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Introduction. Let L be an infinite dimensional formal Lie algebr
corresponding to some infinite transformation group. We are inter-
ested in the first cohomology group H(L) of L with adjoint represen-
tation. In this paper we will treat the following two types of infinite
dimensional Lie algebras

(a) infinite dimensional transitive fiat Lie algebras,
(b) infinite dimensional intransitive Lie algebras L[W*] whose

transitive parts L are infinite and simple.
Throughout this paper, all vector spaces and Lie algebras are

assumed to be defined over the field C of complex numbers.
1. Let V be a finite dimensional vector space. We denote by

D(V) the Lie algebra of all formal vector fields over V. The Lie
algebra D(V) can be written as D(V)= 1-[ V(R)Sp(V*) (complete direct

_0

sum), where SP(V*) denotes p-times symmetric tensor of the dual space
V* of V. By a transitive fiat Lie algebra we mean a Lie subalgebra
L= l-I g of D(V) satisfying the following conditions:

1-1

(1) Each B is a subspace of V(R)S/(V*).
(2) _=V (transitivity condition).
Since L is a Lie algebra, it must hold that
(3) [,]+.
A Lie subalgebra 0 is called a linear isotropy algebra of L. We

say that a Lie algebra L= 1-[ g is derived from g0 if each g, coincides
p>- -1

with the -th prolongation of 0.
We now give two eriteria for () to be of finite dimension.
Theorem 1. = 8

finite dimensional.
Theorem 2. Let L= [I be an infinite transitive fiat Lie

2>- -1

algebra whose linear isotropy algebra o contains a trivial center.
Then H(L) is finite dimensional. Furthermore if L is derived from o,
then H(L) is isomorphic to (0)/0, where (o) denotes the normalizer

o o in (V).
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To prove Theorem 1, we will use essentially the facts that H(L,)
-C and H’(L,)-C, where L, (resp. L) is a Lie algebra derived from
(n, C) (resp. p(n, C)). (See for example [1].) The proof of Theorem
2 is carried out by elementary calculation.

It may well be doubted if every infinite transitive flat Lie algebra
L has finite dimensional H’(L). But unfortunately this presumption
is false. In fact we can give an easy condition for dim H(L)=
That is, we can prove

Theorem 3. Let L= [I p be an infinite transitive fiat Lie
p>- -1

algebra which satisfies L(2)=[L(1),L(1)]=O, where L(1)=[L,L]. Then
H(L) is "infinite" dimensional. (For such a Lie algebra L, we can
construct derivations of arbitrarily large negative degree.)

2. In this paragraph, our main objects are infinite intransitive
Lie algebras L[W*]. Let V and W be finite dimensional vector spaces.
Put U= V+W (direct sum). We denote by S(W*) the ring of formal
power series over W. Let L be one of infinite transitive simple Lie
algebras over V. That is, L is one of D(V), L,, L,, andL (the contact
algebra). Then a Lie algebra L[W*] is obtained as a topological
,completion of L(R)S(W*). These Lie algebras L[W*] are obtained as
the result of the classification theorem of infinite intransitive Lie
algebras, which was proved by T. Morimoto [4].

In determining H(L[W*]), V. Guillemin’s work is essential [2].
Namely we calculate the "commutator ring C" of L and conclude that
CC. Now our result is

Theorem 4. Let e be a trivial center of g(V). Then we have

H(L[W.])_ D(W) if L--D(V) or Lc,
[D(W)+S(W*)e if L--L or L,,

wher,e D(W) is a Lie algebra of all formal vector fields on W.
In particular, if L=D(V), our result can be considered as a formal

version of Y. Kanie [3].
We close our paper by giving an example of an infinite intransitive

Lie algebra L with H(L)=0. Let f and g be formal functions of two
variables x and y. Define a Lie algebra L by

L {f(x, y)/ax+g(x, y)/3y g(x, 0) 0}.
Then we have H(L)=0. Key trick depends on the tact that L

contains an element xa/ax+ya/ay. This Lie algebra L corresponds to
the group of diffeomorphisms of R which preserve the x-axis invariant.
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