Submanifolds in a hyperbolic space form with flat normal bundle

Liu Ximin

Abstract

In this paper we give some rigidity results for compact submanifolds in a hyperbolic space form with flat normal bundle to be totally umbilical.

1 Introduction

Let $M^{n+p}(c)$ be an $(n+p)$-dimensional Riemannian manifold with constant sectional curvature c. We also call it a space form. When $c>0, M^{n+p}(c)=S^{n+p}(c)$ (i.e. $(n+p)$-dimensional sphere space); when $c=0, M^{n+p}(c)=R^{n+p}$ (i.e. $(n+p)$ dimensional Euclidean space); when $c<0, M^{n+p}(c)=H^{n+p}(c)$ (i.e. $(n+p)$ dimensional hyperbolic space). We simply denote $H^{n+p}(-1)$ by H^{n+p}. Let M^{n} be an n-dimensional submanifold in $M^{n+p}(c)$. As it is well known, there are many rigidity results for minimal submanifolds or submanifolds with constant mean curvature H in $M^{n+p}(c)(c \geq 0)$ by use of J. Simons' method, for example, see [1], [4], [7], [12], etc., but less of that were obtained for submanifolds immersed into a hyperbolic space from. Walter [13] gave a classification for non-negatively curved compact hypersurfaces in a space form under the assumption that the r th mean curvature is constant. Morvan-Wu [6], Wu [14] also proved some rigidity theorems for complete hypersurfaces M^{n} in a hyperbolic space form $H^{n+1}(c)$ under the assumption that the mean curvature is constant and the Ricci curvature is non-negative. Moreover, they proved that M^{n} is a geodesic distance sphere in $H^{n+1}(c)$ provided that it is compact.

[^0]On the other hand, Cheng-Yau [2] firstly studied the rigidity problem for a hypersurface with constant scalar curvature in a space form by introducing a selfadjoint second order differential operator. Later, Hou [3] extended Cheng-Yau's technique to higher codimensional cases and studied the rigidity problem for closed submanifolds with constant scalar curvature in a hyperbolic space form.

In the present paper, we would like to use Cheng-Yau's technique to study the rigidity problem for compact submanifolds in a hyperbolic space form with flat normal bundle.

2 Preliminaries

Let M^{n} be an n-dimensional compact submanifold immersed in an $(n+p)$-dimensional Riemannian manifold $M^{n+p}(c)$ of constant curvature c. We choose a local field of orthonormal frames e_{1}, \ldots, e_{n+p} in $M^{n+p}(c)$ such that at each point of $M^{n}, e_{1}, \ldots, e_{n}$ span the tangent space of M^{n} and form an orthonormal frame there. Let $\omega_{1}, \ldots, \omega_{n+p}$ be its dual frame field. In this paper, we use the following convention on the range of indices:

$$
1 \leq A, B, C, \ldots \leq n+p ; \quad 1 \leq i, j, k, \ldots \leq n ; \quad n+1 \leq \alpha, \beta, \gamma \leq n+p
$$

Then the structure equations of $M^{n+p}(c)$ are given by

$$
\begin{gather*}
d \omega_{A}=\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0, \tag{1}\\
d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B}-\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D}, \tag{2}\\
K_{A B C D}=c\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right) . \tag{3}
\end{gather*}
$$

Restrict these form to M^{n}, we have

$$
\begin{equation*}
\omega_{\alpha}=0, \quad n+1 \leq \alpha \leq n+p . \tag{4}
\end{equation*}
$$

From Cartan's lemma we can write

$$
\begin{equation*}
\omega_{\alpha i}=\sum_{j} h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha} . \tag{5}
\end{equation*}
$$

From these formulas, we obtain the structure equations of M^{n} :

$$
\begin{gather*}
d \omega_{i}=\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0, \tag{6}\\
d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l}, \tag{7}\\
R_{i j k l}=c\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right), \tag{8}
\end{gather*}
$$

where $R_{i j k l}$ are the components of the curvature tensor of M^{n}.

Denote $L_{\alpha}=\left(h_{i j}^{\alpha}\right)_{n \times n}$ and $H_{\alpha}=(1 / n) \sum_{i} h_{i i}^{\alpha}$ for $\alpha=n+1, \cdots, n+p$. Then the mean curvature vector field ξ, the mean curvature H and the square of the length of the second fundamental form S are expressed as

$$
\xi=\sum_{\alpha} H_{\alpha} e_{\alpha}, \quad H=|\xi|, \quad S=\sum_{\alpha, i, j}\left(h_{i j}^{\alpha}\right)^{2}
$$

respectively. Moreover, the normal curvature tensor $\left\{R_{\alpha \beta k l}\right\}$, the Ricci curvature tensor $\left\{R_{i k}\right\}$ and the normalized scalar curvature R are expressed as

$$
\begin{align*}
R_{\alpha \beta k l} & =\sum_{m}\left(h_{k m}^{\alpha} h_{m l}^{\beta}-h_{l m}^{\alpha} h_{m k}^{\beta}\right) \\
R_{i k} & =(n-1) c \delta_{i k}+n \sum_{\alpha}\left(H_{\alpha}\right) h_{i k}^{\alpha}-\sum_{\alpha, j} h_{i j}^{\alpha} h_{j k}^{\alpha}, \\
R & =c+\frac{1}{n(n-1)}\left(n^{2} H^{2}-S\right) . \tag{9}
\end{align*}
$$

Define the first and the second covariant derivatives of $\left\{h_{i j}^{\alpha}\right\}$, say $\left\{h_{i j k}^{\alpha}\right\}$ and $\left\{h_{i j k l}^{\alpha}\right\}$ by

$$
\begin{gather*}
\sum_{k} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}+\sum_{k} h_{k j}^{\alpha} \omega_{k i}+\sum_{k} h_{i k}^{\alpha} \omega_{k j}+\sum_{\beta} h_{i j}^{\beta} \omega_{\beta \alpha} \tag{10}\\
\sum_{l} h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}+\sum_{m} h_{m j k}^{\alpha} \omega_{m i}+\sum_{m} h_{i m k}^{\alpha} \omega_{m j}+\sum_{m} h_{i j m}^{\alpha} \omega_{m k}+\sum_{\beta} h_{i j k}^{\beta} \omega_{\beta \alpha} . \tag{11}
\end{gather*}
$$

Then, by exterior differentiation of (5), we obtain the Codazzi equation

$$
\begin{equation*}
h_{i j k}^{\alpha}=h_{i k j}^{\alpha} . \tag{12}
\end{equation*}
$$

It follows from Ricci's identity that

$$
\begin{equation*}
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m} h_{m j}^{\alpha} R_{m i k l}+\sum_{m} h_{i m}^{\alpha} R_{m j k l}+\sum_{\beta} h_{i j}^{\beta} R_{\beta \alpha k l} . \tag{13}
\end{equation*}
$$

The Laplacian of $h_{i j}^{\alpha}$ is defined by $\Delta h_{i j}^{\alpha}=\sum_{k} h_{i j k k}^{\alpha}$. From (13), we have

$$
\begin{aligned}
\Delta h_{i j}^{\alpha}= & n H_{\alpha, i j}+\sum_{k, m} h_{k m}^{\alpha} R_{m i j k}+\sum_{k, m} h_{i m}^{\alpha} R_{m k j k}+\sum_{k, \beta} h_{i k}^{\beta} R_{\beta \alpha j k} \\
= & n H_{\alpha, i j}+n c h_{i j}^{\alpha}-n c H_{\alpha} \delta_{i j}+n \sum_{\beta, m} H_{\beta} h_{i m}^{\alpha} h_{m j}^{\beta}-\sum_{\beta} S_{\alpha \beta} h_{i j}^{\beta} \\
& +2 \sum_{\beta, k, m} h_{i k}^{\beta} h_{k m}^{\alpha} h_{m j}^{\beta}-\sum_{m, k, \beta} h_{i m}^{\alpha} h_{m k}^{\beta} h_{k j}^{\beta}-\sum_{\beta, k, m} h_{i k}^{\beta} h_{k m}^{\beta} h_{m j}^{\alpha},
\end{aligned}
$$

where $S_{\alpha \beta}=\sum_{i, j} h_{i j}^{\alpha} h_{i j}^{\beta}$ for all α and β. Define $N(A)=\sum_{i, j} a_{i j}^{2}$ for any real matrix $A=\left(a_{i j}\right)_{n \times n}$. Then we have

$$
\begin{align*}
\sum_{i, j} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha}= & n \sum_{i, j} H_{\alpha, i j} h_{i j}^{\alpha}+n c S_{\alpha}-c n^{2} H_{\alpha}^{2}+n \sum_{\beta} H_{\beta} \operatorname{Tr}\left(L_{\alpha}^{2} L_{\beta}\right) \\
& -\sum_{\beta} S_{\alpha \beta}^{2}-\sum_{\beta} N\left(L_{\alpha} L_{\beta}-L_{\beta} L_{\alpha}\right), \tag{14}
\end{align*}
$$

where $S_{\alpha}=\sum_{i, j}\left(h_{i j}^{\alpha}\right)^{2}$, for every α.

Suppose $H>0$ on M^{n} and choose $e_{n+1}=\xi / H$. Then it follows that

$$
\begin{equation*}
H_{n+1}=H ; \quad H_{\alpha}=0, \quad \alpha>n+1 . \tag{15}
\end{equation*}
$$

From (10) and (15) we can see

$$
\begin{equation*}
H_{n+1, k} \omega_{k}=d H, \quad H_{\alpha, k} \omega_{k}=H \omega_{n+1 \alpha} \quad \alpha>n+1 . \tag{16}
\end{equation*}
$$

From (11), (15) and (16) we have

$$
\begin{equation*}
H_{n+1, k l}=H_{k l}-\frac{1}{H} \sum_{\beta>n+1} H_{\beta, k} H_{\beta, l}, \tag{17}
\end{equation*}
$$

where $d H=\sum_{i} H_{i} \omega_{i}$ and $\nabla H_{k}=\sum_{l} H_{k l} \omega_{l} \equiv d H_{k}+H_{l} \omega_{l k}$ for all k.
Using (14) and (17), we have

$$
\begin{align*}
\sum_{i, j} h_{i j}^{n+1} \Delta h_{i j}^{n+1}= & n \sum_{i, j} H_{i j} h_{i j}^{n+1}-\frac{n}{H} \sum_{i, j} \sum_{\beta>n+1} H_{\beta, i} H_{\beta, j} h_{i j}^{n+1} \\
& +n c S_{n+1}-c n^{2} H^{2}+n H f_{n+1}-S_{n+1}^{2}-\sum_{\beta>n+1} S_{n+1 \beta}^{2} \\
& -\sum_{\beta>n+1} N\left(L_{n+1} L_{\beta}-L_{\beta} L_{n+1}\right) . \tag{18}
\end{align*}
$$

where $f_{n+1}=\operatorname{Tr}\left(L_{n+1}\right)^{3}$.
M. Okumura [8] established the following lemma (see also [1]).

Lemma 2.1. Let $\left\{a_{i}\right\}_{i=1}^{n}$ be a set of real numbers satisfying $\sum_{i} a_{i}=0, \sum_{i} a_{i}^{2}=$ t^{2}, where $t \geq 0$. Then we have

$$
-\frac{n-2}{\sqrt{n(n-1)}} t^{3} \leq \sum_{i} a_{i}^{3} \leq \frac{n-2}{\sqrt{n(n-1)}} t^{3},
$$

and the equalities hold if and only if at least $(n-1)$ of the a_{i} are equal.
Denote the eigenvalues of L_{n+1} by $\left\{\lambda_{i}^{n+1}\right\}_{i=1}^{n}$. Then we have

$$
\begin{equation*}
n H=\sum_{i} \lambda_{i}^{n+1}, \quad S_{n+1}=\sum_{i}\left(\lambda_{i}^{n+1}\right)^{2}, \quad f_{n+1}=\sum_{i}\left(\lambda_{i}^{n+1}\right)^{3} . \tag{19}
\end{equation*}
$$

Set $\bar{L}_{n+1}=L_{n+1}-H I_{n}, \quad \bar{f}_{n+1}=f_{n+1}-3 H S_{n+1}+2 n H^{3}, \quad \bar{S}_{n+1}=S_{n+1}-n H^{2}$, and $\bar{\lambda}_{i}^{n+1}=\lambda_{i}^{n+1}-H$, where I_{n} denotes the identity matrix of degree n. Then (19) changes into

$$
\begin{equation*}
0=\sum_{i} \bar{\lambda}_{i}^{n+1}, \quad \bar{S}_{n+1}=\sum_{i}\left(\bar{\lambda}_{i}^{n+1}\right)^{2}, \quad \bar{f}_{n+1}=\sum_{i}\left(\bar{\lambda}_{i}^{n+1}\right)^{3} . \tag{20}
\end{equation*}
$$

By applying Okumura's Lemma to \bar{f}_{n+1}, we have
$\bar{f}_{n+1} \geq-\frac{n-2}{\sqrt{n(n-1)}} \bar{S}_{n+1} \sqrt{\bar{S}_{n+1}} \Longleftrightarrow f_{n+1} \geq 3 H S_{n+1}-2 n H^{3}-\frac{n-2}{\sqrt{n(n-1)}} \bar{S}_{n+1} \sqrt{\bar{S}_{n+1}}$.
So we have

$$
\begin{align*}
& n c S_{n+1}-c n^{2} H^{2}+n H f_{n+1}-S_{n+1}^{2} \\
\geq & \bar{S}_{n+1}\left\{n c-\left(\bar{S}_{n+1}-n H^{2}\right)-n(n-2) H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}}\right\} . \tag{21}
\end{align*}
$$

It follows from (15) that

$$
\begin{equation*}
\sum_{\beta>n+1} S_{n+1 \beta}^{2}=\sum_{\beta>n+1}\left\{\sum_{i, j}\left(h_{i j}^{n+1}-H \delta_{i j}\right) h_{i j}^{\beta}\right\}^{2} . \tag{22}
\end{equation*}
$$

Denote $S_{I}=\sum_{\beta>n+1} S_{\beta}$. From (22), we have

$$
\begin{equation*}
\sum_{\beta>n+1} S_{n+1 \beta}^{2} \leq \bar{S}_{n+1} S_{I} \tag{23}
\end{equation*}
$$

Let $T=\sum_{i, j} T_{i j} \omega_{i} \omega_{j}$ be a symmetric tensor on M^{n} defined by

$$
\begin{equation*}
T_{i j}=h_{i j}^{n+1}-n H \delta_{i j} . \tag{24}
\end{equation*}
$$

We introduce an operator \square associated to T acting on $f \in C^{2}\left(M^{n}\right)$ by

$$
\square f=\sum_{i, j} T_{i j} f_{i j}=\sum_{i, j} h_{i j}^{n+1} f_{i j}-n H \Delta f,
$$

where Δ is the Laplacian. Since $\left(T_{i j}\right)$ is divergence-free, it follows from [2] that the operator \square is self-adjoint relative to the L^{2}-inner product of M^{n}.

Choosing $f=H$ in above expression, we have

$$
\begin{equation*}
\sum_{i, j} h_{i j}^{n+1} H_{i j}=\square H+n H \Delta H . \tag{25}
\end{equation*}
$$

Denote $\bar{S}=\bar{S}_{n+1}+S_{I}$. Substituting (21), (23) and (25) into (18), we get

$$
\begin{align*}
\sum_{i, j} h_{i j}^{n+1} \Delta h_{i j}^{n+1} \geq & n \square H+\frac{1}{2} n^{2} \Delta\left(H^{2}\right)-n^{2}|\nabla H|^{2} \\
& -\frac{n}{H} \sum_{\beta>n+1} \sum_{i, j} H_{\beta, i} H_{\beta, j} h_{i j}^{n+1} \\
& -\sum_{\beta>n+1} N\left(L_{n+1} L_{\beta}-L_{\beta} L_{n+1}\right) \\
& +\bar{S}_{n+1}\left\{n c+n H^{2}-\bar{S}-n(n-2) H \sqrt{\left.\frac{\bar{S}_{n+1}}{n(n-1)}\right\}}\right. \tag{26}
\end{align*}
$$

In codimension one case, Cheng-Yau [2] gave a lower estimation for $|\nabla \sigma|^{2}$, the square of the length of the covariant derivative of σ. They proved that, for a hypersurface in a space form of constant scalar curvature c, if the normalized scalar curvature R is constant and $R \geq c$, then $|\nabla \sigma|^{2} \geq n^{2}|\nabla H|^{2}$.

In higher codimension cases, Hou [3] proved the following
Lemma 2.2. Let M^{n} be a connected submanifold in $M^{n+p}(c)$ with nowhere zero mean curvature H. If R is constant and $R \geq c$, then

$$
\begin{equation*}
|\nabla \sigma|^{2}=\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2} \geq n^{2}|\nabla H|^{2} . \tag{27}
\end{equation*}
$$

Moreover,
(i) when $R-c>0$, if the equality in (27) holds on M^{n}, then H is constant.
(ii) when $R-c=0$, if the equality in (27) holds on M^{n}, then either H is constant or $S_{I}=0$ on M^{n} and M^{n} lies in a totally geodesic subspace $M^{n+1}(c)$ of $M^{n+p}(c)$.

3 Submanifolds with flat normal bundle

In this section, we propose to study the rigidity problem for submanifolds in H^{n+p}. We continue use the same notations as in section 2 . Let M^{n} be a compact submanifold in H^{n+p}, suppose that the normalized mean curvature vector field ξ / H is parallel and choose $e_{n+1}=\xi / H$. Then $\omega_{n+1 \alpha}=0$ for all α. It follows from (11) and (16) that

$$
\begin{equation*}
H_{\alpha, k}=0, \quad H_{\alpha, k l}=0, \tag{28}
\end{equation*}
$$

for all $\alpha>n+1$ and $k, l=1, \cdots, n$.
Suppose in addition that the normal bundle of M^{n} is flat. Then

$$
\begin{equation*}
\Omega_{\alpha \beta}=-\frac{1}{2} R_{\alpha \beta k l} \omega_{k} \wedge \omega_{l}=0, \tag{29}
\end{equation*}
$$

for all α and β on M^{n}. For all α and β we have $L_{\alpha} L_{\beta}=L_{\beta} L_{\alpha}$, which is equivalent to that $\left\{L_{\alpha}\right\}_{\alpha=n+1}^{n+p}$ can be diagonized simultaneously.

We denote the eigenvalues of L_{α} by $\left\{\lambda_{1}^{\alpha}, \cdots, \lambda_{n}^{\alpha}\right\}$ for every α. It follows from [15] that

$$
\begin{equation*}
\frac{1}{2} \Delta S=\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n \sum_{i, j, \alpha} H_{\alpha, i j} h_{i j}^{\alpha}+\sum_{\alpha} \sum_{i<j} K_{i j}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2}, \tag{30}
\end{equation*}
$$

where $K_{i j}=-1+\sum_{\beta} \lambda_{i}^{\beta} \lambda_{j}^{\beta}$ denotes the sectional curvature of M^{n} corresponding to the plane section spanned by $\left\{e_{i}, e_{j}\right\}$ for every pair of $i<j$.

Assume that R is constant and $R+1 \geq 0$. From (25) and (28), we have

$$
\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n \sum_{i, j, \alpha} H_{\alpha, i j} h_{i j}^{\alpha}=n \square H+\frac{1}{2} \Delta\left(n^{2} H^{2}\right)+\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}-n^{2}|\nabla H|^{2} .
$$

Note that $\Delta S=\Delta\left(n^{2} H^{2}\right)$. Therefore (30) turns into

$$
0=n \square H+\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}-n^{2}|\nabla H|^{2}+\sum_{i<j} \sum_{\alpha} K_{i j}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2} .
$$

Integrating the both sides of above equality on M^{n}, we have

$$
0=\int_{M^{n}}\left(\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}-n^{2}|\nabla H|^{2}\right) * 1+\sum_{i<j} \sum_{\alpha} \int_{M^{n}} K_{i j}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2} * 1 .
$$

If $K_{i j} \geq 0$ on M^{n}, it follows from (27) and the above equality that

$$
\begin{equation*}
\sum_{(i, j, k, \alpha)}\left(h_{i j k}^{\alpha}\right)^{2} \equiv n^{2}|\nabla H|^{2} ; \quad K_{i j}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2} \equiv 0 \tag{31}
\end{equation*}
$$

for every α and $i<j$. Hence we can prove the following theorem
Theorem 3.1. Let M^{n} be a compact submanifold with non-negative sectional curvature in H^{n+p}. Suppose that the normal bundle $N(M)$ is flat and the normalized mean curvature vector is parallel. If R is constant and $R+1 \geq 0$, then either $M^{n}=M_{1} \times M_{2} \times \ldots \times M_{k}$ such that each M_{i} is a minimal submanifold of a totally umbilical submanifold $N_{i}($ with codimension $>0)$ and the N_{i} 's are mutually
perpendicular along their intersections; or M^{n} lies in a totally geodesic subspace H^{n+1} of H^{n+p}.

Proof. From the first equality of (31) and Lemma 2.2, we have that either H is constant or $S_{I}=0$ on M^{n}. If H is constant on M^{n}, then ξ is parallel. Hence the proof follows from the result of Yau (Theorem 9, [16]). Otherwise, if $S_{I}=0$ on M^{n}, then M^{n} lies in a totally geodesic subspace H^{n+1} of H^{n+p} and this completes the proof of the Theorem 3.1.

In [10], Ryan completely classified the complete hypersurfaces with at most two distinct constant principal curvatures in H^{n+1}, from this we know that the compact hypersurface in H^{n+1} with at most two distinct constant principal curvatures is totally umbilical. Using this fact and making the same process of the proof of Theorem 2 and Theorem 3 in [5], we can obtain the following theorem

Theorem 3.2. Let M^{n} be an n-dimensional ($n \geq 3$) compact hypersurface with constant normalized scalar curvature R in H^{n+1}. If
(1) $\bar{R}=R+1 \geq 0$,
(2) the norm square S of the second fundamental form of M^{n} satisfies

$$
\begin{equation*}
n \bar{R} \leq S \leq \frac{n}{(n-2)(n \bar{R}-2)}\left[n(n-1) \bar{R}^{2}-4(n-1) \bar{R}+n\right] \tag{32}
\end{equation*}
$$

then M^{n} is a totally umbilical hypersurface.
Now we want to extend the above theorem to higher codimensional case. For this purpose, we need the following

Lemma 3.1 [11]. Let A and B be $n \times n$-symmetric matrices satisfying $\operatorname{Tr} A=0$, $\operatorname{Tr} B=0$ and $A B-B A=0$. Then

$$
\begin{equation*}
-\frac{n-2}{\sqrt{n(n-1)}}\left(\operatorname{Tr} A^{2}\right)\left(\operatorname{Tr} B^{2}\right)^{1 / 2} \leq \operatorname{Tr} A^{2} B \leq \frac{n-2}{\sqrt{n(n-1)}}\left(\operatorname{Tr} A^{2}\right)\left(\operatorname{Tr} B^{2}\right)^{1 / 2} \tag{33}
\end{equation*}
$$

and the equality holds on the right (resp. left) hand side if and only if $n-1$ of the eigenvalues x_{i} of A and the corresponding eigenvalues y_{i} of B satisfy

$$
\left|x_{i}\right|=\frac{\left(\operatorname{Tr} A^{2}\right)^{1 / 2}}{\sqrt{n(n-1)}}, \quad x_{i} x_{j} \geq 0, \quad y_{i}=-\frac{\left(\operatorname{Tr} B^{2}\right)^{1 / 2}}{\sqrt{n(n-1)}} \quad\left(\text { resp. } \quad y_{i}=\frac{\left(\operatorname{Tr} B^{2}\right)^{1 / 2}}{\sqrt{n(n-1)}}\right) .
$$

Choose a suitable normal frame field $\left\{e_{\beta}\right\}_{\beta=n+2}^{n+p}$ such that $S_{\alpha \beta}=0$ for all $\alpha \neq \beta$. Then

$$
\begin{equation*}
\sum_{\alpha, \beta>n+1} S_{\alpha \beta}^{2}=\sum_{\beta>n+1} S_{\beta}^{2} \leq S_{I}^{2}, \tag{34}
\end{equation*}
$$

where the equality holds if and only if at least $p-2$ numbers of S_{α} 's are zero.
Taking sum with respect to $\alpha>n+1$ on both-sides of (14), we have

$$
\begin{align*}
\sum_{i, j, \alpha>n+1} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha}= & \left(-n+n H^{2}\right) S_{I}+n H \sum_{\alpha>n+1} \operatorname{Tr}\left(L_{\alpha}^{2} \bar{L}_{n+1}\right) \\
& -\sum_{\alpha>n+1} S_{n+1 \alpha}^{2}-\sum_{\alpha>n+1} S_{\alpha}^{2} . \tag{35}
\end{align*}
$$

Using the left hand side of (33) to $\operatorname{Tr}\left(L_{\alpha}^{2} \bar{L}_{n+1}\right)$, we have

$$
\operatorname{Tr}\left(L_{\alpha}^{2} \bar{L}_{n+1}\right) \geq-(n-2) S_{\alpha} \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} .
$$

Substituting this into (35) and using (23) and (34), we have

$$
\begin{equation*}
\sum_{i, j, \alpha>n+1} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha} \geq S_{I}\left\{\left(-n+n H^{2}\right)-n(n-2) H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}}-\bar{S}\right\} . \tag{36}
\end{equation*}
$$

Substituting (28) into (26), we have

$$
\begin{align*}
\sum_{i, j} h_{i j}^{n+1} \Delta h_{i j}^{n+1} & \geq n \square H+\frac{1}{2} \Delta\left(n^{2} H^{2}\right)-n^{2}|\nabla H|^{2} \\
& +\bar{S}_{n+1}\left\{\left(-n+n H^{2}\right)-n(n-2) H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}}-\bar{S}\right\} . \tag{37}
\end{align*}
$$

Note that $\Delta S=\Delta\left(n^{2} H^{2}\right)$ and

$$
\begin{equation*}
\frac{1}{2} \Delta S=\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i, j} h_{i j}^{n+1} \Delta h_{i j}^{n+1}+\sum_{i, j, \alpha>n+1} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha} . \tag{38}
\end{equation*}
$$

From (36), (37) and (38), we obtain

$$
\begin{align*}
0 \quad & \geq n \square H+\sum_{(i, j, k, \alpha)}\left(h_{i j k}^{\alpha}\right)^{2}-n^{2}|\nabla H|^{2} \\
& +\bar{S}\left\{\left(-n+n H^{2}\right)-n(n-2) H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}}-\bar{S}\right\} . \tag{39}
\end{align*}
$$

Note that

$$
\begin{equation*}
\bar{S}_{n+1} \leq \bar{S}_{n+1}+S_{I}=\bar{S} \tag{4}
\end{equation*}
$$

Substituting (40) into (39) and using (27), we have

$$
\begin{equation*}
0 \geq n \square H+\bar{S}\left\{\left(-n+n H^{2}\right)-\frac{n-2}{\sqrt{n-1}} H \sqrt{n \bar{S}}-\bar{S}\right\} . \tag{41}
\end{equation*}
$$

Integrating the both sides of (41) on M^{n}, we have

$$
\begin{equation*}
0 \geq \int_{M^{n}} \bar{S}\left\{\left(-n+n H^{2}\right)-\frac{n-2}{\sqrt{n-1}} H \sqrt{n \bar{S}}-\bar{S}\right\} * 1 \tag{42}
\end{equation*}
$$

Therefore we can prove the following
Theorem 3.3. Let $M^{n}(n \geq 3)$ be a compact submanifold with parallel normalized mean curvature vector field immersed into H^{n+p}. Suppose that R is constant and $\bar{R}=R+1 \geq 0$. If the normal bundle $N(M)$ is flat and

$$
\begin{equation*}
n \bar{R} \leq S \leq \frac{n}{(n-2)(n \bar{R}-2)}\left[n(n-1) \bar{R}^{2}-4(n-1) \bar{R}+n\right], \tag{43}
\end{equation*}
$$

then M^{n} is totally umbilical.
Proof. By (9), we know

$$
\begin{equation*}
\bar{S}=S-n H^{2}=\frac{n-1}{n}(S-n \bar{R}) . \tag{44}
\end{equation*}
$$

By use of (42) and (44), we get
$0 \geq \int_{M^{n}} \frac{n-1}{n}(S-n \bar{R})\left[-n+2(n-1) \bar{R}-\frac{n-2}{n} S-\frac{n-2}{n} \sqrt{(n(n-1) \bar{R}+S)(S-n \bar{R})}\right]$.
It is a direct check that our assumption condition (43), i.e.

$$
\begin{equation*}
S \leq \frac{n}{(n-2)(n \bar{R}-2)}\left[n(n-1) \bar{R}^{2}-4(n-1) \bar{R}+n\right], \tag{46}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\left(-n+2(n-1) \bar{R}-\frac{n-2}{n} S\right)^{2} \geq \frac{(n-2)^{2}}{n^{2}}(n(n-1) \bar{R}+S)(S-n \bar{R}) \tag{47}
\end{equation*}
$$

But it is clear from (46) that (47) is equivalent to

$$
\begin{equation*}
-n+2(n-1) \bar{R}-\frac{n-2}{n} S \geq \frac{n-2}{n} \sqrt{(n(n-1) \bar{R}+S)(S-n \bar{R})} \tag{48}
\end{equation*}
$$

From (45) and (48), we have either

$$
\begin{equation*}
S=n \bar{R} \tag{49}
\end{equation*}
$$

and M^{n} is totally umbilical; or

$$
\begin{equation*}
S=\frac{n}{(n-2)(n \bar{R}-2)}\left[n(n-1) \bar{R}^{2}-4(n-1) \bar{R}+n\right] . \tag{50}
\end{equation*}
$$

In the latter case, all of the inequalities concerned become equalities. From (40), we have $S_{I}=0$. So M^{n} lies in a totally geodesic subspace H^{n+1} of H^{n+p}. The rest of the proof follows from Theorem 3.2. This completes the proof of Theorem 3.3.

Acknowledgements

This work was carried out during the author's visit to Max-Planck-Institut für Mathematik in Bonn. The author would like to express his thanks to Professor Yuri Manin for the invitation and very warm hospitality.

References

[1] H. Alencar and M. P. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120(1994), 1223-1229.
[2] S.Y. Cheng and S.T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225(1977), 195-204.
[3] Z. H. Hou, Submanifolds of constant scalar curvature in a hyperbolic space form, Taiwanese J. of Math., 3(1999), 53-70.
[4] H.B. Lawson, Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2), 89(1969), 187-197.
[5] H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305(1996), 665-672.
[6] J.M. Morvan and B.Q. Wu, Hypersurfaces with constant mean curvature in hyperbolic space form, Geom. Dedicata, 59(1996), 197-222.
[7] K. Nomizu and B. Smyth, A formula of Simon's type and hypersurfaces with constant mean curvature, J. Diff. Geom., 3(1969), 367-377.
[8] M. Okumuru, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math., 96(1974), 207-213.
[9] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19(1967), 205-214.
[10] P.J. Ryan, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8(1971), 251-259.
[11] W. Santos, Submanifolds with parallel mean curvature vector in spheres, Tôhoku Math. J., 46(1994), 403-415.
[12] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88(1968), 62-105.
[13] R. Walter, Compact hypersurfaces with a constant higher mean curvature function, Math. Ann., 270(1985), 125-145.
[14] B.Q. Wu, Hypersurface with constant mean curvature in H^{n+1}, The Math. Heritage of C. F. Gauss, World Scientific, Singapore, 1991, 862-871.
[15] K. Yano and S. Ishihara, Submanifolds with parallel constant mean curvature vector, J. Diff. Geom., 6(1971), 95-118.
[16] S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96(1974), 346-366; 97 (1975), 76-100.

Department of Applied Mathematics
Dalian University of Technology
Dalian 116024
P.R. China

E-mail: xmliu@dlut.edu.cn

[^0]: Received by the editors February 2001.
 Communicated by L. Vanhecke.
 1991 Mathematics Subject Classification : 53C40, 53C42, 53C50.
 Key words and phrases : scalar curvature, flat normal bundle, hyperbolic space form.

