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Abstract
We give simple proofs of the representation theorems of Riesz and Schwartz.

1 Introduction

According to J.D. Gray in [2]

Only rarely does the mathematical community pay a theorem the accolade
of transforming it into a tautology. The Riesz representation theorem has
received this accolade.

Indeed for Bourbaki (see [1]) a measure is a continuous linear functional.
In most textbooks, the Riesz representation theorem asserts that continuous

linear functionals on C(K), where K is a Hausdorff compact space, are represented
by integrals with respect to a regular Borel measure. It is interesting to note that
many variants of Lebesgue integral were defined by F. Riesz in order to avoid the
use of measure theory!

But the original theorem in [4] asserts that continuous linear functionals on
C([0, 1]) are Stieltjes integrals :

Etant donné l’opérateur A(f(x)), on peut déterminer la fonction à vari-
ation bornée α(x), telle que, quelle que soit la fonction continue f(x),
on ait

A(f(x)) =
∫ 1

0
f(x) dα(x).
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Thus the original Riesz representation theorem gives a correspondance between
continuous linear functionals and functions of bounded variation . Moreover, as
observed by Horváth in [3], since, for f regular with compact support in ]0, 1[,∫ 1

0
f(x) dα(x) = −

∫ 1

0
f ′(x) α(x) dx,

the functional A is the derivative, in the sense of distributions, of α.
In this note we give a short elementary proof of the original Riesz representation

theorem and of its extension in two dimensions in [3]. Contrary to [3], we use
only two tools : Abel transform and the fact that a bounded function (on ]0, 1[ or
]0, 1[×]0, 1[) is Riemann integrable if and only if it is almost everywhere continuous.

2 The one-dimensional case

We recall some basic definitions. We call K(]0, 1[) the space of continuous functions
from ]0, 1[ to R with compact support in ]0, 1[ and D(]0, 1[) the subset of infinitely
derivable functions of K(]0, 1[).

Definition 2.1. The space of bounded measures on ]0,1[ is defined by (K(]0, 1[))′

:= {µ : K(]0, 1[) → R; µ is linear and there exists C > 0 : |
∫ 1
0 u dµ| ≤ C‖u‖∞

for all u ∈ K(]0, 1[)}.
Definition 2.2. A function F ∈ L1

loc(]0, 1[) is of bounded variation if

‖DF‖ = ‖DF‖]0,1[ = sup
{∫ 1

0
F (t)u′(t) dt; u ∈ D(]0, 1[), ‖u‖∞ ≤ 1

}
< ∞.

After these preparations, we can state the representation theorem of F. Riesz in
the following form :

Theorem 2.3. Let µ be a bounded measure on ]0, 1[. Then, there exists a function
F :]0, 1[−→ R of bounded variation such that, in the sense of distributions, µ = ∂F .
Moreover, ‖µ‖ = ‖DF‖.

Proof. Let F (t) = µ(]0, t]). By countable additivity of the measure µ, F is continu-
ous outside a countable set.

Let us take u ∈ D(]0, 1[) and define un =
∑2n−1

k=1 u
(

k
2n

)
χ
(]

k
2n , k+1

2n

])
. It is clear

that un → u uniformly on [0, 1]. Using Abel transform, we have∫ 1

0
u dµ = lim

n→∞

∫ 1

0
un dµ

= lim
n→∞

2n−1∑
k=1

u

(
k

2n

)
µ

(]
k

2n
,
k + 1

2n

])

= lim
n→∞

2n−1∑
k=1

u

(
k

2n

)[
F

(
k + 1

2n

)
− F

(
k

2n

)]

= − lim
n→∞

2n−1∑
k=1

F

(
k

2n

)[
u

(
k

2n

)
− u

(
k − 1

2n

)]

= − lim
n→∞

1

2n

2n−1∑
k=1

F

(
k

2n

)
u′
(

k − θk

2n

)
,
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where 0 < θk < 1.
For every ε > 0, there exists δ > 0 such that |x − y| ≤ δ ⇒ |u′(x) − u′(y)| ≤ ε.
Hence

lim
n→∞

|
∫ 1

0
u dµ− 1

2n

2n−1∑
k=1

F

(
k

2n

)
u′
(

k

2n

)
| ≤ ε‖F‖∞.

Since u′F is Riemann integrable on ]0, 1[, it follows that

∫ 1

0
u dµ = − lim

n→∞

1

2n

2n−1∑
k=1

F

(
k

2n

)
u′
(

k

2n

)
= −

∫ 1

0
u′(t)F (t)dt.

Finally we obtain

‖DF‖ = sup
{∫ 1

0
F (t)u′(t) dt; u ∈ D(]0, 1[), ‖u‖∞ ≤ 1

}
= sup

{∫ 1

0
u dµ; u ∈ D(]0, 1[), ‖u‖∞ ≤ 1

}
= ‖µ‖,

and the proof is complete. �

Corollary 2.4 (Schwartz representation theorem). Let f be a distribution on ]0, 1[
such that ∂f is a bounded measure µ on ]0, 1[. Then f is a function of bounded
variation.

Proof. Let us define the function F (x) = µ(]0, x]). Then ∂(f − F ) = µ − µ and
f − F = c ∈ R. �
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3 The higher-dimensional case

In order to be readable, we shall consider the two dimensional case.

Definition 3.1. The space of bounded measures on Ω =]0, 1[×]0, 1[ is defined by
(K(Ω))′ := {µ : K(Ω) → R; µ is linear and there exists C > 0 : |

∫
Ω u dµ| ≤

C‖u‖∞ for all u ∈ K(Ω)}.

Lemma 3.2. Let u ∈ D(Ω). For ε > 0 there exists 0 < δ < 1 such that

|u(x + h, y + k)− u(x, y + k)− u(x + h, y) + u(x, y)− ∂x∂yu(x, y)hk| ≤ ε|h||k|

for all (x, y) ∈ Ω provided that |h|, |k| ≤ δ.

The following lemma is contained in [3]. We give the proof for the sake of
completeness.

Lemma 3.3. The function F (x, y) = µ(]0, x]×]0, y]) is continuous outside a Lebesgue-
negligeable set

Proof. Since µ is the difference of two positive measures, we can assume that µ
is positive. Since µ(Ω̄) < +∞, by countable additivity of the measure µ, only a
countable number of horizontal or vertical segments in Ω̄ can have a strictly positive
µ-measure. Let H be the collection of all horizontal segments σ, going from the left
boundary to the right boundary of Ω such that µ(σ) > 0.Then H is countable. A
similar assertion holds for the collection V of vertical segments σ such that µ(σ) > 0.
Denote by S the set of all points of Ω which lie on a segment belonging to H or to
V . Then S has the Lebesgue measure zero.

We claim now that F is continuous at every point (x, y) not belonging to S. We
have ⋂

h>0

]0, x + h]×]0, y + h] =]0, x]×]0, y]

and ⋃
h>0

]0, x− h]×]0, y − h] =]0, x[×]0, y[.

By the choice of (x, y) we have µ({(x, η); 0 < η ≤ y}) = µ({(ξ, y); 0 < ξ ≤ x}) = 0,
and

lim
h→0

F (x + h, y + h) = lim
h→0

µ(]0, x + h]×]0, y + h]) = µ(]0, x]×]0, y]) = F (x, y).

For x − h ≤ ξ ≤ x + h and y − h ≤ η ≤ x + h the value f(ξ, η) lies between
f(x− h, y − h) and f(x + h, y + h), from which the lemma follows. �

Theorem 3.4. Let µ be a bounded measure on Ω. Then there exists a function
F ∈ L∞(Ω) such that, in the sense of distributions, µ = ∂x∂yF .
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Proof. Let u ∈ D(Ω). Let us define un :=
∑2n−1

k,l=1 u
(

k
2n , l

2n

)
χ
(]

k
2n , k+1

2n

])
χ
(]

l
2n , l+1

2n

])
. It is clear that un → u uniformly on Ω. Using Abel transform we have

∫
Ω

u dµ = lim
n→∞

∫
Ω

undµ

= lim
n→+∞

2n−1∑
k,l=1

u

(
k

2n
,

l

2n

)
µ

(]
k

2n
,
k + 1

2n

]
×
]

l

2n
,
l + 1

2n

])

= lim
n→+∞

2n−1∑
k,l=1

u

(
k

2n
,

l

2n

)[
F

(
k + 1

2n
,
l + 1

2n

)
− F

(
k

2n
,
l + 1

2n

)

− F

(
k + 1

2n
,

l

2n

)
+ F

(
k

2n
,

l

2n

)]

= lim
n→+∞

2n−1∑
k,l=1

F

(
k

2n
,

l

2n

)[
u

(
k

2n
,

l

2n

)
− u

(
k

2n
,
l − 1

2n

)

− u

(
k − 1

2n
,

l

2n

)
+ u

(
k − 1

2n
,
l − 1

2n

)]
.

By lemma 3.2 we have, for every ε > 0,

lim
n→∞

∣∣∣∣∣∣
∫
Ω

u dµ− 1

22n

2n−1∑
k,l=1

F

(
k

2n
,

l

2n

)
∂x∂yu

(
k

2n
,

l

2n

)∣∣∣∣∣∣ ≤ ε‖F‖∞.

By lemma 3.3, F∂x∂yu is Riemann integrable on Ω. Then we obtain

∫
Ω

u dµ = lim
n→+∞

1

22n

2n−1∑
k,l=1

F

(
k

2n
,

l

2n

)
∂x∂yu

(
k

2n
,

l

2n

)

=
∫
Ω

F (x, y) ∂x∂yu(x, y) dxdy.

�

Remark 3.5. Let (ρn) be a Dirac sequence : ρn ∈ D(R2), supp ρn ⊂ B[0, 1/n],∫
R2 ρn dxdy = 1, ρn ≥ 0. Then for every u ∈ K(Ω),∫

Ω
u dµ = lim

n→∞

∫
Ω

u ∂x∂y(ρn ∗ F ) dxdy.

For a proof see [5] p. 57.
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1909.

[5] M. WILLEM, ”Analyse Fonctionnelle Elémentaire”, Cassini, Paris 2003.

Université Catholique de Louvain,
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