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Abstract

In this paper we give some rigidity results for compact submanifolds in a

hyperbolic space form with flat normal bundle to be totally umbilical.

1 Introduction

Let Mn+p(c) be an (n+p)-dimensional Riemannian manifold with constant sectional
curvature c. We also call it a space form. When c > 0, Mn+p(c) = Sn+p(c) (i.e.
(n + p)-dimensional sphere space); when c = 0, Mn+p(c) = Rn+p (i.e. (n + p)-
dimensional Euclidean space); when c < 0, Mn+p(c) = Hn+p(c) (i.e. (n + p)-
dimensional hyperbolic space). We simply denote Hn+p(−1) by Hn+p. Let Mn be an
n-dimensional submanifold in Mn+p(c). As it is well known, there are many rigidity
results for minimal submanifolds or submanifolds with constant mean curvature H
in Mn+p(c) (c ≥ 0) by use of J. Simons’ method, for example, see [1], [4], [7], [12],
etc., but less of that were obtained for submanifolds immersed into a hyperbolic
space from. Walter [13] gave a classification for non-negatively curved compact
hypersurfaces in a space form under the assumption that the rth mean curvature is
constant. Morvan-Wu [6], Wu [14] also proved some rigidity theorems for complete
hypersurfaces Mn in a hyperbolic space form Hn+1(c) under the assumption that
the mean curvature is constant and the Ricci curvature is non-negative. Moreover,
they proved that Mn is a geodesic distance sphere in Hn+1(c) provided that it is
compact.
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On the other hand, Cheng-Yau [2] firstly studied the rigidity problem for a
hypersurface with constant scalar curvature in a space form by introducing a self-
adjoint second order differential operator. Later, Hou [3] extended Cheng-Yau’s
technique to higher codimensional cases and studied the rigidity problem for closed
submanifolds with constant scalar curvature in a hyperbolic space form.

In the present paper, we would like to use Cheng-Yau’s technique to study the
rigidity problem for compact submanifolds in a hyperbolic space form with flat
normal bundle.

2 Preliminaries

Let Mn be an n-dimensional compact submanifold immersed in an (n+p)-dimensional
Riemannian manifold Mn+p(c) of constant curvature c. We choose a local field of
orthonormal frames e1, . . . , en+p in Mn+p(c) such that at each point of Mn, e1, . . . , en

span the tangent space of Mn and form an orthonormal frame there. Let ω1, . . . , ωn+p

be its dual frame field. In this paper, we use the following convention on the range
of indices:

1 ≤ A, B, C, . . . ≤ n + p; 1 ≤ i, j, k, . . . ≤ n; n + 1 ≤ α, β, γ ≤ n + p.

Then the structure equations of Mn+p(c) are given by

dωA =
∑

B

ωAB ∧ ωB, ωAB + ωBA = 0, (1)

dωAB =
∑

C

ωAC ∧ ωCB −
1

2

∑

C,D

KABCDωC ∧ ωD, (2)

KABCD = c(δACδBD − δADδBC). (3)

Restrict these form to Mn, we have

ωα = 0, n + 1 ≤ α ≤ n + p. (4)

From Cartan’s lemma we can write

ωαi =
∑

j

hα
ijωj, hα

ij = hα
ji. (5)

From these formulas, we obtain the structure equations of Mn:

dωi =
∑

j

ωij ∧ ωj, ωij + ωji = 0, (6)

dωij =
∑

k

ωik ∧ ωkj −
1

2

∑

k,l

Rijklωk ∧ ωl, (7)

Rijkl = c(δikδjl − δilδjk) +
∑

α

(hα
ikh

α
jl − hα

ilh
α
jk), (8)

where Rijkl are the components of the curvature tensor of Mn.
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Denote Lα = (hα
ij)n×n and Hα = (1/n)

∑

i h
α
ii for α = n + 1, · · · , n + p. Then the

mean curvature vector field ξ, the mean curvature H and the square of the length
of the second fundamental form S are expressed as

ξ =
∑

α

Hαeα, H = |ξ|, S =
∑

α,i,j

(hα
ij)

2,

respectively. Moreover, the normal curvature tensor {Rαβkl}, the Ricci curvature
tensor {Rik} and the normalized scalar curvature R are expressed as

Rαβkl =
∑

m

(hα
kmhβ

ml − hα
lmhβ

mk),

Rik = (n− 1) c δik + n
∑

α

(Hα)hα
ik −

∑

α,j

hα
ijh

α
jk,

R = c +
1

n(n− 1)
(n2H2 − S). (9)

Define the first and the second covariant derivatives of {hα
ij}, say {hα

ijk} and
{hα

ijkl} by
∑

k

hα
ijkωk = dhα

ij +
∑

k

hα
kjωki +

∑

k

hα
ikωkj +

∑

β

hβ
ijωβα, (10)

∑

l

hα
ijklωl = dhα

ijk +
∑

m

hα
mjkωmi +

∑

m

hα
imkωmj +

∑

m

hα
ijmωmk +

∑

β

hβ
ijkωβα. (11)

Then, by exterior differentiation of (5), we obtain the Codazzi equation

hα
ijk = hα

ikj. (12)

It follows from Ricci’s identity that

hα
ijkl − hα

ijlk =
∑

m

hα
mjRmikl +

∑

m

hα
imRmjkl +

∑

β

hβ
ijRβαkl. (13)

The Laplacian of hα
ij is defined by ∆hα

ij =
∑

k hα
ijkk. From (13), we have

∆hα
ij = nHα,ij +

∑

k,m

hα
kmRmijk +

∑

k,m

hα
imRmkjk +

∑

k,β

hβ
ikRβαjk

= nHα,ij + n c hα
ij − n c Hαδij + n

∑

β,m

Hβhα
imhβ

mj −
∑

β

Sαβhβ
ij

+2
∑

β,k,m

hβ
ikh

α
kmhβ

mj −
∑

m,k,β

hα
imhβ

mkh
β
kj −

∑

β,k,m

hβ
ikh

β
kmhα

mj,

where Sαβ =
∑

i,j hα
ijh

β
ij for all α and β. Define N(A) =

∑

i,j a2
ij for any real matrix

A = (aij)n×n. Then we have

∑

i,j

hα
ij∆hα

ij = n
∑

i,j

Hα,ijh
α
ij + n c Sα − c n2H2

α + n
∑

β

HβTr(L2
αLβ)

−
∑

β

S2
αβ −

∑

β

N(LαLβ − LβLα), (14)

where Sα =
∑

i,j(h
α
ij)

2, for every α.
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Suppose H > 0 on Mn and choose en+1 = ξ/H. Then it follows that

Hn+1 = H; Hα = 0, α > n + 1. (15)

From (10) and (15) we can see

Hn+1,kωk = dH, Hα,kωk = Hωn+1α α > n + 1. (16)

From (11), (15) and (16) we have

Hn+1,kl = Hkl −
1

H

∑

β>n+1

Hβ,kHβ,l, (17)

where dH =
∑

i Hiωi and ∇Hk =
∑

l Hklωl ≡ dHk + Hlωlk for all k.
Using (14) and (17), we have

∑

i,j

hn+1
ij ∆hn+1

ij = n
∑

i,j

Hijh
n+1
ij − n

H

∑

i,j

∑

β>n+1

Hβ,iHβ,jh
n+1
ij

+n c Sn+1 − c n2H2 + nHfn+1 − S2
n+1 −

∑

β>n+1

S2
n+1β

−
∑

β>n+1

N(Ln+1Lβ − LβLn+1). (18)

where fn+1 = Tr(Ln+1)
3.

M. Okumura [8] established the following lemma (see also [1]).
Lemma 2.1. Let {ai}n

i=1 be a set of real numbers satisfying
∑

i ai = 0,
∑

i a
2
i =

t2, where t ≥ 0. Then we have

− n− 2
√

n(n− 1)
t3 ≤

∑

i

a3
i ≤

n− 2
√

n(n− 1)
t3,

and the equalities hold if and only if at least (n− 1) of the ai are equal.
Denote the eigenvalues of Ln+1 by {λn+1

i }n
i=1. Then we have

nH =
∑

i

λn+1
i , Sn+1 =

∑

i

(λn+1
i )2, fn+1 =

∑

i

(λn+1
i )3. (19)

Set L̄n+1 = Ln+1 − H In, f̄n+1 = fn+1 − 3HSn+1 + 2nH3, S̄n+1 = Sn+1 − nH2,
and λ̄n+1

i = λn+1
i −H, where In denotes the identity matrix of degree n. Then (19)

changes into

0 =
∑

i

λ̄n+1
i , S̄n+1 =

∑

i

(λ̄n+1
i )2, f̄n+1 =

∑

i

(λ̄n+1
i )3. (20)

By applying Okumura’s Lemma to f̄n+1, we have

f̄n+1 ≥ − n− 2
√

n(n− 1)
S̄n+1

√

S̄n+1 ⇐⇒ fn+1 ≥ 3HSn+1−2nH3− n− 2
√

n(n− 1)
S̄n+1

√

S̄n+1.

So we have

n c Sn+1 − c n2H2 + nHfn+1 − S2
n+1

≥ S̄n+1{n c− (S̄n+1 − nH2)− n(n− 2)H

√

√

√

√

S̄n+1

n(n− 1)
}. (21)
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It follows from (15) that
∑

β>n+1

S2
n+1β =

∑

β>n+1

{
∑

i,j

(hn+1
ij −Hδij)h

β
ij}2. (22)

Denote SI =
∑

β>n+1 Sβ. From (22), we have

∑

β>n+1

S2
n+1β ≤ S̄n+1SI . (23)

Let T =
∑

i,j Tijωiωj be a symmetric tensor on Mn defined by

Tij = hn+1
ij − nHδij. (24)

We introduce an operator 2 associated to T acting on f ∈ C2(Mn) by

2f =
∑

i,j

Tijfij =
∑

i,j

hn+1
ij fij − nH∆f,

where ∆ is the Laplacian. Since (Tij) is divergence-free, it follows from [2] that the
operator 2 is self-adjoint relative to the L2-inner product of Mn.

Choosing f = H in above expression, we have
∑

i,j

hn+1
ij Hij = 2H + nH∆H. (25)

Denote S̄ = S̄n+1 + SI . Substituting (21), (23) and (25) into (18), we get

∑

i,j

hn+1
ij ∆hn+1

ij ≥ n2H +
1

2
n2∆(H2)− n2|∇H|2

− n

H

∑

β>n+1

∑

i,j

Hβ,iHβ,jh
n+1
ij

−
∑

β>n+1

N(Ln+1Lβ − LβLn+1)

+S̄n+1{n c + nH2 − S̄ − n(n− 2)H

√

√

√

√

S̄n+1

n(n− 1)
}. (26)

In codimension one case, Cheng-Yau [2] gave a lower estimation for |∇σ|2, the
square of the length of the covariant derivative of σ. They proved that, for a hy-
persurface in a space form of constant scalar curvature c, if the normalized scalar
curvature R is constant and R ≥ c, then |∇σ|2 ≥ n2|∇H|2.

In higher codimension cases, Hou [3] proved the following
Lemma 2.2. Let Mn be a connected submanifold in Mn+p(c) with nowhere

zero mean curvature H. If R is constant and R ≥ c, then

|∇σ|2 =
∑

i,j,k,α

(hα
ijk)

2 ≥ n2|∇H|2. (27)

Moreover,
(i) when R − c > 0, if the equality in (27) holds on Mn, then H is constant.
(ii) when R−c = 0, if the equality in (27) holds on Mn, then either H is constant

or SI = 0 on Mn and Mn lies in a totally geodesic subspace Mn+1(c) of Mn+p(c).
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3 Submanifolds with flat normal bundle

In this section, we propose to study the rigidity problem for submanifolds in Hn+p.
We continue use the same notations as in section 2. Let Mn be a compact sub-
manifold in Hn+p, suppose that the normalized mean curvature vector field ξ/H is
parallel and choose en+1 = ξ/H. Then ωn+1α = 0 for all α. It follows from (11) and
(16) that

Hα,k = 0, Hα,kl = 0, (28)

for all α > n + 1 and k, l = 1, · · · , n.
Suppose in addition that the normal bundle of Mn is flat. Then

Ωαβ = −1

2
Rαβklωk ∧ ωl = 0, (29)

for all α and β on Mn. For all α and β we have LαLβ = LβLα, which is equivalent
to that {Lα}n+p

α=n+1 can be diagonized simultaneously.
We denote the eigenvalues of Lα by {λα

1 , · · · , λα
n} for every α. It follows from

[15] that

1

2
∆S =

∑

i,j,k,α

(hα
ijk)

2 + n
∑

i,j,α

Hα,ijh
α
ij +

∑

α

∑

i<j

Kij(λ
α
i − λα

j )2, (30)

where Kij = −1 +
∑

β λβ
i λβ

j denotes the sectional curvature of Mn corresponding to
the plane section spanned by {ei, ej} for every pair of i < j.

Assume that R is constant and R + 1 ≥ 0. From (25) and (28), we have

∑

i,j,k,α

(hα
ijk)

2 + n
∑

i,j,α

Hα,ijh
α
ij = n 2H +

1

2
∆(n2H2) +

∑

i,j,k,α

(hα
ijk)

2 − n2|∇H|2.

Note that ∆S = ∆(n2H2). Therefore (30) turns into

0 = n 2H +
∑

i,j,k,α

(hα
ijk)

2 − n2|∇H|2 +
∑

i<j

∑

α

Kij(λ
α
i − λα

j )2.

Integrating the both sides of above equality on Mn, we have

0 =
∫

Mn





∑

i,j,k,α

(hα
ijk)

2 − n2|∇H|2


 ∗ 1 +
∑

i<j

∑

α

∫

Mn
Kij(λ

α
i − λα

j )2 ∗ 1.

If Kij ≥ 0 on Mn, it follows from (27) and the above equality that

∑

(i,j,k,α)

(hα
ijk)

2 ≡ n2|∇H|2; Kij(λ
α
i − λα

j )2 ≡ 0, (31)

for every α and i < j. Hence we can prove the following theorem
Theorem 3.1. Let Mn be a compact submanifold with non-negative sectional

curvature in Hn+p. Suppose that the normal bundle N (M) is flat and the normalized
mean curvature vector is parallel. If R is constant and R + 1 ≥ 0, then either
Mn = M1 × M2 × . . . × Mk such that each Mi is a minimal submanifold of a
totally umbilical submanifold Ni (with codimension > 0) and the Ni’s are mutually
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perpendicular along their intersections; or Mn lies in a totally geodesic subspace
Hn+1 of Hn+p.

Proof. From the first equality of (31) and Lemma 2.2, we have that either H is
constant or SI = 0 on Mn. If H is constant on Mn, then ξ is parallel. Hence the
proof follows from the result of Yau (Theorem 9, [16]). Otherwise, if SI = 0 on Mn,
then Mn lies in a totally geodesic subspace Hn+1 of Hn+p and this completes the
proof of the Theorem 3.1.

In [10], Ryan completely classified the complete hypersurfaces with at most two
distinct constant principal curvatures in Hn+1, from this we know that the compact
hypersurface in Hn+1 with at most two distinct constant principal curvatures is
totally umbilical. Using this fact and making the same process of the proof of
Theorem 2 and Theorem 3 in [5], we can obtain the following theorem

Theorem 3.2. Let Mn be an n-dimensional (n ≥ 3) compact hypersurface with
constant normalized scalar curvature R in Hn+1. If

(1) R̄ = R + 1 ≥ 0,
(2) the norm square S of the second fundamental form of Mn satisfies

nR̄ ≤ S ≤ n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n], (32)

then Mn is a totally umbilical hypersurface.
Now we want to extend the above theorem to higher codimensional case. For

this purpose, we need the following
Lemma 3.1 [11]. Let A and B be n×n-symmetric matrices satisfying Tr A = 0,

Tr B = 0 and A B − B A = 0. Then

− n− 2
√

n(n− 1)
(Tr A2)(Tr B2)1/2 ≤ Tr A2B ≤ n− 2

√

n(n− 1)
(Tr A2)(Tr B2)1/2, (33)

and the equality holds on the right (resp. left) hand side if and only if n− 1 of the
eigenvalues xi of A and the corresponding eigenvalues yi of B satisfy

|xi| = (Tr A2)1/2√
n(n−1)

, xi xj ≥ 0, yi = − (Tr B2)1/2√
n(n−1)

( resp. yi = (Tr B2)1/2√
n(n−1)

).

Choose a suitable normal frame field {eβ}n+p
β=n+2 such that Sαβ = 0 for all α 6= β.

Then
∑

α,β>n+1

S2
αβ =

∑

β>n+1

S2
β ≤ S2

I , (34)

where the equality holds if and only if at least p− 2 numbers of Sα’s are zero.
Taking sum with respect to α > n + 1 on both-sides of (14), we have

∑

i,j,α>n+1

hα
ij∆hα

ij = (−n + n H2)SI + nH
∑

α>n+1

Tr(L2
αL̄n+1)

−
∑

α>n+1

S2
n+1α −

∑

α>n+1

S2
α. (35)

Using the left hand side of (33) to Tr(L2
αL̄n+1), we have

Tr(L2
αL̄n+1) ≥ −(n− 2)Sα

√

√

√

√

S̄n+1

n(n− 1)
.
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Substituting this into (35) and using (23) and (34), we have

∑

i,j,α>n+1

hα
ij∆hα

ij ≥ SI







(−n + n H2)− n(n− 2)H

√

√

√

√

S̄n+1

n(n− 1)
− S̄







. (36)

Substituting (28) into (26), we have

∑

i,j

hn+1
ij ∆hn+1

ij ≥ n2H +
1

2
∆(n2H2)− n2|∇H|2

+S̄n+1







(−n + nH2)− n(n− 2)H

√

√

√

√

S̄n+1

n(n− 1)
− S̄







. (37)

Note that ∆S = ∆(n2H2) and

1

2
∆S =

∑

i,j,k,α

(

hα
ijk

)2
+

∑

i,j

hn+1
ij ∆hn+1

ij +
∑

i,j,α>n+1

hα
ij∆hα

ij. (38)

From (36), (37) and (38), we obtain

0 ≥ n2H +
∑

(i,j,k,α)

(

hα
ijk

)2 − n2|∇H|2

+S̄







(−n + nH2)− n(n− 2)H

√

√

√

√

S̄n+1

n(n− 1)
− S̄







. (39)

Note that
S̄n+1 ≤ S̄n+1 + SI = S̄. (40)

Substituting (40) into (39) and using (27), we have

0 ≥ n2H + S̄

{

(−n + nH2)− n− 2√
n− 1

H
√

nS̄ − S̄

}

. (41)

Integrating the both sides of (41) on Mn, we have

0 ≥
∫

Mn
S̄

{

(−n + nH2)− n− 2√
n− 1

H
√

nS̄ − S̄

}

∗ 1. (42)

Therefore we can prove the following
Theorem 3.3. Let Mn (n ≥ 3) be a compact submanifold with parallel normal-

ized mean curvature vector field immersed into Hn+p. Suppose that R is constant
and R̄ = R + 1 ≥ 0. If the normal bundle N(M) is flat and

nR̄ ≤ S ≤ n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n], (43)

then Mn is totally umbilical.
Proof. By (9), we know

S̄ = S − nH2 =
n− 1

n
(S − nR̄). (44)
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By use of (42) and (44), we get

0 ≥
∫

Mn

n− 1

n
(S−nR̄)[−n+2(n−1)R̄−n− 2

n
S−n− 2

n

√

(n(n− 1)R̄ + S)(S − nR̄)].

(45)
It is a direct check that our assumption condition (43), i.e.

S ≤ n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n], (46)

is equivalent to

(−n + 2(n− 1)R̄− n− 2

n
S)2 ≥ (n− 2)2

n2
(n(n− 1)R̄ + S)(S − nR̄). (47)

But it is clear from (46) that (47) is equivalent to

−n + 2(n− 1)R̄− n− 2

n
S ≥ n− 2

n

√

(n(n− 1)R̄ + S)(S − nR̄). (48)

From (45) and (48), we have either

S = nR̄, (49)

and Mn is totally umbilical; or

S =
n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n]. (50)

In the latter case, all of the inequalities concerned become equalities. From (40), we
have SI = 0. So Mn lies in a totally geodesic subspace Hn+1 of Hn+p. The rest of
the proof follows from Theorem 3.2. This completes the proof of Theorem 3.3.
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