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Abstract

We relate the minimal gonality of smooth curves in a complete, ample,
base point free linear system |L| on an Enriques surface to the existence of
certain secant spaces on the image of the surface mapped by the adjoint sys-
tem. We also explicitly compute the minimal gonality in terms of invariants
of the line bundle L. In particular, we obtain a precise criterion for the varia-
tion of the gonality of the curves.

1 Introduction

The purpose of this note is to study the relation between the minimal gonality
of smooth curves in a complete linear system on an Enriques surface and the
embedding properties of the adjoint linear system, as well as study the variation
of the gonality in the linear system.

A line bundle L on a smooth, irreducible projective variety X is said to be
k-very ample, for an integer k ≥ 0, if its sections separate subschemes of length
k + 1, i.e. if the natural restriction map H0(L) −→ H0(L ⊗OZ) is surjective for
any 0-dimensional subscheme Z of X of length h0(OZ) = k + 1. Note that L is
0-very ample if and only if it is generated by its global sections, and L is 1-very
ample if and only if it is very ample. In general, if L is very ample and embeds X

in P
h0(L)−1, then L is k-very ample if and only if (the image of) X has no (k + 1)-

secant (k − 1)-planes. We refer to [BFS, BS1, BS2, BS3, BS4, Ba-So, C-G, Te] for
some of the results developed on the subject on surfaces.

In [Kn3] we introduced the notion of birational k-very ampleness: A line bun-
dle L is said to be birationally k-very ample if there exists a Zariski-open, dense
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subset U of X such that the restriction map H0(L) −→ H0(L ⊗ OZ) is surjec-
tive for any 0-dimensional subscheme Z of X of length h0(OZ) = k + 1 with
Supp(Z) ⊂ U . If L is base point free, then L is birationally 1-very ample if and
only if the morphism ϕL associated to L is birational. Furthermore, we showed
in [Kn3, Kn1] that if L is a globally generated line bundle and X = S is a K3 or
del Pezzo surface, then L + KS is birationally k-very ample if and only if all the
smooth curves in |L| have gonalities ≥ k + 2. Recall that the gonality of a smooth
curve C, gon C, is defined as the minimal integer k such that C carries a g1

k . Since
on a smooth curve C it follows from Riemann-Roch and Serre duality that ωC is
k-very ample if and only if gon C ≥ k + 2, the results in [Kn3, Kn1] can be seen as
an attempt to “lift” this result to a surface.

In this note we show that the result above holds true on Enriques surfaces as
well, under the additional assumption that L is ample and L2 ≥ 10. In fact we
prove a more precise result, relating the existence of curves with certain gonality
to the existence of secant spaces on the adjointly embedded surface lying outside
of curves of low degree.

To state the result, recall that a nodal curve R on an Enriques surface is a smooth
irreducible rational curve (whence with R2 = −2) and a halfpencil is a reduced
curve E (not necessarily irreducible) such that |2E| is an elliptic pencil (whence
with E2 = 0). Now we define, for any integer s > 0, and any big and nef line
bundle L on S,

Θs(L) := {x ∈ S | x ∈ R, with R a nodal curve such that R.L ≤ s − 2 (1)

or x ∈ E, with E a halfpencil such that E.L ≤ s.}

Since the curves satisfying the conditions above are finitely many, Θs(L) is a
proper, closed subset of S.

Theorem 1.1. Let L be an ample, globally generated line bundle on an Enriques surface
S such that L2 ≥ 10 and k ≥ 1 an integer. Then the following conditions are equivalent:

(i) L + KS is birationally k-very ample.

(ii) The natural restriction map

H0(L + KS) −→ H0((L + KS)⊗OZ). (2)

is surjective for all 0-dimensional subschemes Z ⊂ S of length ≤ k + 1 satisfying
Z ∩ Θk+1(L) = ∅.

(iii) ϕL+KS
is birational and (if k ≥ 2) ϕL+KS

(S) has no (k + 1)-secant (k − 1)-plane
Π such that Π ∩ ϕL+KS

(Θk+1(L)) = ∅.

(iv) All the smooth curves in |L| have gonalities ≥ k + 2.

Note that by the ampleness assumption on L we have that ϕL+KS
(S) is smooth

if and only if φ(L) ≥ 3, and if φ(L) = 2, then Sing ϕL+KS
(S) = ϕL+KS

(Θ2(L)),
cf. [Co1, Thm. 5.1] or [CD, Thm. 4.6.1, Lemma 4.6.1 and Thm. p. 281]. Recall from
[CD] that the function φ : Pic S → Z is defined as

φ(L) = inf{|E.L| : E ∈ Pic S, E2 = 0 E 6≡ 0}.
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We also show that one can explicitly compute the minimal integer such that
the equivalent conditions (i)-(iv) in Theorem 1.1 are not satisfied, or equivalently,
the minimal gonality of smooth curves in |L|. Since we computed the gonality
of the general curve in a complete linear system on an Enriques surface in [KL2],
the results in this note complete the picture, at least for ample line bundles.

The particular question of which gonalities can occur for curves on special sur-
faces has also been studied widely throughout the years, cf. [SD, R, DM, GL, CP]
for K3 surfaces, [Ma] for Hirzebruch surfaces, [Par, Kn2] for del Pezzo surfaces
and [Ha] for elliptic ruled surfaces. It seems difficult to find results on other sur-
faces. Interestingly enough, not many examples are known where the gonality
varies in a complete linear system.

To state our result, define, for any L ∈ Pic S with L2
> 0 and h0(L) > 0,

β(L) := min{B.L − 2 | B ∈ Pic S with B > 0, and B2 = 2}
and

µ(L) = min{B.L − 2 | B ∈ Pic S with B > 0, B2 = 4, φ(B) = 2 and B 6≡ L},

the function defined in [KL2, Def. 1.2].

Proposition 1.2. Let L be an ample, globally generated line bundle on an Enriques sur-
face S such that L2 ≥ 10.

Let dmin be the minimal gonality of a smooth curve in |L|.
If (L2, φ(L)) = (10, 3), then dmin = 3 if L ∼ 2E + ∆ + KS, with E a halfpencil and

∆ a nodal cycle such that ∆.E = 3, and dmin = 4 otherwise.
If (L2, φ(L)) = (12, 2), then dmin = 4.
In all other cases,

dmin = min{2φ(L), β(L), µ(L) − 2}. (3)

In particular, except for the one exceptional case (L2, φ(L)) = (10, 3) above,
the minimal gonality of smooth curves in |L| and |L + KS| is the same.

We will also show that the right hand side in (3) can be computed in the fol-
lowing, more explicit way: Pick any E such that E2 = 0 and E.L = φ(L) and
define, for any integer i ≥ 1,

φi(L, E) := min{F.L | F2 = 0, F.E = i}. (4)

Then, for any L ∈ Pic S with L2 ≥ 8 and h0(L) > 0, we have

min{2φ(L), β(L), µ(L) − 2} = φ(L) + min{φ(L), φ1(L, E) − 2, φ2(L, E) − 4}. (5)

(In particular, this means - a posteriori - that the right hand side of (5) is indepen-
dent of the choice of E.)

In [KL2] we computed the gonality dgen of a general curve in |L|. One can also
state the results therein with the functions φi(L, E) so that we now have a precise
description of both the general and minimal gonality of the smooth curves in |L|
(under the assumptions that L is ample with L2 ≥ 10). This is given in Proposition
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6.2 below. In particular, we obtain a precise criterion for the constancy of the
gonality of smooth curves in |L| in Corollary 6.4.

The note is organized as follows: In Section 2 we first gather some well-known
results on Enriques surfaces that will be needed throughout and then we give a
couple of results concerning particular decompositions of line bundles on En-
riques surfaces. In Section 3 we show how these decompositions can be used to
prove the existence of curves in |L| of “low” gonalities. The principle, given in
Lemma 3.1, is valid for any surface. In Section 4 we go through the well-known
vector bundle methods that are used to treat problems of this kind and formulate
a couple of results in the setting we need. Then, in Section 5, we prove The-
orem 1.1 and Proposition 1.2, as well as (5). Finally, in Section 6, we first prove
Proposition 6.2, that explicitly shows how the general and minimal gonality of the
smooth curves in a complete linear system can be computed, and then a criterion
for the constancy of the gonality in Corollary 6.4. We also give some examples
showing how the gonality behaves.

Remark 1.3. We do not know if the assumptions that L be ample and L2 ≥ 10
in the results above are necessary. But for sure, removing these assumptions
would force us to treat very many special cases in the various proofs. The cases
(L2, φ(L)) = (10, 3) and (12, 2) for instance already have proofs of their own. To
keep the note of a reasonable length and to stay within the scope of it, we have
decided not to try to weaken the hypotheses.

Many results are however true without the ampleness assumptions: Lemmas
2.3, 2.4(a)-(c), 3.1 and 3.2 are stated in general. In particular, the latter says that (iii)
⇔ (ii) ⇒ (i) ⇒ (iv) in Theorem 1.1 hold even without the ampleness assumption
on L and only assuming L2

> 0. It is also possible to obtain a version of Lemma
2.4(d) without the ampleness assumption, but with several exceptional cases.

The ampleness assumption first enters the picture in a crucial way in the proof
of Proposition 3.3.

Acknowledgements. I thank the referee for several useful suggestions and re-
marks.

2 Decompositions of line bundles on Enriques surfaces

Let S be a smooth, projective Enriques surface, that is, a smooth projective surface
satisfying h1(OS) = 0, KS 6= 0 and 2KS = 0.

Note that if D ≥ 0 is an effective divisor on S, then h2(D) = h0(KS − D) = 0
by Serre duality. This will be used without further mentioning, as well as the
consequence h0(D) = 1

2 D2 + 1 + h1(D) from Riemann-Roch.

A nonzero, effective divisor E on S is called isotropic if E2 = 0 and in addition
primitive if E is not divisible in Num(S).

Any Enriques surface carries elliptic pencils [CD, Cor. 3.21], and any such
pencil |P| has two multiple fibers, 2E and 2(E + KS), and E and E + KS are called
halfpencils. They are necessarily nef and primitive (isotropic). Conversely, any
nef, primitive isotropic E is a halfpencil, that is |P| = |2E| is an elliptic pencil
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[CD, Prop. 3.1.2 and Chp. 5, §3-4]. A divisor that is nef, primitive and isotropic is
also called primitive of canonical type [Co1, (1.6.2.1)].

A nodal curve on S is a smooth rational curve, or, equivalently by the genus for-
mula, an irreducible curve with R2 = −2. By Riemann-Roch it satisfies h0(R) =
h1(R) = 1 and h2(R) = 0, and by connectedness hi(R + KS) = 0 for i = 0, 1, 2. A

nodal cycle is an effective divisor ∆ > 0 such that ∆′2 ≤ −2 for any 0 < ∆′ ≤ ∆.
If ∆2 = −2, then Riemann-Roch implies h0(∆) = h1(∆) = 1 and h2(∆) = 0,
and Ramanujam’s theorem on 1-connectedness implies that hi(∆ + KS) = 0 for
i = 0, 1, 2.

Let L be a line bundle on an Enriques surface S. We will use the notation L ≥ 0
to mean h0(L) > 0 and L > 0 if in addition L 6∼ OS.

The φ-function mentioned in the introduction has the following important
properties that we will use throughout often without further mentioning:

(I) φ(L)2 ≤ L2 ([CD, Cor.2.7.1]).

(II) If L is nef, then there exists a genus one pencil |2E| such that E.L = φ(L).
In particular, such an E is nef. ([Co2, 2.11] or [CD, Cor.2.7.1, Prop.2.7.1 and
Thm.3.2.1]).

(III) If L is ample, then any E such that E2 = 0 and E.L = φ(L) is necessarily nef
(left to the reader).

(IV) If L is nef with L2
> 0, then |L| is base point free if and only if φ(L) ≥ 2.

Moreover, if φ(L) = 1, then the base scheme of |L| consists of two distinct
points, unless L ∼ 2E + R, with E a halfpencil and R a nodal curve such
that E.R = 1, in which case R is the base scheme of |L| ([CD, Prop. 3.1.6 and
Thm.4.4.1]).

We will also constantly use the following fact: If L is nef with L2
> 0, then

hi(L) = hi(L + KS) = 0 by Kawamata-Viehweg vanishing, so that h0(L) = h0(L +
KS) = 1

2 L2 + 1 by Riemann-Roch. Moreover, if in addition L2
> 2, then the

general member of |L| is smooth and irreducible (by (IV) and Bertini’s theorem,
or [CD, Prop. 3.1.6 and Thm.4.10.2]).

We will also need the following strengthening of (I):

Proposition 2.1. [KL2, Prop. 1] Let L be a line bundle on an Enriques surface with
L > 0 and L2

> 0. If L2 ≤ φ(L)2 + φ(L) − 2, then there exist primitive divisors Ei

with Ei > 0, E2
i = 0, for i = 1, 2, 3, E1.E2 = E1.E3 = 2, E2.E3 = 1 and an integer

h ≥ 1 so that one of the two following occurs:

(i) L2 = φ(L)2. In this case L ≡ h(E1 + E2).

(ii) L2 = φ(L)2 + φ(L) − 2. In this case either

(ii-a) L ∼ h(E1 + E2) + E3; or

(ii-b) L ∼ (h + 1)E1 + hE2 + E3; or

(ii-c) L ≡ 2(E1 + E2 + E3) (whence L2 = 40 and φ(L) = 6).
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A central tool for us will be to find suitable decompositions of line bundles
L on S into effective classes. In particular, we will repeatedly use the following
elementary fact that is an immediate consequence of the signature theorem [BPV,
VIII.1]:

Lemma 2.2. [KL2, Lemma 2.4] Let S be an Enriques surface and L be a line bundle
on S such that L > 0 and L2 ≥ 0. Let F > 0 be a divisor on S such that F2 = 0 and
φ(L) = |F.L|. Then F.L > 0 and if α > 0 is such that (L− αF)2 ≥ 0, then L− αF > 0.

This lemma will be used together with (I) and Proposition 2.1 to write effective
decompositions.

Lemma 2.3. Let L be a nef line bundle on an Enriques surface such that φ(L) ≥ 2,

L2 ≥ 10 and (L2, φ(L)) 6= (10, 3). Set k := ⌊ L2

4 ⌋. Then there is a decomposition

L ∼ M + N such that h0(M) ≥ 2, h0(N) ≥ 2 and M.N ≤ k + 1.

Proof. We have L2 = 4k or 4k + 2 with k ≥ 2. Choose a nef E with E2 = 0 and
E.L = φ(L). If

2φ(L) ≤ k + 1, (6)

then (L− 2E)2 ≥ 4k− 2(k + 1) = 2k− 2 ≥ 2 so that h0(L− 2E) ≥ 2 by Lemma 2.2
and Riemann-Roch and L ∼ 2E + (L − 2E) is the desired decomposition. From
the facts that either L2 = φ(L)2 or L2 ≥ φ(L)2 − 2φ(L) + 2 by Proposition 2.1, one
easily sees that (6) is verified except for the cases we now treat.

For the rest of the proof, we let E be such that E2 = 0 and E.L = φ(L) and all
Eis will be nonzero, effective, isotropic divisors. We will use Lemma 2.2 repeat-
edly without further mentioning.

The case (k, L2, φ(L)) = (10, 42, 6): We have (L − 2E)2 = 18.
If φ(L − 2E) = 3, choose any F > 0 with F2 = 0 and F.(L − 2E) = 3. Then

(L − 2E − 3F)2 = 0 and we can write L ∼ 2E + 3F + F′ for F′
> 0 such that

(F′)2 = 0 and F.F′ = 3. Now 6 = φ(L) ≤ F.L = 2E.F + 3 implies that E.F ≥ 2
and 6 = E.L = 3E.F + E.F′ implies that E.F = 2 and E.F′ = 0. Therefore F′ ≡ qE
for some q ≥ 1, giving the contradiction 3 = F.F′ = 2q. Therefore we cannot have
φ(L − 2E) = 3. The case φ(L − 2E) = 2 is ruled out similarly.

Therefore we have φ(L− 2E) = 4. Pick any E1 with E1.(L− 2E) = 4. Then one
easily finds that L − 2E ∼ 2E1 + E2 + E3, with E1.E2 = E1.E3 = 2 and E2.E3 = 1.
From 6 = E.L = 2E.E1 + E.E2 + E.E3 we find E.E2 ≤ 3 and E.E3 ≤ 3, but if
E.Ei = 3 for i = 2 or 3, then (E + Ei)

2 = 6 yields the contradiction 3φ(L) = 18 ≤
(E + Ei).L = 17. Hence E.E2 ≤ 2 and E.E3 ≤ 2, so that we only get the two
options (E.E1, E.E2, E.E3) = (1, 2, 2) and (2, 1, 1). We set M = 2E + E1 + E2 and
N = E1 + E3. Then M.N = 11.

The case (k, L2, φ(L)) = (10, 40, 6): By Proposition 2.1 we have that either
L ∼ 3E + 2E1 + E2 with E.E1 = E.E2 = 2, E1.E2 = 1 or L ≡ 2D for a D > 0 with
D2 = 10. In the second case we are done with M = D. In the first case we set
M = 2E + 2E1 and N = E + E2. Then M.N = 10.

The case (k, L2, φ(L)) = (9, 36, 6): We have L ∼ 3B with B2 = 4 by Proposition
2.1 and we set M = B.

The case (k, L2, φ(L)) = (8, 34, 5): We have (L − 2E)2 = 14 and we can eas-
ily see, exactly as above, that φ(L − 2E) = 3. Repeating the process find that
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L − 2E ∼ 2E1 + E2 + E3, with E1.E3 = 2 and E1.E2 = E2.E3 = 1. Moreover
E.(L − 2E) = 5 and E1.(L − 2E) = 3, whence E.E1 ≥ 1.

If E.E1 ≥ 2, then 5 = E.L ≥ 2E.E1 implies E.E1 = 2, whence E.E2 = 0
or E.E3 = 0. But 5 = φ(L) ≤ E2.L = 2E.E2 + 3 implies E ≡ E3, whence
L ≡ 3E + 2E1 + E2. We set M = 2E + E1 and N = L − M ≡ E + E1 + E2.
Then M.N = 9.

If E.E1 = 1, then (E.E2, E.E3) = (1, 2) or (2, 1). We set M = E + E1 + E2 and
N = E + E1 + E3. Then M.N = 9.

The case (k, L2, φ(L)) = (8, 32, 5): We have (L − 3E)2 = 2 whence we have
L − 3E ∼ E1 + E2, with Ei > 0, E2

i = 0, i = 1, 2 and E1.E2 = 1. From 5 =
φ(L) ≤ Ei.L = 3E.Ei + 1 we get E.Ei ≥ 2, i = 1, 2, whence by symmetry we get
(E.E1, E.E2) = (2, 3). We set M = 2E + E2 and N = E + E1. Then M.N = 8 and
we are done.

The case (k, L2, φ(L)) = (7, 30, 5): We have (L − 2E)2 = 10 and we can easily
show, exactly as above, that φ(L − 2E) = 3. Repeating, we find that L − 2E ∼
E1 + E2 + E3, with E1.E2 = 1 and E1.E3 = E2.E3 = 2. Since E.(L − 2E) = 5 and
Ei.(L − 2E) ≤ 4, we must have E.Ei > 0 for all i. At the same time, if E.Ei = 3
for i = 1 or 2, then (E + Ei)

2 = 6, so that 15 = 3φ(L) ≤ (E + Ei).L = 14, a
contradiction. Hence E.Ei ≤ 2 for i = 1, 2, and by symmetry we get the three
possibilities (E.E1, E.E2, E.E3) = (1, 1, 3), (1, 2, 2) and (2, 2, 1). One easily sees
that M = E + E1 and N = E + E2 + E3 yields the desired decomposition.

The case (k, L2, φ(L)) = (7, 28, 5): By Proposition 2.1 we have L ∼ 2E + 2E1 +
E2 with E.E1 = E1.E2 = 2 and E.E2 = 1. We set M = E + E1 + E2 and N = E + E1.
Then M.N = 7.

The case (k, L2, φ(L)) = (6, 26, 4): We have (L − 3E)2 = 2 , whence
L − 3E ∼ E1 + E2, with E1.E2 = 1. By symmetry we have the two possibili-
ties (E.E1, E.E2) = (2, 2) and (1, 3). We set M = 2E + E2 and N = E + E1, and we
get M.N = 7 and 6, respectively.

The case (k, L2, φ(L)) = (6, 24, 4): We have (L − 2E)2 = 8. If φ(L − 2E) = 1,
then we can write L − 2E ∼ 4E1 + E2 with E1.E2 = 1, and φ(L) = 4 ≤ E1.L =
2E.E1 + 1 implies E.E1 ≥ 2, whence E.L = 4E.E1 + E.E2 ≥ 8, a contradiction.
Hence φ(L − 2E) = 2, and we can write L − 2E ∼ 2E1 + E2 with E1.E2 = 2.

We have 4 = 2E.E1 + E.E2. Hence we must have E.E1 = 1 or 2. In the latter
case we get E.E2 = 0, then E ≡ qE2 for some q ≥ 1. From E1.E = E1.E2 = 2 we
get that E ≡ E2 and we can set M = 2E + E1 and N = L − M ≡ E + E1. Then
M.N = 6.

If E.E1 = 1 and E.E2 = 2, we set M = E + E1 and N = E + E1 + E2. Then
M.N = 6.

The case (k, L2, φ(L)) = (5, 22, 4): One easily sees that one can write
L ∼ 2E + E1 + E2 + E3 with E.E1 = 2, E.Ej = Ei.Ej = 1 for 1 ≤ i < j ≤ 3
and one sets M = 2E + E1 and N = E2 + E3.

The case (k, L2, φ(L)) = (5, 20, 4): Again one easily sees that L ∼ E + E1 +
E2 + E3 + E4 with E.Ei = Ei.Ej = 1 for i 6= j one sets and M = E + E1 and
N = E2 + E3 + E4.

The case (k, L2, φ(L)) = (4, 18, 4): One has L ∼ 2E + E1 + E2 with E1.E2 = 1,
E.E1 = E.E2 = 2 and one sets and M = E + E1 and N = E + E2.

The case (k, L2, φ(L)) = (4, 18, 3): We have (L − 2E)2 = 6.
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If φ(L − 2E) = 1, then we can write L − 2E ∼ 3E1 + E2, with E1.E2 = 1.
Since E.(3E1 + E2) = 3, we must have E2 ≡ E, whence L ≡ 3(E + E1), and after
possibly substituting E1 with E1 + KS we get L ∼ 3(E + E1). We set M = 2E + E1

and N = E + 2E1. Then M.N = 5 and we are done.
If φ(L − 2E) = 2, then L − 2E ∼ E1 + E2 + E3, with Ei.Ej = 1, for all i 6= j, and

we easily see that E.Ei = 1 for all i. We set M = E + E1 + E2 and N = E + E3.
Then M.N = 5.

The case (k, L2, φ(L)) = (4, 16, 4): We have L ∼ 2B with B2 = 4 by Proposition
2.1 and one sets M = B.

The case (k, L2, φ(L)) = (4, 16, 3): One can write L ∼ 2E + E1 + E2 with
E.E2 = 1 and E.E1 = E1.E2 = 2 and one sets M = E + E1 and N = E + E2.

The case (k, L2, φ(L)) = (3, 14, 3): One can write L ∼ 2E + E1 + E2 with
E.E1 = E1.E2 = 1, E.E2 = 2 and one sets M = E + E1 and N = E + E2.

The case (k, L2, φ(L)) = (3, 12, 3): One can write L ∼ E + E1 + E2 + E3 with
Ei.Ej = 1 for i 6= j and one sets M = E + E1 and N = E2 + E3.

The case (k, L2, φ(L)) = (3, 10, 2): One can write L ∼ 2E + E1 + E2 with
E.E1 = E1.E2 = E.E2 = 1 and one sets M = E + E1 and N = E + E2.

Lemma 2.4. Let L be as in Lemma 2.3 and l > 0 the minimal integer such that there is
a decomposition L ∼ M + N with h0(M) ≥ 2, h0(N) ≥ 2 and M.N = l.

Then

3 ≤ l ≤ ⌊L2

4
⌋ + 1. (7)

and there is a decomposition L ∼ M + N with M.N = l, h0(M) ≥ 2 and h0(N) ≥ 2,
and satisfying the following properties:

(a) N2 ≥ M2.

(b) N2
> 0 and h1(N) = h1(N + KS) = 0.

(c) M is one of the following:

(c-i) M ∼ 2E, with |2E| an elliptic pencil;

(c-ii) M2 = 2 and |M| has only two base points (which are distinct);

(c-iii) M2 = 4 and |M| is base point free (whence φ(M) = 2).

In particular, the general D ∈ |M| is smooth and irreducible.

(d) If M2
> 0 and L is ample, then |N| is base component free. If in addition

(M2, N2, M.N) 6= (2, 4, 3), then |OD(N)| is base point free for general D ∈ |M|.

Proof. The right hand side inequality of (7) follows from Lemma 2.3. For the left
hand side inequality note that as h0(M) ≥ 2, we must have 4 ≤ 2φ(L) ≤ M.L =
M2 + l by [KLM, Lemma 4.14], whence M2 ≥ 2 if l ≤ 2, and likewise N2 ≥ 2. But
then the Hodge index theorem implies M ≡ N and M2 = N2 = 2, so that L2 = 8,
a contradiction.

Now pick any decomposition L ∼ M + N with h0(M) ≥ 2, h0(N) ≥ 2 and
M.N = l. By symmetry, we can assume (a).
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If M is not nef, then let R be a nodal curve with R.M < 0. Then R.N ≥ −R.M
by the nefness of L, whence

(M − R).(N + R) = l + 2 − R.N + R.M ≤ l, (8)

and as h0(M − R) = h0(M) and h0(N + R) ≥ h0(N) ≥ 2, we get R.N = −R.M =
1, and we can substitute M and N with M − R and N + R, respectively. Note that
(M − R)2 = M2 and (N + R)2 = N2. Therefore, we can assume that M is nef, in
particular that M2 ≥ 0. It follows from (a) that also N2 ≥ 0, and if equality holds,
then N2 = M2 = 0. Therefore L2 = 2M.N = 2l, contradicting (7). Therefore
N2

> 0, and the same argument as above, with M and N interchanged, shows
that any ∆ > 0 with ∆2 = −2 and ∆.N < 0, must satisfy ∆.N = −1 and ∆.M = 1.
This implies (b) by [KL1, Thm. 1], and, as ∆.L = 0, also that

N is nef if L is ample, (9)

a fact we will use later, in the proof of (d).
Now assume that M2 = 0 and let |M| = |M0| + Σ0 be the decomposition

into the moving and fixed part, respectively. The nefness of M implies M2
0 =

Σ
2
0 = M0.Σ0 = 0, whence |M0| = |2lE| with E nef such that E2 = 0 and E is not

divisible in Num(S) and l ≥ 1 an integer, by [CD, Prop. 3.1.4(ii) and Prop. 3.1.3],
and Σ0 = 0 or Σ0 ≡ E, as a consequence of the signature theorem [BPV, VIII.1]
(see also [KL1, Lemma 2.1]). Possibly adding KS to E, we can write M ∼ kE, for
an integer k ≥ 2. If k ≥ 3, then h0(M − E) ≥ 2, h0(N + E) ≥ 2 and

(M − E).(N + E) = M.N − E.N < M.N,

a contradiction. Hence k = 2 and we are in case (c-i).
We will now treat the case M2

> 0 for the rest of the proof.
First of all we note that there is always a nef E with E.L = φ(L) by [Co2,

2.11] or [CD, Cor. 2.7.1, Prop. 2.7.1 and Thm. 3.2.1]. If 2φ(L) ≤ l, then 2φ(L) ≤
min{⌊ L2

4 ⌋+ 1, 2⌊
√

L2⌋} by (7), and one easily checks that this implies (L− 2E)2
>

0, whence also h0(L − 2E) ≥ 2 by Lemma 2.2 and Riemann-Roch. We would
therefore be done with the proof. We will therefore henceforth assume that

2φ(L) ≥ l + 1. (10)

We first show that we can assume (M2, φ(M)) = (2, 1) or (4, 2).
If φ(N) < φ(M), then let E be such that E2 = 0 and E.N = φ(N). Then

h0(M + E) ≥ 2 and

(N − E).(M + E) = M.N − E.M + E.N ≤ M.N − φ(M) + φ(N) < M.N = l,

a contradiction unless h0(N − E) ≤ 1. The latter implies (N2, φ(N)) = (4, 2) or
(2, 1) by Riemann-Roch and Lemma 2.2. But this is impossible, as φ(N) < φ(M)
and N2 ≥ M2.

Therefore φ(M) ≤ φ(N), and the same argument as above, with M and N
interchanged, shows that we can reduce to the cases (M2, φ(M)) = (4, 2) or (2, 1),
as claimed.
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In the first case |M| is base point free by [CD, Prop. 3.1.6 and Thm. 4.4.1] as
M is nef with φ(M) ≥ 2, and we are in case (c-iii). In the second case |M| has
precisely two base points, necessarily distinct, unless M ∼ 2E + R, where |2E|
is an elliptic pencil and R is nodal with R.E = 1, by [CD, Prop. 3.1.6 and Thm.
4.4.1], in which case R is the base component of |2E + R|. In this case, we add KS

to both M and N, and we are in case (c-ii).
Finally, we prove (d). So assume that L is ample. Then N is nef by (9). If |N|

is not base component free, then |N| = |2E| + R, where |2E| is an elliptic pencil
and R is nodal with E.R = 1, by [CD, Prop. 3.1.6]. In particular N2 = 2, so that
M2 = 2 by (a). By (7) we have

4l − 4 ≤ L2 = 4 + 2M.N = 4 + 2l,

whence (l, L2) = (3, 10) or (4, 12). Moreover from (10) we have

l + 1 ≤ 2φ(L) ≤ 2E.L = N.L − R.L = 2 + l − R.L,

so that the only possibility is (l, L2, φ(L), R.L) = (3, 10, 2, 1) by the ampleness of
L. We are now done by adding KS to both N and M, unless M ∼ 2E′ + R′ + KS,
with |2E′| an elliptic pencil and R′ is nodal with E′.R′ = 1, by [CD, Prop. 3.1.6].
As E.M = 1, we get E ≡ E′. But then 1 = R.L = R.M = R.(2E + R′) = 2 + R.R′

yields the absurdity R.R′ = −1.
It follows that |N| is base component free.
Consequently, if OD(N) is not base point free for a general, smooth irreducible

curve D ∈ |M|, we must have that |N| has base points, whence φ(N) = 1, and
moreover that l = M.N = degOD(N) ≤ 2g(D) − 1 = M2 + 1. Since we have
proved that φ(M) ≤ φ(N), we obtain by (c) that M2 = 2 and l = 3. Then N2 = 2
or 4 by the Hodge index theorem. We now rule out the case N2 = 2, finishing the
proof of (d).

We have h0(OD(N)) = h0(N)− χ(OS(N − M)) = 2, using (b), so that if x is a
base point of |OD(N)|, we must have OD(N) ∼ ωD(x), by the uniqueness of the
g1

2 on D. In particular x is the only base point of |OD(N)|.
If both M ∼ 2E + R + KS and N ∼ 2E′ + R′ + KS with |2E| and |2E′| ellip-

tic pencils and R and R′ nodal curves with R.E = R′.E′ = 1, then we get the
same absurdity R.R′ = −1 as above. By symmetry between M and N, and using
Lemma 2.2, we can therefore assume that M ∼ E + E1, with E and E1 nef, such
that E2 = E2

1 = 0 and E.E1 = 1. As M.N = 3, one easily sees that one can write
N ∼ E + E2, with E2

2 = 0 and E.E2 = E1.E2 = 1.
Consider

0 −→ OS(N − 2M + KS) −→ OS(N − M + KS) −→ OD(x) −→ 0. (11)

We have h0(N − 2M + KS) = 0 as M.(N − 2M + KS) = −1.
We now claim that also

h0(2M − N) = 0. (12)

Indeed, if this were not the case, we would have ∆ := E + 2E1 − E2 > 0, with
∆2 = −2, ∆.E = 1, ∆.E1 = 0 and ∆.E2 = 3. Since |2E1| is an elliptic pencil,
as E1 is nef, one easily sees that ∆ must be contained entirely in one fiber of the
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elliptic fibration given by |2E1|. Hence ∆
′ := 2E1 − ∆ > 0 and E2 ∼ E + ∆

′. As
N ∼ E + E2 is nef, this implies that ∆′ is a nodal curve with ∆′.E = 1 and we
have N ∼ 2E + ∆′. But then ∆′ is a base component of |N|, a contradiction. This
proves (12).

From (12) and Riemann-Roch we get h1(OS(N − 2M + KS)) = 0, so that (11)
implies h0(N − M + KS) > 0. But this contradicts the ampleness of L, as (N −
M).L = 0.

Remark 2.5. Assume that L > 0 is a line bundle with L2 = 12 and φ(L) = 2. Let
E > 0 be such that E2 = 0 and E.L = 2. Then (L − 2E)2 = 4. Using Lemma 2.2
one easily sees that the two cases φ(L − 2E) = 1 and 2 yield, respectively,

(i) L ≡ 3E + 2F, F > 0 primitive, isotropic with E.F = 1;

(ii) L ≡ 3E + F, F > 0 primitive, isotropic with E.F = 2.

One easily verifies that the exceptional case in Lemma 2.4(d) yields case (i),
with M ≡ E + F and N ≡ 2E + F.

3 Zero-cycles in special position and minimal gonality of curves

in a linear system

We first give a simple criterion to find zero-dimensional schemes on a surface
such that (2) is not surjective.

Lemma 3.1. Let L be a line bundle on a surface S with a decomposition L ∼ M + N such
that h0(M) > 0, h0(N) > 0 and such that there is a smooth, irreducible curve D ∈ |M|
with h0(OD(N)) > 0 and OD(N) is nontrivial. Then, for any Z ∈ |OD(N)|, the
natural restriction map (2) is not surjective.

Furthermore, if L is big and nef, then this is equivalent to H1((L + KS)⊗JZ) 6= 0.

Proof. Pick a nonzero section s ∈ H0(OD(N)), defining 0 → OD → OD(N).
Tensoring with M + KS, we obtain

0 −→ ωD −→ OD(L + KS) −→ OZ(s)(L + KS) −→ 0.

where Z(s) is the scheme of zeroes of s. Since h1(OD(L + KS)) = h1(ωD(N)) =
h0(OD(−N)) = 0 and h1(ωD) = 1, the map H0(OD(L + KS)) → H0(OZ(s)(L +

KS)) is not surjective. If L is big and nef, then H1(L + KS) = 0 and the last
assertion is immediate.

Lemma 3.2. The implications (iii) ⇔ (ii) ⇒ (i) ⇒ (iv) in Theorem 1.1 hold, even without
the ampleness assumption on L and assuming only L2

> 0.

Proof. Conditions (ii) and (iii) are obviously equivalent. Moreover, (ii) implies
that (2) is surjective for all Z ⊂ U := S − Θk+1(L), so that (ii) ⇒ (i).

To see that (i) ⇒ (iv), observe first that it is enough to show that the family
of smooth curves in |L| of gonality ≤ k + 1 is positive-dimensional. Indeed,
if this holds, then for any open U ⊆ S, we can always find a smooth curve
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C ∈ |L| of gonality ≤ k + 1 such that C ∩ U 6= ∅ and a zero-dimensional scheme
Z in the gonality pencil (which is necessarily base point free) lying inside U . As
h1(ωC − Z) = h0(OC(Z)) = 2 and from

0 −→ KS −→ (L + KS) ⊗JZ −→ ωC − Z −→ 0 (13)

we see that h1((L + KS) ⊗ JZ) = 1, showing that the restriction map (2) cannot
be surjective (by the last line of Lemma 3.1).

Now assume that C ∈ |L| is a smooth curve of minimal gonality l ≤ k +
1, among the smooth curves in |L|. Let Z ∈ |AC| be any element in a pen-
cil |AC| computing the gonality. As h1(KS) = 0, then (13) actually shows that
h0(OC′(Z′)) = 2 for any smooth C′ ∈ |L ⊗JZ′ | and any Z′ ∈ |AC|.

By Brill-Noether theory, l ≤ ⌊ g(C)+3
2 ⌋ = ⌊ L2

4 ⌋ + 2, and if equality holds, then
all the smooth curves in |L| would have gonality l and we would be done.

Assume therefore that l < ⌊ L2

4 ⌋ + 2. Then L2 ≥ 4l − 4. The dimension of the
family of curves in |L| passing though some element Z′ ∈ |AC|, is, by the obvious
incidence correspondence, at least

dim |L ⊗JZ| + dim |AC| ≥ dim |L| + 1 − l

=
1

2
L2 + 1 − l ≥ 2l − 2 + 1 − l = l − 1 ≥ 1,

where Z ∈ |AC| is general. Therefore, we are done again.

Proposition 3.3. Let S be an Enriques surface and L be as in Lemma 2.3 and such that
(L2, φ(L)) 6= (12, 2). Let l > 0 the minimal integer such that there is a decomposition
L ∼ M + N with h0(M) ≥ 2, h0(N) ≥ 2 and M.N = l.

If L is ample, then there exists a positive-dimensional family of smooth curves in |L|
having gonality ≤ l.

Proof. Choose the decomposition L ∼ M + N satisfying the properties (a)-(d) in
Lemma 2.4. In particular, as (L2, φ(L)) 6= (12, 2) by assumption, the exceptional
case in (d) does not occur (cf. Remark 2.5), so that |N| is base component free and
OD(N) is base point free for the general smooth curve D ∈ |M|.

If M2 = 0, there is nothing to prove.
If M2 = 2, then |M| has two distinct base points x and y, by Lemma 2.4(c), so

that if C ∈ |L ⊗ Jx ⊗Jy| is a smooth curve, then |OC(M)(−x − y)| is a g1
l on C.

As dim |L ⊗ Jx ⊗ Jy| ≥ dim |L| − 2 = 1
2 L2 − 2 ≥ 3, we only need to show the

existence of a smooth curve in |L ⊗Jx ⊗Jy|. From the short exact sequence

0 −→ N −→ L ⊗Jx ⊗Jy −→ OD(N) −→ 0, (14)

the fact that h1(N) = 0 by Lemma 2.4(b) and the base point freeness of OD(N),
we see that the base locus of |L ⊗ Jx ⊗ Jy|, off x and y, is contained in BS |N|
and does not intersect D. As |N| is base component free, the general element
of |L ⊗ Jx ⊗ Jy| is smooth by Bertini’s theorem, unless possibly if |M| and |N|
share some base points, and this can only happen if φ(N) = 1 and |N| has x or
y as one of its two base points, by [CD, Thm. 4.4.1]. But if the general element
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of |L ⊗ Jx ⊗ Jy| were singular at x (resp. y), then by (14) x (resp. y) would be
contained in every element of |OD(N)|, a contradiction on the base point freeness.

Finally, let M2 = 4.
The hypotheses of Lemma 3.1 are satisfied, and letting D and Z be as in that

lemma, using h1(OS) = 0, we have for any smooth curve C ∈ |L ⊗ IZ|, that

h1(ωC − Z) = h1((L + KS) ⊗JZ) + 1 ≥ 2.

Therefore h0(OC(Z)) ≥ 2. Moreover, as

dim |L ⊗JZ| ≥ dim |L| − l =
1

2
L2 − l ≥ l − 2 ≥ 1

by (7), we only have left to show that, for sufficiently general D ∈ |M| and Z ∈
|OD(N)|, there is a smooth curve in |L ⊗JZ|.

Since h1(N) = 0 by Lemma 2.4(b), the short exact sequence

0 −→ N −→ L ⊗JZ −→ OD(M) −→ 0,

is exact on global sections. Now N2 ≥ M2 = 4, by Lemma 2.4(a), so that M and
N are base point free by [CD, Prop. 3.1.6 and Thm. 4.4.1]. Therefore, also OD(M)
is base point free, so that the base scheme of |L⊗JZ | is precisely Z, which we can
choose to consist of l distinct points, as |OD(N)| is base point free. Thus, there is
a smooth curve in |L ⊗JZ| by Bertini’s theorem.

4 Vector bundles methods

In this section we recall some well-known vector bundle methods already used
by Tyurin, Reider, Beltrametti-Francia-Sommese, Lazarsfeld and others [Re, Ty,
La, BFS, BS4]. We formulate some results in the language of our setting. These
are well-known to the experts and this section is only included for completeness
and to ease the reading.

Assume that Z is a zero-dimensional subscheme of length l ≥ 1 on an En-
riques surface S and L a big and nef line bundle on S such that the natural restric-
tion map in (2) is not surjective on Z, but is surjective for any proper subscheme
Z′ ( Z. In other words, Z is a minimal zero-dimensional subscheme for which
the surjectivity of (2) fails. For instance (cf. the proof of Lemma 3.2), any zero-
scheme Z in the linear system of a pencil computing the gonality l of a smooth
curve C ∈ |L|, satisfies this condition, because h0(OC(Z′)) = 1 for any proper
subscheme Z′ ( Z, by the base point freeness of any pencil computing the gonal-
ity of a curve.

Then (see e.g. [Ty, (1.12)] and [BS4, Thm. 2.1]) there is a rank-two vector
bundle on E on S fitting into a short exact sequence

0 −→ OS −→ E −→ L ⊗JZ −→ 0 (15)

and satisfying

det E = L; (16)

c2(E) = length Z = l; (17)

hi(E ⊗ ωS) = 0, i = 1, 2. (18)
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We will make use of the following two lemmas, which are variants of well-
known results (see e.g. [DM, Kn3, GLM1, KL2]):

Lemma 4.1. Assume there are effective, nontrivial line bundles M and N on S, and a
zero-dimensional subscheme X ⊂ S, fitting into a short exact sequence

0 −→ N −→ E −→ M ⊗JX −→ 0. (19)

Then

(a) L ∼ M + N.

(b) M.N = length Z − length X ≤ length Z = l.

(c) |M| contains an effective divisor D passing through Z.

(d) h1(M + KS) = h2(M + KS) = 0.

If furthermore Z ∩ Θl(L) = ∅, then h0(M) ≥ 2 and M2 ≥ 0.

Proof. Taking c1 and c2 of (19) and using (16) and (17) we obtain (a) and (b). Ten-
soring (15) and (19) with OS(−N) and using the fact that h0(−N) = 0 as N is
effective and nontrivial, we obtain h0(M ⊗JZ) > 0, proving (c). Finally, (d) is an
immediate consequence of (18) and (19).

Now assume that Z ∩ Θl(L) = ∅.
If M2 ≤ −2, then by (d) and Riemann-Roch, we must have M2 = −2 and

h0(M + KS) = 0, so that M is a nodal cycle, and as such, only supported on nodal
curves. As M.L = M.N + M2 ≤ l − 2, this and (c) contradict our assumptions on
Z. Therefore M2 ≥ 0.

If M2 = 0 and h0(M) = 1, then, as h0(M + KS) = 1 by (d), we have that M
is only supported on precisely one halfpencil, and possibly some nodal curves
in addition. As M.L = M.N + M2 ≤ l, we again obtain a contradiction on our
assumptions on Z.

If M2 ≥ 2 then h0(M) ≥ 2 by Riemann-Roch.

Lemma 4.2. In the above situation, assume furthermore that L2 ≥ 4l − 2 and that
Z ∩ Θl(L) = ∅. Then, either

(i) there are line bundles M and N on S, and a zero-dimensional subscheme X ⊂ S,
fitting into a short exact sequence like (19), and such that h0(N) ≥ 2, h0(M) ≥ 2,
M2 ≥ 0, M.N ≤ l and N2 ≥ M2 ≥ 0; or

(ii) L2 = 4l − 2 and for any Σ ≥ 0 such that h0(E(−Σ)) > 0, we can find a line
bundle N ≥ Σ and a nodal cycle ∆ such that (19) holds with M ∼ N + ∆ +
KS, X = ∅, h0(M) ≥ 2, M2 ≥ 0, M.N = l, ∆2 = −2, h0(∆) = 1 and
h0(∆ + KS) = 0.

Proof. We first consider the case where either h0(E ⊗ E∗) ≥ 2 or h2(E ⊗ E∗) ≥ 2
and we will show that we end up in case (i).

For any ample divisor H on S, we have that E is not H-stable, because if it
were, we would have had h0(E ⊗ E∗) = 1 by [F, Cor. 4.8] and h2(E ⊗ E∗) ≤ 1 by
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[F, Prop. 4.7]. Bidualizing and saturating (if necessary) we find two line bundles
N, M on S and a zero-dimensional subscheme X ⊂ S such that E fits into an exact
sequence like (19). By Lemma 4.1, we have M.N ≤ l, h0(M) ≥ 2 and M2 ≥ 0.
Furthermore, by construction, N destabilizes E , that is µH(N) ≥ µH(E) (where
µH denotes the H-slope), or, equivalently, H.(N − M) ≥ 0.

If h0(N − M) > 0, then h0(N) ≥ 2 and N.L ≥ M.L as L is nef, whence
N2 ≥ M2, and we are in case (i).

Assume now that h0(N − M) = 0.
If h2(N − M) > 0 then N − M ∼ KS. It follows that 0 = (N − M)2 ≥ −2 +

4 length(X), whence X = ∅ and (19) splits since Ext1(M, N) ∼= H1(N − M) = 0,
so that h0(N) ≥ 2 by Lemma 4.1 applied with M and N interchanged.

If h2(N − M) = 0 then by Riemann-Roch we get

0 = h1(N − M) + 1 +
1

2
(N − M)2 = h1(N − M) +

1

2
L2 − 2l + 1 + 2 length(X) ≥ 0

therefore L2 = 4l − 2, X = ∅ and h1(N − M) = 0, whence (19) splits and again
h0(N) ≥ 2.

Furthermore, in both the last cases L.N ≥ L.M, whence N2 ≥ M2 and we
have proved that we are in case (i).

Finally we treat the case where h0(E ⊗ E∗) = 1 and h2(E ⊗ E∗) ≤ 1. We will
see that we are in case (ii).

By Riemann-Roch we get that

2 ≥ h1(E ⊗ E∗) + χ(E ⊗ E∗) = h1(E ⊗ E∗) + L2 − 4l + 4 ≥ 2,

whence h1(E ⊗ E∗) = 0, h2(E ⊗ E∗) = 1 and L2 = 4l − 2. Such a vector bundle
E is called exceptional [Ki] and for any Σ ≥ 0 such that h0(E(−Σ)) > 0 we can
find an N ≥ Σ such that h0(E(−N)) > 0 but h0(E(−N − B)) = 0 for any B > 0.
Applying [Ki, Thm. 3.4] we get that E(−N) fits into an exact sequence

0 −→ OS −→ E(−N) −→ ∆ + KS −→ 0,

with ∆2 = −2, h0(∆) = 1, h0(∆ + KS) = 0 and ∆ is a nodal cycle. Setting X = ∅

and M ∼ N + ∆ + KS, we have an exact sequence like (19) and the rest follows
from Lemma 4.1.

5 Proofs of Theorem 1.1 and Proposition 1.2

In this section we first prove Theorem 1.1 and Proposition 1.2, dividing the treat-
ment into three cases. Then we prove (5) from the introduction.

5.1 Proofs of Theorem 1.1 and Proposition 1.2 in the cases where

(L2, φ(L)) 6= (10, 3), (12, 2)

By Lemma 3.2 the part that remains to be proved of Theorem 1.1 is that (iv) im-
plies (ii).
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Arguing by contradiction, assume that there is a zero-dimensional scheme
Z ⊂ S of length l ≤ k + 1, such that Z ∩Θl(L) = ∅ and Z is a minimal subscheme
such that (2) is not surjective.

By Lemma 2.3 and Proposition 3.3 there is a smooth curve in |L| of gonality

≤ ⌊ L2

4 ⌋ + 1, so that we can assume that L2 ≥ 4k + 4 ≥ 4 length Z = 4l. By

Lemma 4.2 there is a decomposition L ∼ M + N with h0(M) ≥ 2, h0(N) ≥ 2 and
M.N ≤ l. Therefore, by Proposition 3.3, there is a smooth curve in |C| of gonality
≤ l ≤ k + 1, as desired.

This concludes the proof of Theorem 1.1.
We next prove Proposition 1.2.
Let dmin be the minimal gonality of a smooth curve in |L|. We first prove the

inequality

dmin ≥ min{2φ(L), β(L), µ(L) − 2}. (20)

We first note that there is a decomposition L ∼ M + N with h0(M) ≥ 2,
h0(N) ≥ 2 and M.N ≤ dmin. Indeed, if L2 ≤ 4dmin − 2 this follows from Lemma
2.3, and if L2 ≥ 4dmin, then this follows from Theorem 1.1 and Lemma 4.2.

By Lemma 2.4(c) we therefore have that (20) holds. We now prove the opposite
inequality.

By Lemma 2.3 and Proposition 3.3 we have L2 ≥ 4dmin − 4.
Now clearly dmin ≤ 2φ(L).
Assume, to get a contradiction, that dmin > β(L). Let B be such that B2 = 2

and β(L) = B.L − 2. By the Hodge index theorem we have (B.L)2 ≥ B2L2 ≥ 20,
whence B.L ≥ 5, so that β(L) ≥ 3 and dmin ≥ 4. Hence

(L − B)2 = L2 + B2 − 2L.B = L2 − 2β(L) − 2 ≥ (4dmin − 4)− 2(dmin − 1)− 2

= 2dmin − 4 ≥ 4.

Since (L − B).B = L2 − 2 > 0, we have h2(L − B) = 0 by Serre duality, as a
consequence of the signature theorem [BPV, VIII.1] (cf. also [KL1, Lemma 2.1]).
Hence h0(L − B) ≥ 3 by Riemann-Roch. Proposition 3.3 then implies that dmin ≤
B.(L − B) = β(L), a contradiction.

Finally, assume, to get a contradiction, that dmin > µ(L) − 2. Let B be such
that B2 = 4, φ(B) = 2 and µ(L) = B.L − 2. By the Hodge index theorem we have
(B.L)2 ≥ B2L2 ≥ 40, whence B.L ≥ 7, so that µ(L) ≥ 5 and dmin ≥ 4. As above,
we obtain that (L − B)2 ≥ 2dmin − 6 ≥ 2 and that h0(L − B) ≥ 2. Proposition 3.3
then implies that dmin ≤ B.(L − B) = µ(L) − 2, a contradiction.

5.2 Proofs of Theorem 1.1 and Proposition 1.2 in the case (L2, φ(L)) =

(12, 2)

Since φ(L) = 2, we have that gon C ≤ 4 for all smooth curves C ∈ |L|, so that
(i)-(iv) in Theorem 1.1 do not hold for k = 3, by Lemma 3.2.

As above, by Lemma 3.2, the part that remains to be proved of Theorem 1.1 is
that (iv) implies (ii). In fact we will now prove that (ii) holds for k ≤ 2. This will
also prove that gon C = 4 for all smooth curves C ∈ |L|, whence Proposition 1.2.
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Assume, to get a contradiction, that (ii) does not hold for some k ≤ 2 and
let Z ⊂ S be a zero-dimensional subscheme of length l = 2 or 3, such that Z ∩
Θl(L) = ∅ and Z is a minimal subscheme such that (2) is not surjective. Let
E be the associated vector bundle, as in Section 4. Since L2 = 12 ≥ 4l we can
apply Lemma 4.2(i). Thus L ∼ M + N with N2 ≥ M2, h0(M) ≥ 2, h0(N) ≥ 2
and M.N ≤ l ≤ 3. The Hodge index theorem yields the only possibility l = 3,
N2 = 4 and M2 = 2. (It follows that (ii) holds for k = 1, whence also (i), (iii)
and (iv) by Lemma 3.2.) Using Lemma 2.2 successively, one easily verifies that
we must be in case (i) of Remark 2.5, with N ≡ 2E + F and M ≡ E + F. Recall
that E > 0 and F > 0 are primitive, isotropic with E.F = 1. Moreover, E is nef as
E.L = 2 and L is ample. Moreover, if R is nodal with R.F < 0, then R.F = −1,
otherwise (F − R)2 ≥ 2 and (F − R).L ≤ 2 = φ(L), a contradiction. As R.E > 0
by the ampleness of L, we get that both N and M are nef. In particular, |N| is
base component free by [CD, Prop. 3.1.6]. It also follows that h0(N − M) = 1,
h1(N − M) = 0 and h1(−M) = 0, so that tensoring (21) and (15) by OS(−M), we
therefore find that h0(N ⊗JZ) = h0(E(−M)) = 2.

Assume now that the pencil |N ⊗ JZ| has a fixed part Σ > 0. Then (N −
Σ).L ≥ 2φ(L) = 4, by Lemma 2.2, as N − Σ moves, so that Σ.L ≤ 3. If Z ∩ Σ =
∅, then h0(N ⊗ JZ) = h0((N − Σ) ⊗ JZ). However, tensoring (21) and (15) by
OS(−M−Σ) as above, we obtain h0((N −Σ)⊗JZ) = h0(E(−M−Σ)) = h0(N −
M − Σ) ≤ 1, a contradiction. Therefore, Z ∩ Σ 6= ∅. Hence Σ

2 ≤ −2 and Σ.L ≥ 2,
as Z ∩ Θ3(L) = ∅ by assumption. Moreover, as (N − Σ).M ≥ 2φ(M) = 2, we
must have Σ.M ≤ 1, whence Σ.N ≥ 1, so that (N − Σ)2 = N2 + Σ2 − 2N.Σ ≤ 0.
Therefore, (N − Σ)2 = 0, so that Σ2 = −2, N.Σ = 1 and |N − Σ| must be an
elliptic pencil. But then 1 = N.Σ = N.(N − Σ) + Σ2 is even, a contradiction.

Therefore, the pencil |N ⊗JZ| is base component free. Since N2 = 4, Z must
contain at least one of the two base points of |N| (recall that φ(N) = 1). But these
are contained in F, as N ∼ 2E + F and |2E| is base point free. Hence Z ∩ Θ3(L) 6=
∅, the desired contradiction.

5.3 Proofs of Theorem 1.1 and Proposition 1.2 in the case (L2, φ(L)) =

(10, 3)

Since g(C) = 6 for all smooth curves C ∈ |L|, we have gon C ≤ 4, so that (i)-(iv)
in Theorem 1.1 do not hold for k = 3, by Lemma 3.2.

As above, by Lemma 3.2, the part that remains to be proved of Theorem 1.1 is
that (iv) implies (ii).

Assume now that (ii) does not hold for some k ≤ 2 and let Z ⊂ S be a zero-
dimensional subscheme of length l = 2 or 3, such that Z ∩ Θl(L) = ∅ and Z is a
minimal subscheme such that (2) is not surjective. Let E be the associated vector
bundle, as in Section 4. Since L2 = 10 ≥ 4l − 2 we can apply Lemma 4.2.

If we are in (i) of that lemma, then L ∼ M + N with N2 ≥ M2, h0(M) ≥ 2,
h0(N) ≥ 2 and M.N ≤ l ≤ 3. But then, by the Hodge index theorem, M2 ≤ 2, so
that M.L ≤ 5, whence φ(L) ≤ 2, by [KLM, Lemma 4.14], a contradiction.

Therefore, we are in (ii) of Lemma 4.2, so that l = 3. It follows that (ii) in
Theorem 1.1 holds for k = 1, whence also (i), (iii) and (iv) by Lemma 3.2. We have
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a short exact sequence

0 −→ N −→ E −→ M −→ 0, (21)

with M ∼ N + ∆ + KS, h0(M) ≥ 2, M.N = 3 and ∆ a nodal cycle. The ampleness
of L implies 0 < N.L = 3 + N2, whence N2 ≥ −2.

If N2 = −2, then M2 = 6 with M.L = 9 = 3φ(L). Therefore, using Lemma
2.2 successively, M ∼ E1 + E2 + E3 with E2

i = 0, Ei.L = 3, Ei.Ej = 1 for i 6= j
and each Ei is nef, as L is ample. In particular Ei.N = Ei.L − Ei.M = 1 for all i.
Twisting (21) with OS(−E1) we obtain h0(E − E1) ≥ h0(M − E1) + χ(N − E1) =
2 + 1

2(N − E1)
2 + 1 = 1. Hence, by Lemma 4.2(ii), we can in fact find new line

bundles N′ and M′ as in (21) with N′ ≥ E1, in particular with N′.L ≥ E1.L = 3,

so that N′2 ≥ 0.
We can therefore assume that N2 ≥ 0. As h0(M) ≥ 2, we must by [KLM,

Lemma 4.14] have 6 = 2φ(L) ≤ M.L = 3 + M2, whence M2 = 4 and N2 = 0. We
have that N is nef with h0(N) = 1, as N.L = φ(L) = 3.

If M were not nef, then there would be a nodal curve R with R.M = R.(N +
∆) < 0, whence R.N ≥ 2 by the ampleness of L, so that R.∆ ≤ −3. It follows that
(∆ − R)2 ≥ 2 with ∆ − R > 0 and (∆ − R).L ≤ 3, a contradiction. Therefore M is
nef.

As M.L = 7 we have φ(M) = 2. Indeed, if φ(M) = 1, we would have,
using Lemma 2.2 successively, M ∼ 2E1 + E2 with E1 and E2 isotropic such that
E1.E2 = 1, so that M.L ≥ 3φ(L) = 9. It follows that |M| is base point free.

Pick a general, smooth D ∈ |M| and consider

0 −→ −∆ − KS −→ N −→ OD(N) −→ 0.

Then, as h1(N) = 0, since h0(N) = 1, and h1(−∆ + KS) = h1(∆) = 1, we have
that |OD(N)| is a g1

3, which is necessarily base point free, as D is nonhyperelliptic
by [Ve]. Let now Z ∈ |OD(N)| be a general element, lying outside N ∩ D. From

0 −→ N −→ L ⊗JZ −→ OD(M) −→ 0

and the fact that h1(N) = 0 and OD(M) is base point free, we see that the base
locus of |L⊗JZ |, off Z, is contained in N and does not intersect D. Since Z ∩ N =
∅, we have that |L ⊗ JZ| is base component free, whence its general member is
irreducible. As N ∪ D ∈ |L ⊗ JZ|, the singularities of the general member of
|L ⊗ JZ| can only lie in Sing(N ∪ D) − (N ∩ D), but this is equal to Sing N. If
now x is a singular point of some general C ∈ |L ⊗JZ|, we must therefore have

N.L ≥ multx N · multx C ≥ 4,

a contradiction.
This shows that the general element of |L ⊗JZ| is smooth. By Lemma 3.1, we

have h1(L ⊗JZ) 6= 0, whence by (13) we have h0(OC(Z)) = h1(ωC − Z) ≥ 2 and
C has gonality ≤ 3, in fact gonality 3, as (i)-(iv) in Theorem 1.1 hold for k = 1.

Now both Theorem 1.1 and Proposition 1.2 have been proved.

Remark 5.1. The particular polarization given by L = 2E + ∆ + KS appearing
above is called a Reye polarization [CV, DR].
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5.4 Proof of (5)

We first need:

Lemma 5.2. Let L > 0 be a line bundle on an Enriques surface with L2 ≥ 8 and E
such that E2 = 0 and E.L = φ(L). Let β(L), µ(L) and φi(L, E) be as defined in the
introduction.

(a) If µ(L) − 2 < 2φ(L), then µ(L) + 2 = φ(L) + φ2(L, E).
(b) If β(L) < 2φ(L), then β(L) + 2 ≥ φ(L) + φi(L, E) for i = 1 or 2.

Proof. (a) Let B satisfy B2 = 4, φ(B) = 2, B 6≡ L and B.L = µ(L) + 2. By as-
sumption, B.L ≤ 2φ(L) + 3 and by using Lemma 2.2, we can write B ∼ E1 + E2

with E2
1 = E2

2 = 0 and E1.E2 = 2. We can assume that E1.L ≤ φ(L) + 1 and
E2.L ≤ φ(L) + 2.

We want to find an F such that F.E = 2 and F.L ≤ µ(L) + 2 − φ(L).
If E.Ei = 2 for i = 1 or 2, then we are done with F = Ei.
If E.Ei ≥ 3 for i = 1 or 2, then (E + Ei)

2 ≥ 6. Using Lemma 2.2 successively
we can write an effective decomposition of E + Ei containing at least three com-
ponents of square zero. Hence 3φ(L) ≤ (E + Ei).L ≤ 2φ(L) + 2, so that φ(L) ≤ 2
and (E + Ei).L ≤ 6. But then (E + Ei)

2L2 ≥ 48 > 36 ≥ ((E + Ei).L)2, contradict-
ing the Hodge index theorem.

The remaining possibility is that E.B = 2, and in this case we are done with
F := B − E.

(b) Let B satisfy B2 = 2 and B.L = β(L) + 2. By assumption, B.L ≤ 2φ(L) + 1
and by using Lemma 2.2, we can write B ∼ E1 + E2 with E2

1 = E2
2 = 0 and

E1.E2 = 1. We can assume that E1.L = φ(L) and E2.L ≤ φ(L) + 1.
We want to find an F such that F.E = 1 or 2 and F.E ≤ β(L) + 2 − φ(L). If

E.Ei ≤ 2 for i = 1 or 2, then we are done with F = Ei.
If E.Ei ≥ 3 for i = 1 or 2, we reach the same contradiction as in (a).

We now prove (5). So assume L ∈ Pic S with L2 ≥ 8 and L > 0 and pick any E
such that E2 = 0 and E.L = φ(L).

If F satisfies F2 = 0 and F.E = i, for i = 1 or 2, then (E + F)2 = 2i, φ(E + F) = i
and (E + F).L = φ(L) + F.L. In particular we have that φ(L) + φ1(L, E) ≥ β(L) +
2 and φ(L) + φ2(L, E) ≥ µ(L) + 2. Therefore

min{2φ(L), β(L), µ(L)− 2} ≤ min{2φ(L), φ(L)+ φ1(L, E)− 2, φ(L)+ φ2(L, E)− 4}

At the same time, Lemma 5.2 yields the opposite inequality. Thus, (5) is proved.

6 On the variation of the gonality

First we recall:

Theorem 6.1. ([KL2, Thm. 1]) Let |L| be a base-component free complete linear system
on an Enriques surface S such that L2

> 0. Then, for a general C ∈ |L|, we have

gon(C) = min{2φ(L), µ(L), ⌊L2

4
⌋ + 2}.
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We have

Proposition 6.2. Let L be an ample, globally generated line bundle on an Enriques sur-
face S such that L2 ≥ 10. Let dgen be the gonality of the general smooth curve in |L| and

dmin be the minimal gonality of a smooth curve in |L|. Let E be such that E2 = 0 and
E.L = φ(L).

If (L2, φ(L)) 6= (10, 3), (12, 2), then

dmin = φ(L) + min{φ(L), φ1(L, E) − 2, φ2(L, E) − 4}
and

dgen = φ(L) + min{φ(L), φ2(L, E) − 2},

except for the following cases, where dgen = ⌊ L2

4 ⌋ + 2 = dmin + 1:

(L2, φ(L)) ∈ {(12, 3), (14, 3), (18, 4), (20, 4), (22, 4), (30, 5)}. (22)

If (L2, φ(L)) = (12, 2), then dgen = dmin = 4.

If (L2, φ(L)) = (10, 3), then dgen = 4, and dmin = 3 if L ∼ 2E + ∆ + KS, with E a
halfpencil and ∆ a nodal cycle such that ∆.E = 3 and dmin = 4 otherwise.

Proof. It is easy to check that 2φ(L) ≤ ⌊ L2

4 ⌋ + 2 except for the special pairs in (22)

and (L2, φ(L)) = (10, 3), where dgen = ⌊ L2

4 ⌋ + 2, by [KL2, Cor. 1]. Using the
decompositions in the proof of Lemma 2.3 one checks that the minimal gonality
of a curve in |L| is dmin = dgen − 1 = min{β(L), µ(L) − 2} < 2φ(L) in all these

cases, by Proposition 1.2, except in the case (L2, φ(L)) = (10, 3) and L is not of
the special form L ∼ 2E + ∆ + KS in Proposition 1.2.

Therefore, the proposition is proved in all these cases.
In the remaining cases the result follows from Proposition 1.2, Lemma 5.2 and

Theorem 6.1.

In particular, as φ1(L, E) ≥ φ(L), we obtain:

Corollary 6.3. Let L be an ample, globally generated line bundle on an Enriques surface
S such that L2 ≥ 10. Let dgen be the gonality of the general smooth curve in |L| and dmin

be the minimal gonality of a smooth curve in |L|. Then

dmin ≥ dgen − 2.

This result was also proved in [KL2, Cor. 2] without the ampleness assump-
tion and assuming only L2

> 0, although we did not find the exact value for
the minimal gonality there. We will see in Examples 6.5-6.7 that all cases dmin =
dgen − 2, dgen − 1 and dgen actually occur.

Another immediate corollary of Proposition 6.2 is the following criterion for
the constancy of the gonality:

Corollary 6.4. Let L be an ample, globally generated line bundle on an Enriques surface
S such that L2 ≥ 10.

Then, all the smooth curves in |L| have the same gonality if and only if

φ1(L, E) ≥ φ(L) + 2 and φ2(L, E) ≥ φ(L) + 3

or (L2, φ(L)) = (12, 2), in which case the gonality is precisely 2φ(L); or (L2, φ(L)) =
(10, 3) and L is not of the special form in Proposition 1.2, in which case the gonality is 4.
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In particular, we see that if the gonality is constant and (L2, φ(L)) 6= (10, 3),
then there is a unique numerical equivalence class [E] ∈ Num(S) such that E.L =
φ(L), and F.L ≥ φ(L) + 2 for any F > 0 such that F 6≡ E and F2 = 0.

We conclude this note with some examples. To this end, recall from [KL2,
Lemma 2.14] that if L > 0 is any line bundle on an Enriques surface with L2 ≥ 0,
then there is an integer n such that 1 ≤ n ≤ 10 and, for every i = 1, . . . , n, there
are primitive divisors Ei > 0 with E2

i = 0 and integers ai > 0 such that

L ≡ a1E1 + · · ·+ anEn

and one of the three following intersection sets occurs:

(i) Ei.Ej = 1 for 1 ≤ i < j ≤ n.

(ii) n ≥ 2, E1.E2 = 2 and Ei.Ej = 1 for 2 ≤ i < j ≤ n and for i = 1, 3 ≤ j ≤ n.

(iii) n ≥ 3, E1.E2 = E1.E3 = 2 and Ei.Ej = 1 for 3 ≤ i < j ≤ n, for i = 1,
4 ≤ j ≤ n and for i = 2, 3 ≤ j ≤ n.

This way of writing a decomposition of any L is useful in order to explicitly
compute the general gonality and minimal gonality of the smooth curves in |L|.

Example 6.5. Let L be an ample, globally generated line bundle on an Enriques
surface S such that L2 ≥ 10 and such that L is not as in (22) and (L2, φ(L)) 6=
(12, 2). Let dgen be the gonality of the general smooth curve in |L| and dmin be the
minimal gonality of a smooth curve in |L|.

Assume that L has a decomposition as in (i) above, that is,

L ≡ a1E1 + · · · + anEn,

with n ≤ 10 and all Ei.Ej = 1 for i 6= j.
We can assume that a1 ≥ · · · ≥ an. Set a := a1 + · · · + an.
Now one easily computes:

φ(L) = E1.L = a − a1,

φ1(L, E1) = E2.L = φ(L) + a1 − a2.

Moreover, we have φ2(L, E1) ≥ 2a1 + a2 + · · ·+ an = φ(L)+ 2a1 , so that φ2(L, E1) ≥
φ(L) + 4, unless possibly if a1 = 1, in which case a2 = · · · = an = 1, so that
φ1(L, E1) = φ(L) and φ2(L, E1) ≥ φ(L) + 2.

It follows from Proposition 6.2 that

dgen = 2φ(L) = 2(a − a1),

and

dmin =











2φ(L) if a1 ≥ a2 + 2;

2φ(L) − 1 if a1 = a2 + 1;

2φ(L) − 2 if a1 = a2.
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Example 6.6. Let L be an ample, globally generated line bundle on an Enriques
surface S such that L2

> 10 and such that L is not as in (22). Let dgen be the
gonality of the general smooth curve in |L| and dmin be the minimal gonality of a
smooth curve in |L|.

Assume that L has a decomposition as in (ii) above, that is,

L ≡ a1E1 + · · ·+ anEn,

with n ≤ 10 and all Ei.Ej = 1 for i 6= j except E1.E2 = 2.
We can assume that a1 ≥ a2 and a3 ≥ · · · ≥ an. Set a := a1 + · · · + an.
One easily computes

φ(L) = min{E1.L = a + a2 − a1, E3.L = a − a3}.

Case I: a1 − a2 ≥ a3.
We have φ(L) = E1.L = a + a2 − a1 and one easily finds:

φ1(L, E1) = E3.L = a − a3 and φ2(L, E1) = E2.L = a + a1 − a2.

Hence, by Proposition 6.2 we have

dgen = 2a + min{2(a2 − a1),−2}

and
dmin = 2a + min{2(a2 − a1), a2 − a1 − a3 − 2,−4}.

Case II: a1 − a2 ≤ a3 − 1.
We must have a3 > 0. We have φ(L) = E3.L = a − a3 and one easily finds:

φ1(L, E3) = E1.L = a + a2 − a1.

If F > 0 satisfies F2 = 0, F.E3 = 2 and F.L ≤ φ(L) + 3, then F 6≡ Ei for all
i = 1, . . . , n, whence

a + a3 ≤ F.L ≤ a − a3 + 3,

so that a3 = 1. It follows that a4 = · · · = an = 1 and a1 = a2. In this case one
finds (E1 + E2 − E3).L = a + 1, (E1 + E2 − E3)

2 = 0 and (E1 + E2 − E3).E3 = 2,
so that φ2(L, E3) = a + 1.

Therefore, we have proved that

φ2(L, E3) ≥ φ(L) + 4 unless a1 = a2, a3 = · · · = an = 1,

in which case φ2(L, E3) = a + 1.

Hence, by Proposition 6.2 we have dgen = 2(a − a3) and

dmin = 2a + min{−2a3, a2 − a1 − a3 − 2},

unless a1 = a2 and a3 = · · · = an = 1, in which case dmin = 2a − 4.

We leave it to the interested reader to explicitly work out the case when L has
a decomposition as in (iii) above, in the same way as in the two last examples. We
will restrict ourselves to the following particular case:
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Example 6.7. Let L be an ample, globally generated line bundle on an Enriques
surface S such that L2 ≥ 10. Let dgen be the gonality of the general smooth curve
in |L| and dmin be the minimal gonality of a smooth curve in |L|.

By [KL2, Def. 2.9, Prop. 2.10], we have µ(L) < 2φ(L) if and only if L is of
one of the following three types, where E1, E2, E3 are primitive such that Ei > 0,
E2

i = 0, i = 1, 2, 3, E1.E2 = E1.E3 = 2 and E2.E3 = 1:

(µ1) L ≡ h(E1 + E2), h ≥ 3;

(µ2) L ∼ h(E1 + E2) + E3, h ≥ 1;

(µ3) L ∼ (h + 1)E1 + hE2 + E3, h ≥ 1.

In each of these cases one easily computes:

(µ1) φ(L) = E1.L = E2.L = 2h, φ1(L, E1) ≥ 2h, φ2(L, E1) = E2.L = 2h;

(µ2) φ(L) = E2.L = 2h + 1, φ1(L, E2) ≥ 2h + 1, φ2(L, E2) = E1.L = 2h + 2;

(µ3) φ(L) = E1.L = 2h + 2, φ1(L, E1) ≥ 2h + 2, φ2(L, E1) = E2.L = 2h + 3.

Hence, by Proposition 6.2 we have:

(µ1) dgen = 4h − 2, dmin = 4h − 4;

(µ2) dgen = 4h + 1, dmin = 4h − 1;

(µ3) dgen = 4h + 3, dmin = 4h + 1.
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