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A note on the nonrelativistic limit of Dirac operators

and spectral concentration

By Hiroshi T. Ito∗) and Osanobu Yamada∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Dec. 12, 2005)

Abstract: We study the nonrelativistic limit of Dirac operators from the viewpoint of the
spectral relationship between Dirac operators and Pauli operators. We show that Dirac operators
have spectral concentration about eigenvalues of Pauli operators for a large class of magnetic fields
and electric potentials diverging at infinity.
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1. Introduction. We consider the Dirac op-
erator

Hc := c

3∑
j=1

αjDj +mc2β + V (x),

Dj = −i ∂
∂xj

− bj(x),

in the Hilbert space H := h4 with h = L2(R3),
where c > 0 is the velocity of light, m > 0 the rest
mass of the particle and

αj :=
(

0 σj

σj 0

)
, β :=

(
I2 0
0 −I2

)
with the 2× 2 identity matrix I2 and Pauli matrices

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
,

σ3 :=
(

1 0
0 −1

)
.

Here we keep the anti-commutation relation

(1) αjαk + αkαj = 2δjkI4, βαj = −αjβ

in mind. Each bj(x) is assumed to be a real-valued
smooth function, and V (x) is a 4 × 4 Hermitian
matrix-valued function. Throughout this note we
assume that each component of V (x) is continuous
in R3, although some singularities may be allowed.
Then Hc on C∞0 (R3)4 is essentially self-adjoint in
H. We denote its unique self-adjoint extension by
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Hc again. In this paper we assume that V has the
form

V (x) :=
(
V+(x) 0

0 V−(x)

)
,

with 2× 2 Hermitian matrix-valued functions V±(x)
and consider the corresponding Pauli operators

S± := ± 1
2m

(σ ·D)2 + V±(x)

= ± 1
2m

3∑
j=1

D2
j ∓

1
2m

(B(x) · σ) + V±(x)

acting on h2 = L2(R3)2, where

σ ·D :=
3∑

j=1

σjDj , B(x) · σ :=
3∑

j=1

Bj(x)σj ,

(B1(x), B2(x), B3(x)) = curl(b1(x), b2(x), b3(x)).

The nonrelativistic limit of Dirac operators has
been intensively studied by many authors from var-
ious points of view and it has been shown that
the dynamics e−itHc , the resolvent (Hc − z)−1 and
the scattering operator for Hc converge as c → ∞
to the corresponding objects for the corresponding
Schrödinger operators (see, e.g., Cirincione-Chernoff
[3], Hunziker [6], Yajima [17], respectively). In this
paper we study the relation between the spectra of
Hc and

S :=
(
S+ 0
0 S−

)
,

another important object.
We consider a simple case of scalar potentials

V (x) = v(x)I4, that is, V±(x) = v(x)I2 and bj(x) ≡
0 (1 ≤ j ≤ 3). If v(x) ∈ C0(R3) satisfies



158 H. T. Ito and O. Yamada [Vol. 81(A),

(2) v(x) → +∞ (|x| → ∞),

it is well known that S+ = −(1/2m)∆ + v(x) on
C∞0 (R3)2 is essentially self-adjoint. The spectrum
of S+ is purely discrete, that is, the spectrum σ(S+)
consists of eigenvalues

λ1 < λ2 < · · ·λn < · · · → +∞ (n→∞)

with finite multiplicity (Reed-Simon [11, Theo-
rem XIII.67]). On the other hand, σ(Hc) is purely
(absolutely) continuous and covers the whole real line
(cf. Kalf-Ōkaji-Yamada [9], Schmidt-Yamada [12]).

There are several works which explain how these
spectra of different natures of Hc and S+ are re-
lated. Titchmarsh [14], Grigore-Nenciu-Purice [4]
and Amour-Brummelhuis-Nourrigat [2] explain this
by proving that resonances of Hc converge as c→∞
to isolated eigenvalues of corresponding Schrödinger
operators and Veselić [16] does this in terms of
spectral concentration. In this paper we generalize
Veselić’s [16] result to the case that electric fields V
are in more general class and that magnetic fields are
present.

2. The nonrelativistic limit. In this sec-
tion we give a theorem concerning the nonrelativistic
limit of Hc. We introduce some notations. Let Ec(λ)
and E±(λ) be the right-continuous spectral families
of self-adjoint operators Hc and SQ±, respectively,
where Q± := (I ± β)/2, that is,

Hc =
∫ +∞

−∞
λ dEc(λ), SQ± =

∫ +∞

−∞
λ dE±(λ),

SQ+ =
(
S+ 0
0 0

)
, SQ− =

(
0 0
0 S−

)
.

Theorem 2.1. Assume that V±(x) ∈ C0 and
bj(x) ∈ C3 on R3. Suppose
(i) S+ (or S−) on C∞0 (R3)2 is essentially self-

adjoint in h2,
(ii) λ is an isolated eigenvalue of S+ (or S−) with fi-

nite multiplicity in some interval I = (a, b) such
that

(a, b)∩σ(S+) = {λ} (or (a, b)∩σ(S−) = {λ}),

where σ(S±) is the spectrum of S±. Moreover,
neither a nor b is an eigenvalue of S+ (or S−),

(iii) every eigenfunction u of S+ (or S−) correspond-
ing to λ satisfies (σ ·D)u ∈ h2 and

V−(σ ·D)u ∈ h2 (or V+(σ ·D)u ∈ h2),

where σ ·D :=
∑3

j=1 σjDj .

Let

J±c :=
[
λ±mc2 − 1

cτ
, λ±mc2 +

1
cτ

]
,

I±c :=
[
a±mc2, b±mc2

]
,

for 0 < τ < 1. Then we have

Ec(I+
c \ J+

c )Q+Φ → 0,

Ec(J+
c )Q+Φ → E+({λ})Q+Φ(

or
Ec(I−c \ J−c )Q−Φ → 0,

Ec(J−c )Q−Φ → E−({λ})Q−Φ

)
strongly in H as c→∞ for any Φ ∈ H.

To prove Theorem 2.1 we use a one-parameter
unitary group

Us = exp (−isK), K :=
i

2m
β(α ·D),

which is the first approximation of Foldy-
Wouthuysen-Tani transform. The operator K is
self-adjoint in H such that

C∞0 (R3)4 ⊂ D(K) ⊂ H1
loc(R

3)4,

where H1
loc(R

3)4 is the local Sobolev space.
Let Φ ∈ C∞0 (R3)4. Since UsΦ is a solution

to the symmetric hyperbolic equation with the fi-
nite propagation property, the support of UsΦ is also
compact. Therefore we have

Us(α ·D)U−1
s Φ = (α ·D)U−2sΦ,

UsβU
−1
s Φ = βU−2sΦ,

UsHcU
−1
s Φ

=
[
1
s
(α ·D) +

m

s2
β

]
U−2sΦ + UsV U−sΦ,(3)

where s = 1/c.
Lemma 2.2. Let Ts := UsHcU

−1
s . For any

Φ ∈ C∞0 (R3)4 we have[
Ts −

m

s2
β
]
Φ = UsHcU

−1
s Φ− m

s2
βΦ

→
(

1
2m

(α ·D)2β + V

)
Φ = SΦ

in H as s = 1/c→ 0.
We sketch the proof of Lemma 2.2. By Maclau-

rin expansion and (1) we have

U−2sΦ = Φ− s

m
β(α ·D)Φ− s2

2m2
(α ·D)2Φ +O(s3).

as s→ 0. For the first term of (3) we obtain[
1
s
(α ·D) +

m

s2
β

]
U−2sΦ
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=
1

2m
(α ·D)2βΦ +

m

s2
βΦ +O(s) (s→ 0).

Since the supports of U−sΦ for |s| ≤ 1 are contained
in a ball BR as remarked above, we obtain, by noting
U−s → I (s→ 0) strongly in H,

UsV U−sΦ− V Φ

= UsV (U−s − I)Φ + (Us − I)V Φ → 0 in H,

which gives Lemma 2.2.
Lemma 2.2 gives the following
Lemma 2.3. Let I = [α, β]. Suppose that S+

(or S−) on C∞0 (R3)2 is essentially self-adjoint in
h2, and neither α nor β is an eigenvalue of the self-
adjoint extension S+. Then we have

Ec([α+mc2, β +mc2])Q+Φ → E+(I)Q+Φ(4)

(or Ec([α−mc2, β −mc2])Q−Φ → E−(I)Q−Φ)

strongly in H for every Φ ∈ H as c→∞.
We outline the proof. Lemma 2.2 and the essen-

tial self-adjointness of S+ yield(
Ts −

m

s2
− z
)−1

Q+Φ → (SQ+ − z)−1Q+Φ

strongly in H as s = 1/c → 0 for every Φ ∈ H and
Im z 6= 0. Let f(λ) ∈ C∞0 (R). Then we obtain by us-
ing Helffer-Sjöstrand’s formula (see Helffer-Sjöstrand
[5], Isozaki [8])

f
(
Ts −

m

s2

)
Q+Φ → f(SQ+)Q+Φ

strongly in H. Since Us → I strongly and

f
(
Ts −

m

s2

)
= Usf

(
Hc −mc2

)
U−s,

we have

f
(
Hc −mc2

)
Q+Φ → f(SQ+)Q+Φ (c→∞)

strongly in H. The lemma follows by applying the
well known approximation argument, see e.g. Theo-
rem VIII.24 in [10].

Let λ be an isolated eigenvalue of S+ with mul-
tiplicity m and

ψ1, ψ2, . . . , ψm

the corresponding orthonormal eigenfunctions of S+

in h2. Put

Ψj(c) :=
(

ψj

(1/2mc)(σ ·D)ψj

)
,

Ψj := Ψj(∞) =
(
ψj

0

)
.

Then we have(
Hc −mc2

)
Ψj(c)− λΨj(c)

=
(
V+ − λ c(σ ·D)
c(σ ·D) V− − λ− 2mc2

)
Ψj(c)

=
1

2mc

(
0

(V− − λ)(σ ·D)ψj

)
= O

(
1
c

)
.

Here we used the assumption that (σ ·D)u and V−(σ ·
D)u ∈ h2. Thus we obtain the first statement of the
following lemma.

Lemma 2.4. Suppose the conditions in The-
orem 2.1. Let ψj ,Ψj(c),Ψ be as above, and let P :=
E+({λ}), that is,

PΦ =
m∑

j=1

〈Φ,Ψj〉Ψj (Φ ∈ H).

Let Pc be the orthogonal projection on the subspace
spanned by {Ψj(c)}j=1,2,...,m. Then we have∥∥(I − Ec

(
J+

c

))
Ψj(c)

∥∥ = O(cτ−1),(5) (
I − Ec

(
J+

c

))
PcΦ → 0,(6)

PcΦ → PΦ,(7)

Ec

(
I+
c

)
Q+Φ → PΦ,(8)

strongly in H as c→∞ for every Φ ∈ H.
The relation (6) is a consequence of (5). The

property (7) is obvious, and (8) follows from (4) in
Lemma 2.3.

Proof of Theorem 2.1. The above (7) and
(8) yield

‖Ec(J+
c )(I − Pc)Q+Φ‖

≤ ‖Ec(J+
c )(I − P )Q+Φ‖

+‖Ec(J+
c )(P − Pc)Q+Φ‖

≤ ‖Ec(I+
c )Q+(I − P )Φ‖+ ‖(P − Pc)Q+Φ‖

→ 0 (c→∞),

which together with (6) and (7) gives

Ec(J+
c )Q+Φ− PΦ

= Ec(J+
c )(I − Pc)Q+Φ− (I − Ec(J+

c ))PcQ+Φ

+PcQ+Φ− PΦ → 0.

Consequently, we have from (8)

Ec

(
I+
c \ J+

s

)
Q+Φ

= Ec

(
I+
c

)
Q+Φ− Ec

(
J+

s

)
Q+Φ

→ 0,

which completes the proof.
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3. An application to potentials diverg-
ing at infinity. We apply Theorem 2.1 to the case
when V is scalar and diverges to infinity as |x| → ∞.

If bj(x) ∈ C1 and v(x) ∈ C0 satisfies

v(x) ≥ −C1 − C2|x|2 (C1, C2 > 0),

S+ on C∞0 (R3) is essentially self-adjoint in h2. This
fact can be shown along the lines of Ikebe-Kato [7].

It can be shown by Rellich’s criterion (e.g.,
Reed-Simon [11, Theorem XIII.65]) that, if we as-
sume

(9) v(x) → +∞ (|x| → ∞),

the spectrum of S+ is purely discrete, that is, the
spectrum σ(S+) consists of discrete eigenvalues with
finite multiplicity. As an application of Theorem 2.1
we give the following

Theorem 3.1. Assume that each bj(x) ∈ C3,
and v(x) ∈ C1(R3) satisfies (9) and

(10) |(∇v)(x)| = o(v(x)3/2) (|x| → ∞).

Let

λ1 < λ2 < · · ·λn < · · · → +∞ (n→∞)

be the discrete eigenvalues of S+. Fix an eigenvalue
λN . Let us take any interval I = (a, b) 3 λN such
that I ⊂ (λN−1, λN+1), and I+

c , J
+
c as in Theo-

rem 2.1. Then we have

Ec(I+
c \ J+

c )Q+Φ → 0,

Ec(J+
c )Q+Φ → E+({λN )})Q+Φ

strongly in H as c→∞ for any Φ ∈ H.
It suffices to show (iii) among the assumptions

in Theorem 2.1. To this end we give the following
lemma.

Lemma 3.2. Assume bj(x) ∈ C1, v(x) ∈
C1(R3) with (9) and (10). Suppose that λ is an
eigenvalue of S+, and u(x) ∈ D(S+) satisfies S+u =
λu. Then we have

(11)
∫
R3
v2

[
|(σ ·D)u|2

2m
+ v|u|2

]
dx <∞.

Sketch of the proof. Since u ∈ D(S+) satisfies

(12)
1

2m
(σ ·D)2u+ vu = λu,

we obtain∫
R3

[
|(σ ·D)u|2

2m
+ v|u|2

]
dx <∞.

In view of (9) there is a large number R0 such that
v(x) > 0 for |x| ≥ R0. We shall prove

(13)
∫
|x|≥R0

vn/2

[
|(σ ·D)u|2

2m
+ v|u|2

]
dx <∞,

for n = 0, 1, 2, . . ., inductively. Assume (13) for n.
Integrating the inner product of (12) and v(n+1)/2u

over B(R1, R) := {x | R1 ≤ |x| ≤ R}, we have∫
B(R1,R)

v(n+1)/2

[
|(σ ·D)u|2

2m
+ v|u|2

]
dx

−λ
∫

B(R1,R)

v(n+1)/2|u|2dx

=

[∫
|x|=R

−
∫
|x|=R1

]
v(n+1)/2

2m

×
3∑

j=1

xj

|x|
〈iσj(σ ·D)u,u〉dS

− n+1
4m

∫
B(R1,R)

v(n−1)/2
3∑

j=1

∂v

∂xj
〈iσj(σ ·D)u,u〉dx

for any R0 < R1 < R. Now, (13) gives

lim inf
R→∞

∣∣∣∣∣∣
∫
|x|=R

v(n+1)/2
3∑

j=1

xj

|x|
〈σj(σ ·D)u, u〉 dS

∣∣∣∣∣∣
≤ lim inf

R→∞

∫
|x|=R

vn/2
[
|(σ ·D)u|2 + v|u|2

]
dS = 0.

The assumptions (9) and (10) imply, for a sufficiently
large R1,

n+ 1
4m

∣∣∣∣∣∣v(n−1)/2
3∑

j=1

∂v

∂xj
〈σj(σ ·D)u, u〉

∣∣∣∣∣∣
≤ 1

2
v(n+1)/2

[
|(σ ·D)u|2

2m
+ v|u|2

]
for |x| ≥ R1. Thus we have

1
2

∫
|x|≥R1

v(n+1)/2

[
|(σ ·D)u|2

2m
+ v|u|2

]
dx

≤
∫
|x|=R1

v(n+1)/2

2m

∣∣∣∣∣∣
3∑

j=1

xj

|x|
〈σj(σ ·D)u, u〉

∣∣∣∣∣∣ dS
+ |λ|

∫
|x|≥R1

(1 + v(n+2)/2)|u|2 dx

which yields (13) for n+ 1.
Remark 3.3. The property (13) is closely re-

lated to the exponential decay of eigenfunctions of
Schrödinger equations (cf. Agmon [1], Shen [13]).
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The condition (10) is satisfied by a large class of
potentials v(x) with (9) such as v(x) = exp (|x|2),
v(x) = exp [exp (|x|2)].

Remark 3.4. If v(x) = O(|x|2) at infinity
with (9) and bj(x) ≡ 0 (1 ≤ j ≤ 3),

S− =
1

2m
∆ + v(x)

on C∞0 (R3)2 is essentially self-adjoint in h2 as stated
at the beginning of this section. In this case both
σ(Hc) and σ(S−) have purely continuous spectrum,
which coincides with the whole real line R under
some additional conditions (see, e.g., Kalf-Ōkaji-
Yamada [9], Uchiyama-Yamada [15]). Then Lemma
2.3 implies, for any interval [a, b],

Ec(I−c )Q−Φ → E−(I)Q−Φ

strongly in H for every Φ ∈ H as c→∞.
Remark 3.5. If V (x) = v(x)β, that is,

V+(x) = −V−(x) = v(x)I2, S− = −S+

with (9) and (10), not only S± but also Hc is purely
discrete (e.g., Yamada [18]). Then the results as in
Theorem 3.1 are valid for both S+ and S−.
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