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Abstract

Suppose that 2 is a C*-algebra acting on a Hilbert space 9, and ¢, are
mappings from 2 into B($) which are not assumed to be necessarily linear or
continuous. A (¢, 1)-derivation is a linear mapping d : 2 — B($) such that

d(ab) = p(a)d(b) + d(a)y(b) (a,be ).

We prove that if ¢ is a multiplicative (not necessarily linear) *-mapping, then
every *-(y, p)-derivation is automatically continuous. Using this fact, we show
that every *-(yp,)-derivation d from 2 into B($) is continuous if and only if
the x-mappings ¢ and 1 are left and right d-continuous, respectively.

Introduction

Recently, a number of analysts [2, 4, 12, 13, 14] have studied various generalized
notions of derivations in the context of Banach algebras. There are some applications
in the other fields of research [7]. Such mappings have been extensively studied in
pure algebra; cf. [1, 3, 9]. A generalized concept of derivation is as follows.

Definition 1.1. Suppose that 9B is an algebra, 2 is a subalgebra of B, X is a
B-bimodule, and ¢, : A — B are mappings. A linear mapping d : A — X is a
(p,1)-derivation if

d(ab) = p(a)d(b) + d(a)y(b) (a,be ).
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By a @-derivation we mean a (g, p)-derivation. Note that we do not have any extra
assumptions such as linearity or continuity on the mappings ¢ and .

The automatic continuity theory is the study of (algebraic) conditions on a cat-
egory, e.g. C*-algebras, which guarantee that every mapping belonging to a certain
class, e.g. derivations, is continuous. S. Sakai [16] proved that every derivation
on a C*-algebra is automatically continuous. This is an affirmative answer to the
conjecture made by I. Kaplansky [11]. J. R. Ringrose [15] extended this result for
derivations from a C*-algebra 2 to a Banach 2-bimodule X. B. E. Johnson and A.
M. Sinclair [10] proved that every derivation on a semisimple Banach algebra is auto-
matically continuous. Automatic continuity of module derivations on JB*-algebras
have been studied in [8]. The reader may find a collection of results concerning these
subjects in [6, 17, 18].

M. Bresar and A. R. Villena [4] proved that for an inner automorphism ¢, every
(id, p)-derivation on a semisimple Banach algebra is continuous, where id denotes
the identity mapping. In [12], it is shown that every (¢, 1))-derivation from a C*-
algebra 20 acting on a Hilbert space § into B($)) is automatically continuous, if ¢
and 1 are continuous x-linear mappings from 2l into B($)).

This paper consists of five sections. We define the notion of a (¢, ¥)-derivation
in the first section and give some examples in the second. In the third section, by
using methods of [12], we prove that if ¢ is a multiplicative (not necessarily linear)
x-mapping from a C*-algebra 2 acting on a Hilbert space $) into B()), then every
x-p-derivation d : 2 — B(9) is automatically continuous. In the fourth section, we
show that for not necessarily linear or continuous *-mappings ¢, : 24 — B($) the
continuity of a x-(p, 1))-derivation d : 2 — B($)) is equivalent to the left d-continuity
of ¢ and the right d-continuity of ¢). The mapping ¢ (resp. 1) is called left (resp.
right) d-continuous if glgrg)(gp(.r)d(b)) =0, for all b € A (resp. ilg(l)(d(b)w(m)) =0, for
all b € ). Obviously these conditions happen whenever glglir(l)gp(ﬁ) =0= glgi_)r%w(:r),

in particular whenever ¢ and 1) are bounded linear mappings. Thus we extend the
main results of [12] to a general framework. Furthermore, we prove that if d is a
continuous *-(¢, 1))-derivation, then we can replace ¢ and v with mappings with ‘at
most’ zero separating spaces. The last section is devoted to study the continuity of
the so-called generalized *-(i, 1)-derivations from 2 into B($)).

The reader is referred to [6] for undefined notation and terminology.

2 Examples

In this section, let B be an algebra, let 2 be a subalgebra of 98, and let X be a
$B-bimodule. The following are some examples concerning Definition 1.1.
Example 2.1. Every ordinary derivation d : 2l — X is an id-derivation, where
1d : A — 2 is the identity mapping.

Example 2.2. Every homomorphism p : 2 — 2l is a (§, §)-derivation.

Example 2.3. Let p,¢ : 2 — 2 be homomorphisms, and let x € X be a fixed
element. Then the linear mapping d, : A — X defined by

dx(a) .= pla)r —z(a)  (a €,
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is a (p, ¥)-derivation, which is called the inner (¢, 1)-derivation corresponding to x.

Example 2.4. Assume that 7,0 : C[0,2] — C[0,2] are arbitrary mappings, where
C|0,2] denotes the C*-algebra of all continuous complex valued functions on [0, 2].
Take A € C and fixed elements fi, fo, and hg in C[0, 2] such that

flhO =0= f2h0-

For example, let us take

ho(t) = (1 —=1t)x;,(1),
fl(t) = (t_l)X[m](t)?

Rt = (= Sy, ()

where x, denotes the characteristic function of E. Define ¢, v, d : C[0,2] — CJ0, 2]
by

e(f) = Af+(N)f,

O(f) = @=XNf+0(f)f

d(f) == fho.
Then d is a (p, 1)-derivation, since

P(£)dg) +d(N)dlg) = (M +7()f1)(gho) + (fho) (1= Ng +6(f) f2)
A gho +7(f)gfiho + (1 = X) fgho +0(f) fhof2
= fgho
= d(fg).

Moreover, we may choose 7 and 6 such that ¢ and v are neither linear nor contin-
uous.

3 Multiplicative mappings

In this section, we are going to show how a multiplicative property gives us the
linearity. We start our work with some elementary properties of (¢, 1)-derivations.

Lemma 3.1. Let B be an algebra, let A be a subalgebra of B, and let X be a B-
bimodule. If d : A — X is a (p,1))-derivation, then

(i) (plab) = p(a)p(d) )d(e) = d(a) (¥(be) = v (B)¥(e));
(i) (ela+b) = pla) = p(b))d(c) = 0= d(a) (b + ) = ¥(b) = ¥(0));

(iii)  (p(Aa) = Ap(a))d(b) = 0 = d(a) ($(Ab) — A(¥(D));
for all a,b,c € A, and all A € C.

Proof. Let a,b,c € A and A € C. For the first equation we have

0 = ) o)

= <><@+d<><> p(a)d(be) — d(a)(be)

= p(ab)d(c) + (p(a)d(b) + d(a)(b) ) (c)
p(a)(p(b)d(c) + d(b)i(c)) — d(a)(be)

= (()—w@W(D() d(a) (v(be) — ()Y (c)).
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Calculating d((a + b)c) —d(bc) — d(ac) and d(a(Ab)) — Ad(ab), we obtain the other
equations. -

We also need the following lemma. Recall that, for a Hilbert space $, a subset
Y of B($) is said to be self-adjoint if u* € Y for each u € Y.

Lemma 3.2. Let $) be a Hilbert space, and let Y be a self-adjoint subset of B(9).
Assume that £y = U u(9), and £ is the closed linear span of £y. If R = £+, then

R =) ker(u). '

ueyY

Proof. Let k € R Then (¢, k) =0, for all £ € £. Since Y is self-adjoint,
(u(k), h) = (k,u*(h)) =0

forallh € $ and allu € Y. Therefore u(k) =0, forallu € Y. Hence & C () ker(u).
ueY
The inverse inclusion can be proved similarly. [

Recall that a mapping f : A — B($)) is called a x-mapping, if f(a*) = f(a)*, for
all a € A. If we define f*: A — B($), by f*(a) := (f(a*)) , then f is a *-mapping
if and only if f* = f.

Theorem 3.3. Suppose that A is a C*-algebra acting on a Hilbert space §. Let
v A — B(H) be a x-mapping and let d : A — B($) be a x-p-derivation. If ¢ is
multiplicative, i.e. p(ab) = o(a)p(b) (a,b e A), then d is continuous.

Proof. Set
Y :={p(Ab) = Ap(b) | A € C,b e A} U{p(b+ ¢) — o(b) — p(c) | b,c € A}.
Since ¢ is a *-mapping, Y is a self-adjoint subset of B($)). Put
Lo = J{ulh) |ueY,henH}

Let £ be the closed linear span of £, and let & := £, Then = K& £, and by
Lemma 3.2, we get

R = ker(u) |ueY}. (3.1)

Suppose that p € B($) is the orthogonal projection of $ onto K, then by (3.1) we
have

e(AD)p = Ap(D)p, (3.2)

(b +c)p = 0(b)p + ¢(c)p, (3.3)

for all b,c € A, and all A € C. Now we claim that

pp(a) = ¢(a)p, pd(a) =d(a) =d(a)p  (a€). (3.4)
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To show this, note that by Lemma 3.1, we have
4(@) (9 08) — Ap(B) = 0,
d(a) (#(b + ) = o(b) — p(e)) =0,
for all a,b,c € A, and all A € C. Thus d(a)£ = 0, and so d(a)(1 — p) = 0, for all
a € A. Since d is a *-mapping, it follows that pd(a) = d(a) = d(a)p, for all a € 2.
Similarly, since ¢ is multiplicative, we deduce from (3.2) and (3.3) that
(e(Ab) = Xp(h))pla)p = @(Nb)p(a)p — Ap(b)p(a)p
= Ap(ba)p — Ap(ba)p
and
(20 + ) = o(b) = p(0))p(a)p = @b+ c)pla)p — p(b)p(a)p — p(c)p(a)p
o ((b+c)a)p — p(ba)p — ¢(ca)p
0,
for all a,b,c € 2, and all A € C. Therefore ¢(a)(R) C K. Since ¢ is a *-mapping, we
conclude that pp(a) = ¢(a)p, for all a € A. Now define the mapping ¢ : A — B(9)

by ®(a) = ¢(a)p. One can easily see that ® is a x-homomorphism, and so it is
automatically continuous. Using (3.4), we obtain

d(ab) = d(ab)p
= p(a)d(b)p + d(a)p(b)p
= @(a)pd(b) + d(a)p(b)p
= ®(a)d(b) +d(a)®(b)  (a,beA).

Hence d is a ®-derivation. We deduce from Theorem 3.7 of [12] that d is continuous.
n

4 d-continuity

We start this section with the following definition.

Definition 4.1. Suppose that 2l and 8 are two normed algebras, and 7,5 : A — B
are two mappings.
(i) The mapping T is left (resp. right) S-continuous if lin%(T(:U)S(b)) = 0, for all

b e A (resp. lin%(S(b)T(x)) — 0, for all b € A). If T is both left and right S-

continuous, then it is simply called S-continuous.

(ii) As for linear mappings, the separating space of a mapping T is defined to be
S(T):={beB| Ha,} €A, a, — 0, T(a,) — b}.

We notice that for a nonlinear mapping 7', this set is not necessarily a linear subspace
and it may even be empty. Recall that if 2 and B are complete spaces and T is
linear, then the closed graph theorem implies that 7" is continuous if and only if

&(T) = {0}
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In Example 2.4, if we consider v and 6 to be x-mappings, then the continuity of
d together with Corollary 4.5 below imply that ¢ and v are d-continuous mappings.

Lemma 4.2. Let A be a normed algebra, let X be a normed 2A-bimodule, and let
d:2A — X be a (p,)-derivation for two mappings ¢, : A — A. If ¢ and ¢ are
left and right d-continuous mappings, respectively, then

av(be) — (b)e(c)) = 0 = ((be) — @(b)e(c))a,
for allb,c € A and all a € &(d).

Proof. Suppose that a € &(d). Then a = lim,,_, d(a,) for some sequence {a,}
converging to zero in 2. By Lemma 3.1 (z), we have

a(v(be) = p(b)(c)) = lim d(an)(t(be) — (b)v(c))
= lim_(ip(and) — ¢(an)p(b))d(c)

= lim p(ayb)d(c)
— Tim lan)d(be) + Tim p(a,)d(B)(c)
=0 (b,c e ),
since ¢ is left d-continuous. [

In the rest of this section, we assume that 2 is a C*-subalgebra of B($)), the
C*-algebra of all bounded linear operators on a Hilbert space $). Also ¢, %, and d are
mappings from 2 into B($)). Removing the assumption ‘linearity’ and weakening
the assumption ‘continuity’ on ¢ and 1, we extend the main result of [12] as follows.

Theorem 4.3. Let ¢ be a *x-mapping and let d be a x-p-derivation. If ¢ is left
d-continuous, then d is continuous. Conversely, if d is continuous then o is left
d-continuous.

Proof. Set
Yoi={p(be) — p(b)p(c) | b,c € 2A}.
Since ¢ is a x-mapping, Y is a self-adjoint subset of B($)). Put
Lo = U{u(h) lueY, hehH}

Let £ be the closed linear span of £y, and let £ := £+. Then H = K¢ £, and by
Lemma 3.2, we have

R = ker(u) |ueY}. (4.1)

Suppose that p € B() is the orthogonal projection of § onto 8, then by (4.1), we
have

p(be)p = @(b)p(c)p, (4.2)
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for all b,c € 2. We claim that

pp(a) = ¢(a)p, pd(a) =d(a)p  (a €A). (4.3)

To prove this, note that by Lemma 3.1 and (4.2), we have

(iwbe) = p(b)p(e) )d(a)p = d(b) (#(ca) — p(e)p(a))p =0,
for all a,b,c € A. Thus ud(a)p =0, for all a € A, and all u € Y. So

ud(a)(K) = ud(a)p($H) = {0}.

This means that d(a)(R) is contained in the kernel of each u in Y. So by (4.1),
d(a)(R) C R. Since d is a x-mapping, it follows that pd(a) = d(a)p. Similarly, using
(4.2), we get

(o(be) = p(b)p(c))p(a)p = wlbe)p(a)p — p(b)e(c)p(a)p
p(bca)p — p(bca)p
0 (a,b,c e A).

Therefore p(a)(R) = ¢(a)p(H) € K. Since ¢ is a *-mapping we conclude that
pe(a) = p(a)p, for all a € A. Now define the mappings ¢, D : A — B($) by
®(a) := ¢(a)p, and D(a) := d(a)p. We show that ® is a multiplicative *-mapping
and D is a «®-derivation. Clearly (4.2) implies that ® is multiplicative, and by
(4.3) we have

(2(a))" = (ela)p) = p*(¢(a)) =pp(a’) = B(a")  (a €A).

Thus @ is a multiplicative *-mapping. Now for a,b € 2,

(ab)p

= p(a)d(b)p + d(a)p(b)p

= ¢(a)pd(b)p + d(a)pp(b)p
®(a)D(b) + D(a)®(b).

Thus D is a x-P-derivation, and it is continuous by Theorem 3.3. Now, we show
that &(d) = {0}. Let a € &(d), then there exists a sequence {a,} converging to 0
in A such that d(a,) — aasn — co. Take h =k+{¢ € KR® £ = $H. By Lemma
4.2, and by the fact that each a € &(d) is a bounded operator on $), and that
¢ € £is in the closed linear span of elements of the form (gp(bc) — go(b)gp(c)) h, where
b,c € A h € H, we have a(f) = 0. It follows from continuity of D that

a(k) = a(p(h)) = lim d(a,)(p(h)) = lim D(a,)(h) = 0.

n—oo

D(ab) =

U

Thus a(h) = a(k) + a(¢) = 0, and so d is continuous.
Conversely, let d be a continuous ¢-derivation. Then

lim p(x)d(b) = lim d(zb) — lim d(z)p(b) =0 (be®A). n

z—0
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Theorem 4.4. Fvery p-derivation d is automatically continuous, provided that ¢
15 d-continuous, and at least one of @ or d is a x-mapping.

Proof. Let d : 204 — B($) be a p-derivation. Then clearly d* is a ¢*-derivation. Set

1

1 . ) 1 ; _ 1 s
=5 +e), pi= e =9, di=gd+d), dyi=(d=dY).

Obviously these are *-mappings, ¢ = 1 +1ips, d = d; +ids, and ¢y, is dj-continuous
for 1 < k,7 < 2. A straightforward calculation shows that if ¢ is a *-mapping then
Y1 = @ = w9, and dy,dy are p-derivations. Similarly, if d is a *-mapping, then
di = d = dy and d is a pj-derivation for j = 1,2. Since ¢ or d is a x»-mapping, then
¢, is a x»-mapping and d; is a *-gj-derivation for 1 < k, 7 < 2. By Theorem 4.3, the
d;’s are continuous, and so d = d; + id, is also continuous. ]

Corollary 4.5. Let ¢ and v be x-mappings and let d be a x-(p,¥)-derivation. Then
d is automatically continuous if and only if  and i are left and right d-continuous,
respectively.

Proof. Suppose that ¢ and 1 are left and right d-continuous, respectively. Since
d, ¢, and 9 are x-mappings, then both ¢ and v are d-continuous. Hence # is also
d-continuous. We have

2d(ab) = d(ab) + d*(ab)
= p(a)d(b) + d(a)p(b) + (p(b")d(a”) + d(b")ip(a))”
= p(a)d(b) + d(a)p(b) + P(a)d(b) + d(a)p(b)
(¢ +¥)(a)d(b) + d(a)(p +¥)(b)  (a,b€ Q).

Thus d is a *—%—derivation. It follows from Theorem 4.4 that d is continuous.
Conversely if d is a continuous (¢, 1¥)-derivation, then

ling o (2)d(5) = limy d(zh) — lim d(x)0(5) =0 (b € ).

and
lir% d(b)y(x) = lirr(l) d(bx) — lin% eb)d(z) =0 (be).
So ¢ and v are left and right d-continuous, respectively. [

Lemma 4.6. Let d be a (p,1)-derivation. Then there are two mappings ® and ¥
with ®(0) =0 = W(0) such that d is a (P, V)-derivation.

Proof. Define ® and ¥ by

for all a € 2. We have
0= d(0) = d(a- 0) = p(a)d(0) + d(a)eh(0) = d(a)(0)  (a € ),
0= d(0) = d(0 - a) = p(0)d(a) + d(0)i)(a) = (0)d(a)

m
2

Thus
®(a)d(b) + d(a)¥(b) = p(a)d(b) + d(a)y(b) = d(ab) (a,beA).

Hence d is a (®, V)-derivation. ]
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Corollary 4.7. If x-mappings ¢ and ¥ are continuous at zero, then every x-(¢,V)-
deriwation d is automatically continuous.

Proof. Apply Lemma 4.6 and Corollary 4.5. [

Clearly the assumption of Corollary 4.7 comes true whenever ¢ and 1 are linear
and bounded. The next theorem states that when we deal with a continuous *-(¢, 9)-
derivation, we may assume that ¢ and ¢ have ‘at most’ zero separating spaces.

Theorem 4.8. Let p and v be x-mappings. If d is a continuous x-(p, ¥)-derivation,
then there are x-mappings ¢ and )" from A into B(9) with ‘at most’ zero separating
spaces such that d is a x-(¢ , 4" )-derivation.

Proof. Set

Y = {d(a)|aecA},
Lo = U{d(a)h|ae U he n}.

Let £ be the closed linear span of £y in §, and let £ := £-. Suppose that p € B($)
is the orthogonal projection of § onto £. It follows from continuity of operators
d(a) that d(a)(£) C £ (a €A), and so

pd(a) = d(a)p  (a €9),

and
pp(a) =pla)p,  pila)=y(a)p  (ac)
For a typical element ¢ = d(b)h of £y, we have

pla)l = p(a)d(b)h
= d(ab)h — d(a)p(b)h € L.

Therefore ¢(a)(£y) C £ and hence p(a)(L)
The same argument shows that ¢ (a)(£) C
B(H) by ¢'(a) == p(a)p (a € A), and ¥'(a
are x-mappings. Furthermore, d is a *- (
and h € §, we have

cg

£. Now we define ¢ and 1 from 2 into

) Y(a)p (a €A). Clearly ¢ and ¢’
Y')-derivation. In fact for all a,b € 2,

d(ab)h = p(a)d(b)h + d(a)y(b)h
= p(a)pd(b)h + pd(a)y(b)h
= ¢ (a)d(b)h + d(a)y (b)h,

since p commutes with d(a), ¢(a), and 1 (a). Suppose that G(¢') # ) and a € &(¢').
Ifa= lim ¢ (ay) for some sequence {a,} in YA converging to zero, then

a(k) = lim ¢ (a,)k

= lim ¢(a,)pk
= lim ¢(a,)0

n—o0

=0 (k € R).
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Let ¢y = d(b)h € £y, where b € A and h € §. Then

a(ty) = lim ¢'(a,)d(b)h
= lim d(ayb)h — lim d(a,)p(b)h

= 0,

and by continuity of operator a, we get a(¢) = 0 (I € £), and hence a = 0.
Similarly the separating space of ¢’ is empty or {0}. [

5 Generalized (y,)-derivations
In this section, we study the continuity of generalized (¢, )-derivations.

Definition 5.1. Suppose that 9B is an algebra, 2 is a subalgebra of B, X is a 8-
bimodule, ¢,v : B — B are mappings, and d : A — X is a (p,1))-derivation. A
linear mapping d : A — X is a generalized (p,)-derivation corresponding to d if

d(ab) = ¢(a)d(b) + d(a)(b) (a,be ).

Proposition 5.2. Suppose that 2 is a C*-algebra acting on a Hilbert space $. A
generalized x-(p,1)-derivation § : A — B(9) corresponding to the (@, v)-derivation
d is automatically continuous provided that ¢ : A — B(9) is a left d-continuous
x-mapping, and ¥ : A — B(H) is both a right d-continuous and a §-continuous
*-Mmapping.

Proof. Suppose that {a,} is a sequence in 2, and a,, — 0 as n — oo. By the Cohen
factorization theorem, there exist a sequence {b,} in 2, and an element ¢ € 2 such
that a, = ¢b, , foralln € N, and b, — 0 as n — oo. By Corollary 4.5, d is
continuous, so d(a,) = d(cb,) — 0 as n — oo. A straightforward computation
shows that

(0 = d)(zy) = (0 —d)(@)p(y) (v, €A).

Thus
da,) = (6 —d)(a,)+d(ay,)
- (5 - d) (C)l/}(bn) + d(an>7
which converges to zero as n — oo, since 1) is right(d — d)-continuous. [ |

Corollary 5.3. Let A be a C*-algebra acting on a Hilbert space §). Suppose that
0, A — B(9) are continuous at zero. Then every generalized x-(p, v)-derivation
d: A — B(9) is automatically continuous.

Proof. Using the same argument as in the proof of Lemma 4.6, we may assume that
©(0) = 0 = 9(0). Thus ¢ and ¥ are S-continuous for each mapping S. Now the
result is obtained from Theorem 5.2. ]
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