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Abstract

In this paper, we investigate the modified Hyers-Ulam stability of a mixed
n-dimensional quadratic functional equation in Banach spaces and also Ba-
nach modules over a Banach algebra and a C*—algebra. Finally, we study the
stability using the alternative fixed point of the functional equation in Banach
spaces:

n=2Cm—2f(O_ ) +n-2 Cm1 Y _ flxi) = > flxy 4+ 4 w4,),
= i=1

1<i1 < <im<n

forallz; (j =1,--- ,n) where n > 3 is an integer number and 2 <m <n—1.

1 Introduction

In 1940, the problem of stability of functional equations was originated by Ulam [24]
as follows: Under what condition does there exist an additive mapping near an
approximately additive mapping 7

The first partial solution to Ulam’s question was provided by D. H. Hyers [7].
Let X and Y are Banach spaces with norms || - || and || - ||, respectively. Hyers
showed that if a function f : X — Y satisfies the following inequality

[ fx+y) = flx) = fly) <€
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for a given fixed € > 0 and for all x,y € X, then the limit

a(x) = lim 27" f(2"x)

n—oo

exists for each x € X and a : X — Y is the unique additive function such that

I f(x) —alz) |<e

for any x € X . Moreover, if f(tx) is continuous in ¢ for each fixed x € X , then a is
linear.

Hyers’s theorem was generalized in various directions. In particular, thirty seven
years after Hyers’s Theorem, Th.M.Rassias provided a generalization of Hyers’s
result by allowing the Cauchy difference to be unbounded; see [15]. He proved the
following theorem: if a function f : X — Y satisfies the following inequality

I f(z+y) = flz) = fly) <00 < 7+ | 2 [17)

for some # > 0,0 <p <1, and for all x,y € X, then there exists a unique additive
function such that

_ p
I @)~ a(e) 1< 5o | o |
for all z € X . Moreover, if f(tx) is continuous in ¢ for each fixed x € X | then a is
linear.

Th.M. Rassias result provided a generalization of Hyers Theorem, a fact which
rekindled interest in the study of stability of functional equations. Taking this
fact into consideration the Hyers-Ulam stability is called Hyers-Ulam-Rassias stabil-
ity. In 1990, Th.M.Rassias during the 27th International Symposium on Functional
Equations asked the question whether an extension of his Theorem can be proved
for all positive real numbers p that are greater or equal to one. A year later in 1991,
Gajda provided an affirmative solution to Rassias’s question in the case the number
p is greater than one; see [5].

During the last two decades several results for the Hyers-Ulam-Rassias stability
of functional equations have been proved by several mathematicians worldwide in
the study of several important functional equations of several variables. Gavruta [6]
following Rassias’s approach for the unbounded Cauchy difference provided a further
generalization.

The quadratic function f(z) = cz? (c € R) satisfies the functional equation

flx+y)+ flz—y)=2f(z) +2f(y). (1.1)

Hence this question is called the quadratic functional equation, and every solution
of the quadratic equation (1.1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1.1) was
proved by Skof [23] for functions f : X — Y, where X is a normed space and Y is a
Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an abelian group. In [3], Czerwik proved the Hyers-Ulam-
Rassias stability of the quadratic functional equation. Several functional equations
have been investigated; see [19], [20], and [21]. Recently, Bae and Park investigated
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that the generalized Hyers-Ulam-Rassias stability of n—dimensional quadratic func-
tional equations in Banach modules over a C*—algebra and unitary Banach algebra;
see [1].

In particular, Trif [14] proved that, for vector spaces V and W, a mapping
f:V — W with f(0) = 0 satisfies the functional equation

$1+"‘+l’n

N n—2 Craf( ) +n2 Cn1 z”: f(xi) (1.2)

=k Y R ey

1<i1 < <im<n k

for all zy,--- ,x, € V if and only if the mapping f : V' — W satisfies the additive
Cauchy equation f(z+vy) = f(z)+ f(y) for all z,y € V. He also proved the stability
of the functional equation (1.2); see [14]. Note that the notation ,Cj is defined by
n!
nCh = Gyrm
In this paper, we consider the following functional equation:

“cmf(i 25) +ns Con1 g f(x) (1.3)

= Z f($i1+"‘+$im),

1<) < <im <n.

where n > 3 is an integer number and 2 < m < n—1. Then for any m € {2, ;n—
1}, we will show that the even mapping f satisfying the equation (1.3) is quadratic,
investigate the generalized Hyers-Ulam-Rassias stability of the mixed n-dimensional
functional equation in Banach spaces and also extend to Banach modules over a
C*—algebra and a unital Banach algebra. Finally, we study the stability using the
alternative fixed point of the functional equation in Banach spaces.

2 A Mixed n-dimensional quadratic mapping

Lemma 2.1. Let n > 3 be an integer, and let X,Y be vector spaces. For any
m € {2,--- ,n— 1}, suppose an even mapping f: X — Y is defined by

nQCme(i I]) +nf2 Cmfl i f(xl> (21>

= Y flan ),

1<y < <im<n.

forall xq,--- ,x, € X . Then f is quadratic.

Proof. By letting 1 = +-- = x,, = 0 in (2.1), we have
(n—2Cm—2+n,2CH_1 —» Cpn)f(0)=0

Then we obtain

(m—1)(n—1)!
m!(n—m —1)!

£(0)=0.



12 H.-Y. Chu — D. S. Kang — T. M. Rassias

Since n > 3, f(0) = 0. Also, letting 1 =z, o = —y, 3=y, and z, =0 (4 < k <
n) in (2.1), we get

n—2Cm—2f(x) +n_2 Cpo1 f(2) + 2n—2Cr1f(y)

=n3 Cna(f(x+y) + f( —y) + (1-3Cm—3 +n3Crn1) f(7) + 20 3Cm 1 f(y) .
Since ,C,11 = ,1Cr + ,_1Cp11, then

n-3Cm—2(f(z +y) + f(z —y))

= (n—QOm—Q Fn—2Cm-1 —n-3Cn_3 —n_3 Cm—l)f(l")
+ 2(n72Cm71 ~n-3 Cmfl)f(y)

= 2,3Cm—2(f(z) + f(y)).

Hence we may have

n-3Cm-a(f(z +y) + f(2 —y)) = 2n3Cn2(f(2) + f(y)),

that is, f is quadratic, as desired. [ |

The mapping f : X — Y as in the Lemma 2.1 is called a n—dimensional
quadratic mapping.

3 Stability of a mixed n-dimensional quadratic mapping with
2<m<n-—1

Throughout in this section, let X be a normed vector space with norm |- || and Y be
a Banach space with norm || - || . Let n > 3 be an integer number and 2 < m < n—1.
For the given mapping f: X — Y, we define

Dmf(wly e 7xn) = n—QCm—Qf(zn: xj) + n—20m—1 i:f(xz> (31)
j=1 i=1

- > flamtta,),

1< <<im<n

for all x¢,--- ,2, € X.

In this section, for any m € {2,--- ,n — 1}, we will investigate the generalized
Hyers-Ulam-Rassias stability of the equation (3.1). Before proceeding the proofs,
we note that

nOT = 07

when n < r, or r < 0. Also, we denote (Cy = 1.

Theorem 3.1. Let n > 3, and let f : X — Y be an even mapping satisfying
f(0) =0 for which there exists a function ¢ : X™ — [0,00) such that

Oz, xy) = Z 272 p(Qxy, -, 2a,) < 00, (3.2)
=0
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|| Dmf(xla"' ,Zlfn) ||S ¢($17"' 7$n)7 (33)
for all x1,--- ,x, € X. Then for any m € {2,--- ,n — 1}, there exists a unique
n-dimensional quadratic mapping @ : X —'Y such that

1 -
| f(z) = Q@) |I£ —F—0o(z,—2,2,0,---,0), (3.4)
4n—3cm—2

forallz € X.

Proof. By letting 1 =z, 29 = —z, 23 = =, and x = 0(4 < k < n) in (3.3), we
have

|| (n—ZOm—Q + 3 ‘n—2 Om—l -3 ‘n—3 Cm—l - n—SCm—3)f($)
n—3Cm—2f(2x) ”S ¢(‘r7 —-X,, 07 e 70) )

for all x € X . Since
anCme +3 ‘n—2 Cmfl -3 ‘n—3 Cmfl - n73Cm73 =4 ‘n—3 CmfZ 5

we get
| fx) = 272f(22) |I<
forall x € X.

Inductively, if x is replaced by 2x and apply to transitive inequality, we may
have

mﬁﬁ(x’ —x,2,0,--- 70)7 (3'5)

1 S S
| f@) — 1|
< ;S_l(l)%gb@kx —2Fz 2%2.0,---,0)
— 4 .n_3 Om_2 kzo 2 ) 7 ) Y ) Y
for all z € X and all positive integer s. Also, for all integers r > [ > 0, we have

() IGPTE) — (P |
1 =1

ME

2k k k k
L B(2Fx, —2Fx 2k 0. .0),
4'n73 Cm72 k=l ) ( )

forall z € X.
Then the sequence {(5)%f(2°z)} is a Cauchy sequence in a Banach space Y.
Hence we may define a mapping ) : X — Y by

Q) = lim 272 (2%7),
for all z € X . By the definition of D,,Q(z1,- - ,z,),
3 1 S S S

1
< lim (2)*¢(2%2y, - -, 2%2,) = 0,

5—00" 9
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for all xy,--- ,x, € X. That is, D,,Q(x1,--- ,x,) = 0. By Lemma 2.1, the mapping
Q : X — Y is quadratic. Also, letting [ = 0 and passing the limit » — oo in (*),
we get the inequality (3.4).

Now, let ' : X — Y be another n-dimensional quadratic mapping satisfying
(3.4). Then we have

Q@) - Q@) I = 27 [ QE2"z) - Q'(2"x) |

< 2 ore 220, 0)
e — :L' —_— x x DY
— 4 .n_3 Cm_2 7 Y Y ) Y 7
forall z € X . Asr — oo, we may conclude that Q(x) = Q'(z), for all z € X . Thus
such an n-dimensional quadratic mapping () : X — Y is unique. [ |

Theorem 3.2. Letn > 3, and let f : X — Y be an even mapping satisfying
f(0) =0 for which there exists a function ¢ : X™ — [0,00) such that

[e.9]

Oy, mp) = Z 2542wy, -+, 272,) < 00, (3.6)
§=0

H Dmf(xb ,an) H§ ¢($l>"' 7xn)> (37)

for all xy,--- ,x, € X. Then for any m € {2,--- ,n — 1}, there exists a unique
n-dimensional quadratic mapping @ : X — Y such that
1 ~1 1 1

— < —¢(z2,—=2,=2,0,---,0 3.8

| 560) = Q) 1 — 5.~ 30.0.0++.,0), 3.5

forallz e X.

Proof. 1f x is replaced by %x in the inequality (3.5), then the proof follows from the
proof of Theorem 3.1. [

Corollary 3.3. Let p # 2 and 0 be positive real numbers, let n > 3 be an integer
and let f: X — Y be an even mapping satisfying f(0) = 0 and for each integer m
such that 2 <m<n-—1,

|| Dmf(xlv"' al‘n) ||§ QZ”'IZHI)?
=1

forallxzy,--- ,x, € X . Then there exists a unique n-dimensional quadratic mapping
Q: X —Y such that

1 0
1< P
23Oy |4 — 27|

I f(x) = Q(x)

[l[”

forallx € X.
Proof. Let
Gr, - x0) =0 [l
i=1

and then apply to Theorem 3.1 when 0 < p < 2, or apply to Theorem 3.2 when
p>2. ]
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4 Another stability of a mixed n-dimensional quadratic mapping
with special cases m=2and m=n—1

We will start with m = 2 in the equation (3.1). Then the equation D,, f(xy,--- ,z,)
can be reduced to the following form

Dof(ans- - ) = fé:m -2 fla)

=1
- Z f(wzl + xiz) )
1<i1<io<n

forall z1,--- 2, € X.

Theorem 4.1. Let n > 3 be an integer number and let f : X — Y be an even
mapping satisfying f(0) = 0 for which there exists a function ¢ : X™ — [0, 00) such
that

QNS(arl, cee L Tp) = Z 272 p(2 gy, V) < 00, (4.1)
§=0
|| DQf(xh”' 7ITL> ||§ qb(xh"' 7xn)7 (42)
for all xy,--- ,x, € X . Then for any odd integer t with 3 < t < n, there exists a

unique n-dimensional quadratic mapping Q) : X — 'Y such that

1)~ QM) € oqdle s mmm 0 0) (43)

t—terms

forallz € X.

Proof. For any odd integer 3 <t < n, let

(-1 le 1<j<t,
T; =
! 0 t+1<j<n.

in the inequality (4.2), we have

| Dof(z, =, -+, —2,2,0,---,0) ||
= | fQ_z)+ (=2 flz)— D flo +zs) |
7=1 =1 1<i1<2<n

= 7@+ -2 @) + S )
~((452Caf (20) 12 Caf (-20)

+%Cl nt C1f () Tt Clont le(_x)> I
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= [I(Et(n—2)+ )(@
t+1 t+1 _ =1 t—1 _
(S =G
-1
s (n—t)+t2-(n—t)]f(w)) ||
1
= [t =2)=tln—1) + () = 7t = 1)°f(22) |
< ¢(x,—x,~-- ,—x, 7,0, 70)’
that is,
1 1
” f(:l]) - <§>2f<21}> HS (t _ 1)2¢<x7 _a’;v_'t' -, —,2,0,- - 70) ) (4'4)
for all x € X . Remains follow from the proof of Theorem 3.1. ]

Theorem 4.2. Let n > 3 be an integer number and let f : X — Y be an even
mapping satisfying f(0) = 0 for which there exists a function ¢ : X™ — [0,00) such
that

5(:1:1, Ce X)) = Z 272 G2y, -+, 22,) < 00, (4.5)
j=0
|| D2f(x1>"' ,ZL’n) ||§ ¢($17"' 7$n)7 (46)
forall xv,--- ,x, € X. Then for any even integer t with 4 <t < n, there exists a

unique n-dimensional quadratic mapping Q@ : X — Y such that

H f<$>—Q(CL’) &(‘%_ZL’?"' y Ly —CL’,O,”' ?0)7 (47)

t—terms

I=5=2)

forallz e X.

Proof. For any even integer t such that 4 <t <n, let

(-1l 1<) <t
T =
! 0 t+1<j<n.

in the inequality (4.6), we have

|| t(t—2)f(l’) - it(t_2)f(2$> ||§ ¢('T7 -z, ,2,—,0,--- 70)

t—terms
Then we have

I F) ~ (3)F2a) 1< o

(t—=2)

¢($,—I,---,:L‘,—ZL',O,"',O), (48)

t—terms

for all x € X . Similar to the proof of Theorem 3.1, we have the desired result when
t 1s even. [ |
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When m =n — 1, the equation D,, f(z1,--- ,2,) in (3.1) forms
Dyaf(w1, - 20) =
-2fow) + D) = Tl
j=1 i=1 1<i1 <-+<in—1<n
forall z1,--- 2, € X.

We will consider two cases where n > 3 is odd and n > 4 is any integer.

Theorem 4.3. Let n > 3 be odd and let f: X — Y be an even mapping satisfying
f(0) = 0 for which there exists a function ¢ : X™ — [0,00) such that

Qz(l’l, e ,JTn) = Z 4_j¢(2jx17 e 72jxn) <00, (49)
j=0
|| Dn—lf(xla"' 7$n) ||§ ¢(x17"' ,l‘n), (410)
forall xy,--- ,x, € X . Then there exists a unique n-dimensional quadratic mapping
Q: X —Y such that
1 ~

|| f($) - Q([L’) ||S mqb(xv X, Ty, =Ly 7_93755)7 (4'11)

forallz € X.
Proof. For each k =1,--- ,n, letting z; = (—1)* "'z in (4.10), we have

n—1
H Z(n—l)f(ac)— 9 f(2(L’) ||S ¢(I,—$7I,—Z’,"' 7_I7x)7
for all x € X . Then we write
1 1
H f(.%') - Zf(zx) HS m(b(x: L, Xy =Xy _xal') ) (412)
for all x € X . The remains follow from the proof of Theorem 3.1. ]

Now, we may assume n > 4 is an integer.

Theorem 4.4. Let n > 4, and let f : X — Y be an even mapping satisfying
f(0) = 0 for which there exists a function ¢ : X™ — [0,00) such that

QNS(xl, Ce Ty = Z4‘j¢(2jx1, c21,) < 00, (4.13)
j=0
H Dn71f<x17"' 7xn) HS ¢(I’1,"' axn)v (414)
for all zy,--- ,x, € X . Then for any integer m such that 4 < 2m < n, there exists
a unique n-dimensional quadratic mapping QQ : X —'Y such that
1 -
H f(iL‘) o Q(l’) HS 4(T¢(2x7 —z,%,- -, %, 2,0, 7()) > (415)

—1)

2m—terms

forallz € X.
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Proof. By letting z1 = 2z, x), = (—1)* 'z, (k=2,---,2m), and 2 =0, 2m+1 <
k <n) in (4.14), we have

| (n=2)f(z)+ f(2z) + (@m-—1)f(z)
(mf(2z) + f(z) + (n —2m) f(z)) |
< o¢2r,—z,x,--- ,x,—x,0, -+ ,0),

2m—terms

for all z € X . Then we have

H f(:ll') - lef(Qx) HS 4<TTL1—1)¢(2;€7 —,%,-, 0, —2,0,- - 70)7 (416)

2m—terms

for all x € X . Similar to the proof of Theorem 3.1, we have the desired results. =

Note that Theorem 4.4 remains valid if n > 4 is either odd or even.

Remark 4.5. Similar to section 3, that is, Theorem 3.2 can be obtained from
Theorem 3.1 by replacing x by %x, in section 4 similar Theorems can be obtained.

5 Results in Banach modules over a Banach algebra

Throughout this section, let B be a unital Banach x-algebra with norm | | and
By = {a € B |a| = 1}, let gB; and B, be left Banach modules with norms || ||
and || ||, respectively, and let

v (8B~ {0}]" = R

be the function such that
P(xr, - yxy) =Y 279y, 22,) < 00, (5.1)
j=0

for all zy,--- 2z, €5 B1\{0}.
Definition 5.1. An n-dimensional quadratic mapping
Q 5By —p By

is called n-dimensional B—quadratic if Q(az) = a®*Q(x) for all a € B and all x €5
B, .

Definition 5.2. For a € B, let b = aa*, a*a, or (aa* + a*a)/2. An n-dimensional
quadratic mapping @ :p By —p By is called n-dimensional By, — quadratic if Q(ax) =
bQ(x), for all a € B, and all x €5 B; .

Since Banach spaces gB; and gB, are considered as Banach modules over B := C,
the B,,—quadratic mapping Q :p B; —p By implies Q(ax) = |a|*Q(x) , foralla € C.
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We define the approzimate remainder (D,,).f for a mapping f :p By —5 Bs,

(Do)af (1 120) = nsConos (3 ;) + nosCins if(ax»

Jj=1

—b > [l +-+2,),

1<ig <-<im<n
forall 1, -+ , 2z, € B;.

Theorem 5.3. Let [ :p By —p By be a mapping with f(0) = 0 for the case (5.1)
which there is a mapping ¢ :p By — R satisfying

H (Dm)af(xlf" axn) H§ @(331,"' ,xn), (52)

for alla € By, xy,--- ,x, € B1\{0}. If either f is measurable or f(tx) is contin-
uous in t € R, for each fired x €g By, then there exists a unique n— dimensional
Bgo—quadratic mapping Q :g By —p By such that

1

” f<I> - Q(SL’) ”S m@(ajv _I7$707 U 70)7 (53)

for all x € By.

Proof. By the same reasoning as the proof of Theorem 3.1, it follows from the
inequality of the statement a = 1 that there exists a unique n—dimensional quadratic
mapping @ :g By —p By defined by

Q(x) = lim 272" f(2"a).

which satisfies the inequality (5.3) for all x € B; . Under the assumptions that
either f is measurable or f(tz) is continuous in ¢ € R, for each fixed = € By, by
the same reasoning as the proof of [3], one can show that @ is R-quadratic, that is,
Q(tr) = t?Q(xz) for all t € R, for all x € B .

Puttingz; =2 ™ 'zandz; =0(j = 2,--- ,n) in (5.2) and dividing the resulting
inequality by 227,

1 _ —
gzm | f(a2” tz) = bf(2" ) ||
1 1
- Qm—1x707... ,0),
- 2m n—lCm—l ¢( )

for all z1,--- ,x, €g B;. By the definition of @),
2

Q(ax) = lim 1 (2°ax) = lim 2225bf(25_1x) =bQ(x).

§—00 228
for every x €5 By , for every a € B(|a| =1). For a € B\ {0},

a a b
Q(ax) = Q(lal ) = |al’Q(;2) = |a|* -5 Q(x) = bQ(),
|al |al |al
for all x €g B; . Thus @ is n—dimensional B,,—quadratic, which completes the
proof. |
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Remark 5.4. By the similar method, we also obtain the unique n—dimensional
B—quadratic mapping on the same conditions.

Corollary 5.5. Let f :g By —p By be a mapping with f(0) = 0 for the case (5.1)
which there exists mapping ¢ :gp By — R satisfying

n

|| b ‘n—2 Cm—Qf(i mj) + b- n—QCm—l Z f(xz)
j=1

=1
— > fla(wy, +-+z,)) |
1<i1 < <itm<n

S 90(.1'1,"' 7xn)a

for all a € By, for all xy,--- ,x, € B;\{0}. If either f is measurable or f(tx) is
continuous in t € R, for each fixred v €5 By, then there is an unique n—dimensional
Bso—quadratic mapping Q :p By —p By which satisfies the inequality (5.3) for all
xr € Bl-

Proof. By the similar method of the proof of Theorem 5.3, one can obtain the result.
[

Definition 5.6. An n—dimensional quadratic mapping ) : B — B is called an
n—dimensional A-quadratic mapping if Q(ax) = aQ(x)a* for all @ € B,z € B.

Theorem 5.7. Let f :5 By —p By be a mapping with f(0) = 0 for the cases (5.1)
and (5.2) and define Q :p By —p By defined by for all z €5 By,
Q) = lim 272" f(2™s)

m—0o0

which there is mapping ¥ g By — R satisfying

| Qaz) - aQ(e)a* ||< (x) and tim ")

m—00 22m

~0 (5.4)

for all a € By, x €g By . If either f is measurable or f(tx) is continuous in t € R,
for each fized x €g By, then Q) is the unique n—dimensional A— quadratic mapping
which satisfies the inequality (5.3) for all x €p B;.

Proof. By the same reasoning as the proof of Theorem 3.1, () is well-defined and
@ is the unique n—dimensional R—quadratic mapping which satisfies the inequality
(5.3) for all z €5 By. By (5.4), for each element a € By, €5 By,

Q(ax) = aQ(x)a".

Since () is n—dimensional R-quadratic,

a a*

e

lal
for all a € B(la|] # 0),z € B;. Thus @ is n—dimensional A—quadratic, as desired.
]

Qaz) = Q(la|-~-x) = |a]*Q(- =) = |af?

lal lal
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6 Stability using alternative fixed point

In this section, we will investigate the stability of the given n—dimensional quadratic
functional equation (3.1) using the alternative fixed point. Before proceeding the
proof, we will state theorem, the alternative of fixed point.

Theorem 6.1 (The alternative of fixed point [13], [22]). Suppose that we are given
a complete generalized metric space (Q,d) and a strictly contractive mapping T :
Q) — Q with Lipschitz constant L. Then for each given x € €2, either

d(T"z, T""'z) = 0o for alln >0,
or there exists a natural number ng such that
1. d(T"x, T"'x) < oo for alln > ny;
2. The sequence (T"x) is convergent to a fized point y* of T ;
3. y* 1s the unique fized point of T in the set

A ={y € Qd(T"r,y) < oco};

4. d(y,y*) < 2 d(y, Ty) for ally € A.

Now, let ¢ : X™ — [0,00) be a function such that

n_lbl_I)Igogb( th)\zm’ zx)

=0,

forall:cl,---,xnEX,Where)\i:2ifi:Oand)\,-:%ifizl.

Theorem 6.2. Let 2 < m < n — 1 be an integer number. Suppose that an even
function f: X —'Y satisfies the functional inequality

H Dmf(xly"' al‘n) HS ¢(ZE1,~~- 7$n>7 (61)

for all xy,--- ,x, € X and f(0) = 0. If there exists L = L(i) < 1 such that the

function
1 1 1
[L‘P—>77/}(JI) :¢<§$,—§l’, 71’707"' ,O) (62)
has the property
x

V@) < LA -w(5).

for all x € X, then there exists a unique n—dimensional quadratic function Q) :
X — Y such that the inequality

(6.3)

| f(z) = Qx) < () (6.4)

1—-L
holds for all x € X .
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Proof. Consider the set
Q={glg: X =Y ,g(0) =0}
and introduce the generalized metric on €2,
d(g, h) = dy(g, h) = inf{K € (0,00)] [l g(x) = h(z) [[< K¢(z), 2 € X}.

It is easy to show that (€2, d) is complete. Now we define a function 7': Q@ — Q by

Tg(w) = 3 90),

(2

for all x € X . Note that for all g,h € 0,

d(g,h) < K = | g(x)—h(z) ||< K¢(z), forall z € X,

1 1 1
= | Pg()\ix) — —h(\z) |I< pKw()\iyc), for all z € X,

2

1 1
= | Pg()\ix) — ﬁh(kix) |< LKY(x), forall z € X,
= d(Tg, Th) < LK.

Hence we have that
d(Tg, Th) < Ld(g, h),

for all g, h € Q, that is, T is a strictly self-mapping of {2 with the Lipschitz constant
L. By setting vy = v,29 = —x,23 = x, and x4 = --- = x, = 0, we have the
inequality (3.5) as in the proof of Theorem 3.1 and we use the inequality (6.3) with
the case where ¢ = 0, which is reduced to

| ()~ 3721) 1< v(21) < (), (65

4 ‘n—3 Cme
for all x € X, that is, d(f,Tf) < L = L' < oo. Now, replacing = by %x in the
inequality (6.5), multiplying 4, and using the inequality (6.3) with the case where
1 =1, we have that

| 7(x) = 2 () 1I< ¥(a).

for all x € X, that is, d(f, Tf) < 1= L° < co. In both cases we can apply the fixed
point alternative and since lim, ., d(T" f,Q) = 0, there exists a fixed point @ of T

in €2 such that \
Qa) = lim 157

n—o0 )\127" ’

(6.6)

for all x € X . Letting z; = A\[x; for j = 1,--- ,n in the inequality (6.1) and dividing
by AF",

D L0 T Vs
< lim | N[y, -+, Afy,) ||

= ;% )\%rl.l

=0,
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for all z1,--- ,z, € X ; that is it satisfies the inequality (2.1). By Lemma 2.1, the
Q) is quadratic. Also, the fixed point alternative guarantees that such a @ is the
unique function such that

I () = Q) [[< Kp(x),

for all x € X and some K > 0. Again using the fixed point alternative, we have

1

Hence we may conclude that

1—1

d(f7Q)Sﬁa

which implies the inequality (6.4). ]
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