK(zP ) = 0. Because
j 	≡ 0 mod 5, E(7) has ordinary good reduction. Since ker ν 	⊂ E(7)1(K), Im δ = Ce0p = C5

by Theorem 3.2.6.
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