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Abstract

Suppose that A is a C∗-algebra acting on a Hilbert space H, and ϕ,ψ are
mappings from A into B(H) which are not assumed to be necessarily linear or
continuous. A (ϕ,ψ)-derivation is a linear mapping d : A → B(H) such that

d(ab) = ϕ(a)d(b) + d(a)ψ(b) (a, b ∈ A).

We prove that if ϕ is a multiplicative (not necessarily linear) ∗-mapping, then
every ∗-(ϕ,ϕ)-derivation is automatically continuous. Using this fact, we show
that every ∗-(ϕ,ψ)-derivation d from A into B(H) is continuous if and only if
the ∗-mappings ϕ and ψ are left and right d-continuous, respectively.

1 Introduction

Recently, a number of analysts [2, 4, 12, 13, 14] have studied various generalized
notions of derivations in the context of Banach algebras. There are some applications
in the other fields of research [7]. Such mappings have been extensively studied in
pure algebra; cf. [1, 3, 9]. A generalized concept of derivation is as follows.

Definition 1.1. Suppose that B is an algebra, A is a subalgebra of B, X is a
B-bimodule, and ϕ, ψ : A → B are mappings. A linear mapping d : A → X is a
(ϕ, ψ)-derivation if

d(ab) = ϕ(a)d(b) + d(a)ψ(b) (a, b ∈ A).
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By a ϕ-derivation we mean a (ϕ, ϕ)-derivation. Note that we do not have any extra
assumptions such as linearity or continuity on the mappings ϕ and ψ.

The automatic continuity theory is the study of (algebraic) conditions on a cat-
egory, e.g. C∗-algebras, which guarantee that every mapping belonging to a certain
class, e.g. derivations, is continuous. S. Sakai [16] proved that every derivation
on a C∗-algebra is automatically continuous. This is an affirmative answer to the
conjecture made by I. Kaplansky [11]. J. R. Ringrose [15] extended this result for
derivations from a C∗-algebra A to a Banach A-bimodule X. B. E. Johnson and A.
M. Sinclair [10] proved that every derivation on a semisimple Banach algebra is auto-
matically continuous. Automatic continuity of module derivations on JB∗-algebras
have been studied in [8]. The reader may find a collection of results concerning these
subjects in [6, 17, 18].

M. Brešar and A. R. Villena [4] proved that for an inner automorphism ϕ, every
(id, ϕ)-derivation on a semisimple Banach algebra is continuous, where id denotes
the identity mapping. In [12], it is shown that every (ϕ, ψ)-derivation from a C∗-
algebra A acting on a Hilbert space H into B(H) is automatically continuous, if ϕ
and ψ are continuous ∗-linear mappings from A into B(H).

This paper consists of five sections. We define the notion of a (ϕ, ψ)-derivation
in the first section and give some examples in the second. In the third section, by
using methods of [12], we prove that if ϕ is a multiplicative (not necessarily linear)
∗-mapping from a C∗-algebra A acting on a Hilbert space H into B(H), then every
∗-ϕ-derivation d : A → B(H) is automatically continuous. In the fourth section, we
show that for not necessarily linear or continuous ∗-mappings ϕ, ψ : A → B(H) the
continuity of a ∗-(ϕ, ψ)-derivation d : A → B(H) is equivalent to the left d-continuity
of ϕ and the right d-continuity of ψ. The mapping ϕ (resp. ψ) is called left (resp.

right) d-continuous if lim
x→0

(
ϕ(x)d(b)

)
= 0, for all b ∈ A (resp. lim

x→0

(
d(b)ψ(x)

)
= 0, for

all b ∈ A). Obviously these conditions happen whenever lim
x→0

ϕ(x) = 0 = lim
x→0

ψ(x),

in particular whenever ϕ and ψ are bounded linear mappings. Thus we extend the
main results of [12] to a general framework. Furthermore, we prove that if d is a
continuous ∗-(ϕ, ψ)-derivation, then we can replace ϕ and ψ with mappings with ‘at
most’ zero separating spaces. The last section is devoted to study the continuity of
the so-called generalized ∗-(ϕ, ψ)-derivations from A into B(H).

The reader is referred to [6] for undefined notation and terminology.

2 Examples

In this section, let B be an algebra, let A be a subalgebra of B, and let X be a
B-bimodule. The following are some examples concerning Definition 1.1.

Example 2.1. Every ordinary derivation d : A → X is an id-derivation, where
id : A → A is the identity mapping.

Example 2.2. Every homomorphism ρ : A → A is a (ρ
2
, ρ

2
)-derivation.

Example 2.3. Let ϕ, ψ : A → A be homomorphisms, and let x ∈ X be a fixed
element. Then the linear mapping dx : A → X defined by

dx(a) := ϕ(a)x− xψ(a) (a ∈ A),
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is a (ϕ, ψ)-derivation, which is called the inner (ϕ, ψ)-derivation corresponding to x.

Example 2.4. Assume that γ, θ : C[0, 2] → C[0, 2] are arbitrary mappings, where
C[0, 2] denotes the C∗-algebra of all continuous complex valued functions on [0, 2].
Take λ ∈ C and fixed elements f1, f2, and h0 in C[0, 2] such that

f1h0 = 0 = f2h0.

For example, let us take

h0(t) := (1− t)χ
[0,1]

(t),

f1(t) := (t− 1)χ
[1,2]

(t),

f2(t) := (t− 3

2
)χ

[ 32 ,2]
(t),

where χ
E

denotes the characteristic function of E. Define ϕ, ψ, d : C[0, 2] → C[0, 2]
by

ϕ(f) := λf + γ(f)f1,

ψ(f) := (1− λ)f + θ(f)f2,

d(f) := fh0.

Then d is a (ϕ, ψ)-derivation, since

ϕ(f)d(g) + d(f)ψ(g) =
(
λf + γ(f)f1

)
(gh0) + (fh0)

(
(1− λ)g + θ(f)f2

)
= λfgh0 + γ(f)gf1h0 + (1− λ)fgh0 + θ(f)fh0f2

= fgh0

= d(fg).

Moreover, we may choose γ and θ such that ϕ and ψ are neither linear nor contin-
uous.

3 Multiplicative mappings

In this section, we are going to show how a multiplicative property gives us the
linearity. We start our work with some elementary properties of (ϕ, ψ)-derivations.

Lemma 3.1. Let B be an algebra, let A be a subalgebra of B, and let X be a B-
bimodule. If d : A → X is a (ϕ, ψ)-derivation, then

(i)
(
ϕ(ab)− ϕ(a)ϕ(b)

)
d(c) = d(a)

(
ψ(bc)− ψ(b)ψ(c)

)
;

(ii)
(
ϕ(a+ b)− ϕ(a)− ϕ(b)

)
d(c) = 0 = d(a)

(
ψ(b+ c)− ψ(b)− ψ(c)

)
;

(iii)
(
ϕ(λa)− λϕ(a)

)
d(b) = 0 = d(a)

(
ψ(λb)− λ(ψ(b)

)
;

for all a, b, c ∈ A, and all λ ∈ C.

Proof. Let a, b, c ∈ A and λ ∈ C. For the first equation we have

0 = d
(
(ab)c

)
− d

(
a(bc)

)
= ϕ(ab)d(c) + d(ab)ψ(c)− ϕ(a)d(bc)− d(a)ψ(bc)

= ϕ(ab)d(c) +
(
ϕ(a)d(b) + d(a)ψ(b)

)
ψ(c)

−ϕ(a)
(
ϕ(b)d(c) + d(b)ψ(c)

)
− d(a)ψ(bc)

=
(
ϕ(ab)− ϕ(a)ϕ(b)

)
d(c)− d(a)

(
ψ(bc)− ψ(b)ψ(c)

)
.
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Calculating d
(
(a+ b)c

)
− d(bc)− d(ac) and d

(
a(λb)

)
− λd(ab), we obtain the other

equations. �

We also need the following lemma. Recall that, for a Hilbert space H, a subset
Y of B(H) is said to be self-adjoint if u∗ ∈ Y for each u ∈ Y .

Lemma 3.2. Let H be a Hilbert space, and let Y be a self-adjoint subset of B(H).
Assume that L0 =

⋃
u∈Y

u(H), and L is the closed linear span of L0. If K = L⊥, then

K =
⋂
u∈Y

ker(u).

Proof. Let k ∈ K. Then 〈`, k〉 = 0, for all ` ∈ L. Since Y is self-adjoint,

〈u(k), h〉 = 〈k, u∗(h)〉 = 0

for all h ∈ H and all u ∈ Y . Therefore u(k) = 0, for all u ∈ Y . Hence K ⊆
⋂
u∈Y

ker(u).

The inverse inclusion can be proved similarly. �

Recall that a mapping f : A → B(H) is called a ∗-mapping, if f(a∗) = f(a)∗, for

all a ∈ A. If we define f ∗ : A → B(H), by f ∗(a) :=
(
f(a∗)

)∗
, then f is a ∗-mapping

if and only if f ∗ = f .

Theorem 3.3. Suppose that A is a C∗-algebra acting on a Hilbert space H. Let
ϕ : A → B(H) be a ∗-mapping and let d : A → B(H) be a ∗-ϕ-derivation. If ϕ is
multiplicative, i.e. ϕ(ab) = ϕ(a)ϕ(b) (a, b ∈ A), then d is continuous.

Proof. Set

Y := {ϕ(λb)− λϕ(b) | λ ∈ C, b ∈ A} ∪ {ϕ(b+ c)− ϕ(b)− ϕ(c) | b, c ∈ A}.

Since ϕ is a ∗-mapping, Y is a self-adjoint subset of B(H). Put

L0 :=
⋃
{u(h) | u ∈ Y, h ∈ H}.

Let L be the closed linear span of L0, and let K := L⊥. Then H = K ⊕ L, and by
Lemma 3.2, we get

K =
⋂
{ker(u) | u ∈ Y }. (3.1)

Suppose that p ∈ B(H) is the orthogonal projection of H onto K, then by (3.1) we
have

ϕ(λb)p = λϕ(b)p, (3.2)

ϕ(b+ c)p = ϕ(b)p+ ϕ(c)p, (3.3)

for all b, c ∈ A, and all λ ∈ C. Now we claim that

pϕ(a) = ϕ(a)p , pd(a) = d(a) = d(a)p (a ∈ A). (3.4)
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To show this, note that by Lemma 3.1, we have

d(a)
(
ϕ(λb)− λϕ(b)

)
= 0,

d(a)
(
ϕ(b+ c)− ϕ(b)− ϕ(c)

)
= 0,

for all a, b, c ∈ A, and all λ ∈ C. Thus d(a)L = 0, and so d(a)(1 − p) = 0, for all
a ∈ A. Since d is a ∗-mapping, it follows that pd(a) = d(a) = d(a)p, for all a ∈ A.
Similarly, since ϕ is multiplicative, we deduce from (3.2) and (3.3) that(

ϕ(λb)− λϕ(b)
)
ϕ(a)p = ϕ(λb)ϕ(a)p− λϕ(b)ϕ(a)p

= λϕ(ba)p− λϕ(ba)p

= 0,

and(
ϕ(b+ c)− ϕ(b)− ϕ(c)

)
ϕ(a)p = ϕ(b+ c)ϕ(a)p− ϕ(b)ϕ(a)p− ϕ(c)ϕ(a)p

= ϕ
(
(b+ c)a

)
p− ϕ(ba)p− ϕ(ca)p

= 0,

for all a, b, c ∈ A, and all λ ∈ C. Therefore ϕ(a)(K) ⊆ K. Since ϕ is a ∗-mapping, we
conclude that pϕ(a) = ϕ(a)p, for all a ∈ A. Now define the mapping Φ : A → B(H)
by Φ(a) = ϕ(a)p. One can easily see that Φ is a ∗-homomorphism, and so it is
automatically continuous. Using (3.4), we obtain

d(ab) = d(ab)p

= ϕ(a)d(b)p+ d(a)ϕ(b)p

= ϕ(a)pd(b) + d(a)ϕ(b)p

= Φ(a)d(b) + d(a)Φ(b) (a, b ∈ A).

Hence d is a Φ-derivation. We deduce from Theorem 3.7 of [12] that d is continuous.
�

4 d-continuity

We start this section with the following definition.

Definition 4.1. Suppose that A and B are two normed algebras, and T, S : A → B

are two mappings.
(i) The mapping T is left (resp. right) S-continuous if lim

x→0

(
T (x)S(b)

)
= 0, for all

b ∈ A (resp. lim
x→0

(
S(b)T (x)

)
= 0, for all b ∈ A). If T is both left and right S-

continuous, then it is simply called S-continuous.
(ii) As for linear mappings, the separating space of a mapping T is defined to be

S(T ) := {b ∈ B | ∃{an} ⊆ A, an → 0, T (an) → b}.

We notice that for a nonlinear mapping T , this set is not necessarily a linear subspace
and it may even be empty. Recall that if A and B are complete spaces and T is
linear, then the closed graph theorem implies that T is continuous if and only if
S(T ) = {0}.
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In Example 2.4, if we consider γ and θ to be ∗-mappings, then the continuity of
d together with Corollary 4.5 below imply that ϕ and ψ are d-continuous mappings.

Lemma 4.2. Let A be a normed algebra, let X be a normed A-bimodule, and let
d : A → X be a (ϕ, ψ)-derivation for two mappings ϕ, ψ : A → A. If ϕ and ψ are
left and right d-continuous mappings, respectively, then

a
(
ψ(bc)− ψ(b)ψ(c)

)
= 0 =

(
ϕ(bc)− ϕ(b)ϕ(c)

)
a ,

for all b, c ∈ A and all a ∈ S(d).

Proof. Suppose that a ∈ S(d). Then a = limn→∞ d(an) for some sequence {an}
converging to zero in A. By Lemma 3.1 (i), we have

a
(
ψ(bc)− ψ(b)ψ(c)

)
= lim

n→∞
d(an)

(
ψ(bc)− ψ(b)ψ(c)

)
= lim

n→∞

(
ϕ(anb)− ϕ(an)ϕ(b)

)
d(c)

= lim
n→∞

ϕ(anb)d(c)

− lim
n→∞

ϕ(an)d(bc) + lim
n→∞

ϕ(an)d(b)ψ(c)

= 0 (b, c ∈ A),

since ϕ is left d-continuous. �

In the rest of this section, we assume that A is a C∗-subalgebra of B(H), the
C∗-algebra of all bounded linear operators on a Hilbert space H. Also ϕ, ψ, and d are
mappings from A into B(H). Removing the assumption ‘linearity’ and weakening
the assumption ‘continuity’ on ϕ and ψ, we extend the main result of [12] as follows.

Theorem 4.3. Let ϕ be a ∗-mapping and let d be a ∗-ϕ-derivation. If ϕ is left
d-continuous, then d is continuous. Conversely, if d is continuous then ϕ is left
d-continuous.

Proof. Set

Y := {ϕ(bc)− ϕ(b)ϕ(c) | b, c ∈ A}.

Since ϕ is a ∗-mapping, Y is a self-adjoint subset of B(H). Put

L0 :=
⋃
{u(h) | u ∈ Y, h ∈ H}.

Let L be the closed linear span of L0, and let K := L⊥. Then H = K ⊕ L, and by
Lemma 3.2, we have

K =
⋂
{ker(u) | u ∈ Y }. (4.1)

Suppose that p ∈ B(H) is the orthogonal projection of H onto K, then by (4.1), we
have

ϕ(bc)p = ϕ(b)ϕ(c)p, (4.2)



Achievement of continuity of (ϕ, ψ)-derivations without linearity 647

for all b, c ∈ A. We claim that

pϕ(a) = ϕ(a)p , pd(a) = d(a)p (a ∈ A). (4.3)

To prove this, note that by Lemma 3.1 and (4.2), we have(
ϕ(bc)− ϕ(b)ϕ(c)

)
d(a)p = d(b)

(
ϕ(ca)− ϕ(c)ϕ(a)

)
p = 0,

for all a, b, c ∈ A. Thus ud(a)p = 0, for all a ∈ A, and all u ∈ Y . So

ud(a)(K) = ud(a)p(H) = {0}.

This means that d(a)(K) is contained in the kernel of each u in Y . So by (4.1),
d(a)(K) ⊆ K. Since d is a ∗-mapping, it follows that pd(a) = d(a)p. Similarly, using
(4.2), we get(

ϕ(bc)− ϕ(b)ϕ(c)
)
ϕ(a)p = ϕ(bc)ϕ(a)p− ϕ(b)ϕ(c)ϕ(a)p

= ϕ(bca)p− ϕ(bca)p

= 0 (a, b, c ∈ A).

Therefore ϕ(a)(K) = ϕ(a)p(H) ⊆ K. Since ϕ is a ∗-mapping we conclude that
pϕ(a) = ϕ(a)p, for all a ∈ A. Now define the mappings Φ, D : A → B(H) by
Φ(a) := ϕ(a)p, and D(a) := d(a)p. We show that Φ is a multiplicative ∗-mapping
and D is a ∗-Φ-derivation. Clearly (4.2) implies that Φ is multiplicative, and by
(4.3) we have(

Φ(a)
)∗

=
(
ϕ(a)p

)∗
= p∗

(
ϕ(a)

)∗
= pϕ(a∗) = Φ(a∗) (a ∈ A).

Thus Φ is a multiplicative ∗-mapping. Now for a, b ∈ A,

D(ab) = d(ab)p

= ϕ(a)d(b)p+ d(a)ϕ(b)p

= ϕ(a)pd(b)p+ d(a)pϕ(b)p

= Φ(a)D(b) +D(a)Φ(b).

Thus D is a ∗-Φ-derivation, and it is continuous by Theorem 3.3. Now, we show
that S(d) = {0}. Let a ∈ S(d), then there exists a sequence {an} converging to 0
in A such that d(an) → a as n → ∞. Take h = k + ` ∈ K ⊕ L = H. By Lemma
4.2, and by the fact that each a ∈ S(d) is a bounded operator on H, and that

` ∈ L is in the closed linear span of elements of the form
(
ϕ(bc)−ϕ(b)ϕ(c)

)
h, where

b, c ∈ A, h ∈ H, we have a(`) = 0. It follows from continuity of D that

a(k) = a
(
p(h)

)
= lim

n→∞
d(an)

(
p(h)

)
= lim

n→∞
D(an)(h) = 0.

Thus a(h) = a(k) + a(`) = 0, and so d is continuous.
Conversely, let d be a continuous ϕ-derivation. Then

lim
x→0

ϕ(x)d(b) = lim
x→0

d(xb)− lim
x→0

d(x)ϕ(b) = 0 (b ∈ A). �
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Theorem 4.4. Every ϕ-derivation d is automatically continuous, provided that ϕ
is d-continuous, and at least one of ϕ or d is a ∗-mapping.

Proof. Let d : A → B(H) be a ϕ-derivation. Then clearly d∗ is a ϕ∗-derivation. Set

ϕ1 :=
1

2
(ϕ+ ϕ∗), ϕ2 :=

1

2i
(ϕ− ϕ∗), d1 :=

1

2
(d+ d∗), d2 :=

1

2i
(d− d∗).

Obviously these are ∗-mappings, ϕ = ϕ1 + iϕ2, d = d1 + id2, and ϕk is dj-continuous
for 1 ≤ k, j ≤ 2. A straightforward calculation shows that if ϕ is a ∗-mapping then
ϕ1 = ϕ = ϕ2, and d1, d2 are ϕ-derivations. Similarly, if d is a ∗-mapping, then
d1 = d = d2 and d is a ϕj-derivation for j = 1, 2. Since ϕ or d is a ∗-mapping, then
ϕk is a ∗-mapping and dj is a ∗-ϕk-derivation for 1 ≤ k, j ≤ 2. By Theorem 4.3, the
dj’s are continuous, and so d = d1 + id2 is also continuous. �

Corollary 4.5. Let ϕ and ψ be ∗-mappings and let d be a ∗-(ϕ, ψ)-derivation. Then
d is automatically continuous if and only if ϕ and ψ are left and right d-continuous,
respectively.

Proof. Suppose that ϕ and ψ are left and right d-continuous, respectively. Since
d, ϕ, and ψ are ∗-mappings, then both ϕ and ψ are d-continuous. Hence ϕ+ψ

2
is also

d-continuous. We have

2d(ab) = d(ab) + d∗(ab)

= ϕ(a)d(b) + d(a)ψ(b) +
(
ϕ(b∗)d(a∗) + d(b∗)ψ(a∗)

)∗
= ϕ(a)d(b) + d(a)ψ(b) + ψ(a)d(b) + d(a)ϕ(b)

= (ϕ+ ψ)(a)d(b) + d(a)(ϕ+ ψ)(b) (a, b ∈ A).

Thus d is a ∗-ϕ+ψ
2

-derivation. It follows from Theorem 4.4 that d is continuous.
Conversely if d is a continuous (ϕ, ψ)-derivation, then

lim
x→0

ϕ(x)d(b) = lim
x→0

d(xb)− lim
x→0

d(x)ψ(b) = 0 (b ∈ A),

and
lim
x→0

d(b)ψ(x) = lim
x→0

d(bx)− lim
x→0

ϕ(b)d(x) = 0 (b ∈ A).

So ϕ and ψ are left and right d-continuous, respectively. �

Lemma 4.6. Let d be a (ϕ, ψ)-derivation. Then there are two mappings Φ and Ψ
with Φ(0) = 0 = Ψ(0) such that d is a (Φ,Ψ)-derivation.

Proof. Define Φ and Ψ by

Φ(a) := ϕ(a)− ϕ(0),

Ψ(a) := ψ(a)− ψ(0),

for all a ∈ A. We have

0 = d(0) = d(a · 0) = ϕ(a)d(0) + d(a)ψ(0) = d(a)ψ(0) (a ∈ A),

0 = d(0) = d(0 · a) = ϕ(0)d(a) + d(0)ψ(a) = ϕ(0)d(a) (a ∈ A).

Thus

Φ(a)d(b) + d(a)Ψ(b) = ϕ(a)d(b) + d(a)ψ(b) = d(ab) (a, b ∈ A).

Hence d is a (Φ,Ψ)-derivation. �
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Corollary 4.7. If ∗-mappings ϕ and ψ are continuous at zero, then every ∗-(ϕ, ψ)-
derivation d is automatically continuous.

Proof. Apply Lemma 4.6 and Corollary 4.5. �

Clearly the assumption of Corollary 4.7 comes true whenever ϕ and ψ are linear
and bounded. The next theorem states that when we deal with a continuous ∗-(ϕ, ψ)-
derivation, we may assume that ϕ and ψ have ‘at most’ zero separating spaces.

Theorem 4.8. Let ϕ and ψ be ∗-mappings. If d is a continuous ∗-(ϕ, ψ)-derivation,
then there are ∗-mappings ϕ

′
and ψ

′
from A into B(H) with ‘at most’ zero separating

spaces such that d is a ∗-(ϕ′
, ψ

′
)-derivation.

Proof. Set

Y := {d(a) | a ∈ A},
L0 := ∪{d(a)h | a ∈ A, h ∈ H}.

Let L be the closed linear span of L0 in H, and let K := L⊥. Suppose that p ∈ B(H)
is the orthogonal projection of H onto L. It follows from continuity of operators
d(a) that d(a)(L) ⊆ L (a ∈ A), and so

pd(a) = d(a)p (a ∈ A),

and
pϕ(a) = ϕ(a)p, p ψ(a) = ψ(a)p (a ∈ A).

For a typical element ` = d(b)h of L0, we have

ϕ(a)` = ϕ(a)d(b)h

= d(ab)h− d(a)ψ(b)h ∈ L.

Therefore ϕ(a)(L0) ⊆ L and hence ϕ(a)(L) ⊆ L.
The same argument shows that ψ(a)(L) ⊆ L. Now we define ϕ

′
and ψ

′
from A into

B(H) by ϕ
′
(a) := ϕ(a)p (a ∈ A), and ψ

′
(a) := ψ(a)p (a ∈ A). Clearly ϕ

′
and ψ

′

are ∗-mappings. Furthermore, d is a ∗-(ϕ′
, ψ

′
)-derivation. In fact for all a, b ∈ A,

and h ∈ H, we have

d(ab)h = ϕ(a)d(b)h+ d(a)ψ(b)h

= ϕ(a)pd(b)h+ pd(a)ψ(b)h

= ϕ
′
(a)d(b)h+ d(a)ψ

′
(b)h ,

since p commutes with d(a), ϕ(a), and ψ(a). Suppose that S(ϕ
′
) 6= ∅ and a ∈ S(ϕ

′
).

If a = lim
n→∞

ϕ
′
(an) for some sequence {an} in A converging to zero, then

a(k) = lim
n→∞

ϕ
′
(an)k

= lim
n→∞

ϕ(an)pk

= lim
n→∞

ϕ(an)0

= 0 (k ∈ K).
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Let `0 = d(b)h ∈ L0, where b ∈ A and h ∈ H. Then

a(`0) = lim
n→∞

ϕ
′
(an)d(b)h

= lim
n→∞

d(anb)h− lim
n→∞

d(an)ψ(b)h

= 0,

and by continuity of operator a, we get a(`) = 0 (l ∈ L), and hence a = 0.
Similarly the separating space of ψ

′
is empty or {0}. �

5 Generalized (ϕ, ψ)-derivations

In this section, we study the continuity of generalized (ϕ, ψ)-derivations.

Definition 5.1. Suppose that B is an algebra, A is a subalgebra of B, X is a B-
bimodule, ϕ, ψ : B → B are mappings, and d : A → X is a (ϕ, ψ)-derivation. A
linear mapping δ : A → X is a generalized (ϕ, ψ)-derivation corresponding to d if

δ(ab) = ϕ(a)d(b) + δ(a)ψ(b) (a, b ∈ A).

Proposition 5.2. Suppose that A is a C∗-algebra acting on a Hilbert space H. A
generalized ∗-(ϕ, ψ)-derivation δ : A → B(H) corresponding to the (ϕ, ψ)-derivation
d is automatically continuous provided that ϕ : A → B(H) is a left d-continuous
∗-mapping, and ψ : A → B(H) is both a right d-continuous and a δ-continuous
∗-mapping.

Proof. Suppose that {an} is a sequence in A, and an → 0 as n→∞. By the Cohen
factorization theorem, there exist a sequence {bn} in A, and an element c ∈ A such
that an = cbn , for all n ∈ N, and bn → 0 as n → ∞. By Corollary 4.5, d is
continuous, so d(an) = d(cbn) → 0 as n → ∞. A straightforward computation
shows that

(δ − d)(xy) = (δ − d)(x)ψ(y) (x, y ∈ A).

Thus

δ(an) = (δ − d)(an) + d(an)

= (δ − d)(c)ψ(bn) + d(an),

which converges to zero as n→∞, since ψ is right(δ − d)-continuous. �

Corollary 5.3. Let A be a C∗-algebra acting on a Hilbert space H. Suppose that
ϕ, ψ : A → B(H) are continuous at zero. Then every generalized ∗-(ϕ, ψ)-derivation
d : A → B(H) is automatically continuous.

Proof. Using the same argument as in the proof of Lemma 4.6, we may assume that
ϕ(0) = 0 = ψ(0). Thus ϕ and ψ are S-continuous for each mapping S. Now the
result is obtained from Theorem 5.2. �
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