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Abstract

We establish that the elliptic equation ∆u + f (x, u) + g(|x|)x · ∇u = 0,
where x ∈ R

n, n ≥ 3, and |x| > A > 0, has a positive solution which decays
to 0 as |x| → +∞ under mild restrictions on the functions f , g. The main the-
orem improves substantially upon the conclusions of the recent paper [M.
Ehrnström, Positive solutions for second-order nonlinear differential equa-
tions, Nonlinear Anal. TMA 64 (2006), 1608–1620]. Its proof relies on a sharp
result of non-oscillation of linear ordinary differential equations and on the
comparison method.

1 Introduction

This note, motivated by the recent papers [13, 2, 14], is concerned with the exis-
tence of a positive solution to the linear differential equation

u′′ + a(t)u = 0, t ≥ t0 ≥ 1, (1)

such that

u′(t) − u(t)

t
≤ 0, u(t) = o(t) as t → +∞. (2)

Here, the functional coefficient a : [t0, +∞) → [0, +∞) is taken continuous and
with (eventual) isolated zeros. We tacitly assume that, given the large literature
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regarding the equation (1), of interest would be only to get (nearly) optimal hy-
potheses for the existence of such a solution.

The preoccupation in studying the problem (1), (2) comes from an investiga-
tion of the existence of positive, vanishing at +∞, solutions to the semi-linear
elliptic equation of second order

∆u + f (x, u) + g(|x|)x · ∇u = 0, x ∈ GA, (3)

where GA = {x ∈ R
n : |x| > A} and n ≥ 3, that relies heavily upon (sharp) crite-

ria regarding the long-time behavior of various solutions to ordinary differential
equations. Making a presentation of recent literature about positive solutions to
elliptic partial differential equations and their behavior when x reaches the spa-
tial infinity is an almost impossible task, so we prefer to cite only a few studies
[1, 2, 6, 7, 9, 10], [12] – [14], [18, 19], [21] – [24] which contain methods in the same
spirit as ours.

Following [6, 21, 22, 24], we consider that the functions f : GA × R → R and
g : [A, +∞) → R are locally Hölder continuous. Moreover,

0 ≤ f (x, U) ≤ m(|x|)U, x ∈ GA, U ∈ [0, ζ], (4)

for some ζ > 0 and the continuous application m : [A, +∞) → [0, +∞). The reg-
ularity assumptions upon f , g are sufficient for applying the comparison method
[16] to the analysis of (3). In fact, given u a positive solution of (1), we would like
the function

U(x) = U(|x|) =
u(t)

t
, where |x| = β(t) =

(

t

n − 2

)
1

n−2

(5)

and t ≥ t0 > max{1, (n − 2)An−2}, to be a super-solution of (3) satisfying the
additional restriction

x · ∇U(x) ≤ 0, x ∈ GB, (6)

for some B > A. We take herein

a(t) =
1

(n − 2)2

β′(t)

[β(t)]n−3
· m(β(t)), t ≥ t0. (7)

The reason for introducing (6), see [13], is that, when g takes only nonnegative
values, this additional requirement for the positive solution U of the linear elliptic
equation (of comparison)

∆U + m(|x|)U = 0, x ∈ GB,

will allow for a complete removal of the conditions regarding g (given mostly by
convergent improper integrals) from the hypotheses of various theorems in the
recent literature. Further developments of this observation are given in [1, 2, 10,
14].

Condition (6), translated into the language of ordinary differential equations,
reads as

u′(t) − u(t)

t
≤ 0 for every sufficiently large t. (8)



On the positive solutions of certain semi-linear elliptic equations 51

Here, by means of an integral Riccati equation associated with (1), see also [1],
we establish the existence of a solution to (1), (2) in nearly optimal circumstances.
The result is used to derive a criterion for the existence of positive solutions to (3)
that decay to 0 as |x| → +∞. It improves consistently upon the conclusions of
[1, 2, 10, 14].

2 Positive solution to the problem (1), (2)

Assume that the differential equation (1) has already a positive solution u(t).
Then, the classical Hartman non-oscillation theorem [17] implies that

∫ +∞

t0

a(t)dt < +∞. (9)

Further, since u′′(t) ≤ 0 in [t0, +∞), there exists lim
t→+∞

u′(t) = l ∈ [0, u′(t0)].

Also, we have

u′(t) = l +
∫ +∞

t
a(s)u(s)ds, t ≥ t0. (10)

If l > 0 then, via L’Hôpital’s rule, we deduce from (10) that

u(t) = l · t + o(t) for t → +∞

and

∫ +∞

t0

ta(t)dt < +∞. (11)

The condition (11) has been already discussed in the literature [6, 7, 9], [12] –
[14], [24]. In fact, the condition is necessary and sufficient for the existence of
bounded positive solutions of (1) that verify (8), see [13, 10].

We shall focus here on the case l = 0. According to (10), the presumable
positive solution u verifies the inequality

u′(t) ≥
(

t
∫ +∞

t
a(s)ds

)

u(t)

t
, t ≥ t0.

This means that, if u is a solution of the problem (1), (2), then the functional
coefficient a must be confined by

t
∫ +∞

t
a(s)ds ≤ 1 (12)

throughout [t0, +∞). For various implications of (12), see the papers [4, 25].
The next result, in the spirit of Opial [8], provides a connection between sharp

non-oscillation results for (1) and the existence of solutions obeying (2). Though
its proof might look surprisingly simple, we have found that it is almost impos-
sible to improve its main hypothesis (13).
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Theorem 1. Assume that (12) holds true and there exists a continuous function λ :
[t0, +∞) → [0, +∞) such that

∫ +∞

t

[

∫ +∞

s
a(τ)dτ + λ(s)

]2

ds ≤ λ(t), t ≥ t0. (13)

Consider also that

∫ +∞

t0

ta(t)dt = +∞. (14)

Then, the problem (1), (2) has a positive unbounded solution in [t0, +∞).

Proof. We shall proceed in three steps.
The first step. Suppose that for a positive solution u(t) of (1) there exists t1 ≥ t0

such that u′(t1) <
u(t1)

t1
. Then, the following holds true

u(t) − u(t1) =
∫ t

t1

u′(s)ds ≥ (t − t1)u′(t),

since the derivative u′ is monotone non-increasing throughout [t1, +∞) (recall
that u′′(t) = −a(t)u(t) ≤ 0), and respectively

u(t) ≥ t1

[

u(t1)

t1
− u′(t)

]

+ tu′(t)

≥ t1

[

u(t1)

t1
− u′(t1)

]

+ tu′(t) > tu′(t), t > t1.

We have, consequently, either u′(t) ≥ u(t)
t for all t ≥ t0 or u′(t) <

u(t)
t in

[t1, +∞) for a certain t1 ≥ t0.
The second step. Introduce the set

S =

{

b ∈ (L2 ∩ L∞)((t0, +∞), R) :
∫ +∞

t
[b(s)]2ds ≤ λ(t) for all t ≥ t0

}

.

The partial order ” ≤ ”, given by b1 ≤ b2 if and only if b1(t) ≤ b2(t) almost
everywhere in (t0, +∞), makes (S,≤) a complete lattice.

The operator T : S → S with the formula

T(b)(t) =
∫ +∞

t
[b(s)]2ds +

∫ +∞

t
a(s)ds, t ≥ t0, (15)

is well defined by means of (13).
The application T is isotone, that is, T(b1) ≤ T(b2) whenever b1 ≤ b2, and, the

functional coefficient a(t) being nonnegative, it satisfies the inequality 0 ≤ T(0).
By application of the Knaster-Tarski fixed point theorem [11, p. 14], T has a fixed
point in S, denoted b0.

Since b0 ∈ L∞, we deduce from (15) that b0 = T(b0) is a locally Lipschitz
function. Using again (15), we conclude that b0 is continuously differentiable
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throughout [t0, +∞). This means that the function u0(t) ≡ exp
(

∫ t
t0

b0(s)ds
)

,

where t ≥ t0, is a positive classical (C2) solution of (1).
The third step. Suppose now, taking into account the discussion from the first

step, that

u′
0(t) ≥ u0(t)

t
, t ≥ t0.

This means that the mapping t 7→ u0(t)
t is monotone non-decreasing throughout

[t0, +∞).
Accordingly, via (10) for l = 0, we deduce that

u′
0(t) =

∫ +∞

t
a(s)u0(s)ds ≥

∫ +∞

t
sa(s)ds · u0(t)

t
> 0,

contrary to (14).

Remark 1. In the paper [1], the function a from (1) is subjected to the Hille-type
restriction

∫ +∞

t
a(s)ds ≤ q(t)

t
−

∫ +∞

t

[

q(s)

s

]2

ds, t ≥ t0, (16)

where the function q : [t0, +∞) → (0, 1] is continuous and with sup
t≥t0

{q(t)} <
1
2 .

The case where q(t) = c ∈
(

0, 1
2

]

for all t ≥ t0 is discussed in [19]. The restriction

(16) is very permissive, however, it is included in the circumstances described

in our Theorem 1. In fact, by taking λ(t) =
∫ +∞

t

[

q(s)
s

]2
ds for all t ≥ t0, the

hypothesis (13) follows immediately from (16).

Remark 2. To give a hint about the sharpness of (13), let us notice that an integra-
tion by parts in formula (10) leads to

t
∫ +∞

t

{

[

∫ +∞

s
a(τ)dτ

]2

+ a(s)

}

ds ≤ 1, t ≥ t0,

see also the analysis in [5]. A technique for building very flexible functions λ can
be derived from the methods in [3, 20].

3 Application to (3)

The following lemma will be needed in the investigation.

Lemma 1. (see [21]) If, for some B > A, there exist a nonnegative subsolution w and a
positive supersolution v to (3) in GB, such that w(x) ≤ v(x) for x ∈ GB, then (3) has a
solution u in GB such that w ≤ u ≤ v throughout GB. In particular, u = v on |x| = B.

Our main contribution here is the next result.
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Theorem 2. Assume that g(α) ≥ 0 for any α ≥ A. Suppose also that the following
estimates

∫ +∞

r
τn−3

[

λ((n − 2)τn−2) + cn

∫ +∞

τ

m(ξ)

ξn−3
dξ

]2

dτ ≤ cn · λ((n − 2)rn−2),

where cn = (n − 2)−2,

√
cn · rn−2

∫ +∞

r

m(τ)

τn−3
dτ ≤ 1 and

∫ +∞

A
rm(r)dr = +∞

hold true in [A, +∞).
Then, the equation (3) has a positive solution u(x), defined in GB for some B > A,

such that lim
|x|→+∞

u(x) = 0.

Proof. Consider the positive, twice continuously differentiable functions given
by

U(x) = y(r) =
u0(t)

t
, t ≥ t1, (17)

where r = |x| = β(t). Here, u0 is the solution of problem (1), (2) obtained at
Theorem 1 and the number t1 is given in the first step of the previous proof. Also,
t1 is eventually increased in order to have y(β(t)) ≤ ζ throughout [t1, +∞), see
(4), and we put B = β(t1).

By a straightforward computation we get that

tβ′(t) =
1

n − 2
β(t) (18)

and
{

du0
dt = y + tβ′(t) dy

dr
d2u0

dt2 = n−1
n−2 β′(t)

dy
dr +

β(t)β′(t)
n−2

d2y
dr2 ·

(19)

Further, taking into account (18), (19), we have

rn−1 (∆U + f (x, U) + g(|x|)x · ∇U)

=
d

dr

(

rn−1 dy

dr

)

+ rn−1 f (x, U) + rng(r)
dy

dr

=
n − 2

β(t)β′(t)
[β(t)]n−1

[

u′′
0 (t) +

1

n − 2
β(t)β′(t) f (x, U)

+ β(t)β′(t)g(β(t))

(

u′
0(t) − u0(t)

t

)]

,

for any t ≥ t1.
We have obtained that

|x|n−1 (∆U + f (x, U) + g(|x|)x · ∇U)

≤ n − 2

β(t)β′(t)
[β(t)]n−1

[

u′′
0 (t) + a(t)u0(t)

]

= 0,
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where the functional coefficient a is given by (7).
Now, U is a positive super-solution of (3). Also, the trivial solution of (3) is

its (nonnegative) sub-solution. According to Lemma 1, there exists a nonnegative
solution u to (3), defined in GB. Since

(∆ + g(|x|)x · ∇)(−u) = f (x, u) ≥ 0,

the strong maximum principle ([15]) can be applied to −u. This means that the
function −u cannot attain a nonnegative maximum in a point of GB unless it is
constant. Since −u is negative on {x : |x| = B} and −u(x) ≤ 0 throughout GB as
u is confined between 0 and a positive super-solution U, it follows that −u cannot
have zeros. We conclude that u is a positive solution of (3) that decays to 0 when
|x| → +∞.

The proof is complete.

Remark 3. A certain computational error has occurred in [1, p. 1209]. That is, the
correct restriction on the function m from (4) is given by

rn−2
∫ +∞

r
τ3−n

∣

∣

∣

∣

m(τ)

n − 2
− [1 − q((n − 2)τn−2)]g(τ)

∣

∣

∣

∣

dτ

≤ q((n − 2)rn−2)− (n − 2)rn−2
∫ +∞

(n−2)rn−2

q2(τ)

τ2
dτ, r ≥ A.
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