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Abstract

In this paper we give some rigidity results for compact submanifolds in a
hyperbolic space form with flat normal bundle to be totally umbilical.

1 Introduction

Let M™P(c) be an (n+p)-dimensional Riemannian manifold with constant sectional
curvature c¢. We also call it a space form. When ¢ > 0, M"P(c) = S"*P(c) (i.e.
(n + p)-dimensional sphere space); when ¢ = 0, M"*(¢) = R"? (i.e. (n + p)-
dimensional Euclidean space); when ¢ < 0, M"*?(¢c) = H"'P(¢) (i.e. (n + p)-
dimensional hyperbolic space). We simply denote H"*P(—1) by H"*?. Let M™ be an
n-dimensional submanifold in M™*?(¢). As it is well known, there are many rigidity
results for minimal submanifolds or submanifolds with constant mean curvature H
in M"™(c) (¢ > 0) by use of J. Simons’ method, for example, see [1], [4], [7], [12],
etc., but less of that were obtained for submanifolds immersed into a hyperbolic
space from. Walter [13] gave a classification for non-negatively curved compact
hypersurfaces in a space form under the assumption that the rth mean curvature is
constant. Morvan-Wu [6], Wu [14] also proved some rigidity theorems for complete
hypersurfaces M™ in a hyperbolic space form H"!(c) under the assumption that
the mean curvature is constant and the Ricci curvature is non-negative. Moreover,
they proved that M™ is a geodesic distance sphere in H""!(c) provided that it is
compact.

Received by the editors February 2001.

Communicated by L. Vanhecke.

1991 Mathematics Subject Classification : 53C40, 53C42, 53C50.

Key words and phrases : scalar curvature, flat normal bundle, hyperbolic space form.

Bull. Belg. Math. Soc. 9(2002), 405—41/



406 L. Ximin

On the other hand, Cheng-Yau [2] firstly studied the rigidity problem for a
hypersurface with constant scalar curvature in a space form by introducing a self-
adjoint second order differential operator. Later, Hou [3] extended Cheng-Yau’s
technique to higher codimensional cases and studied the rigidity problem for closed
submanifolds with constant scalar curvature in a hyperbolic space form.

In the present paper, we would like to use Cheng-Yau’s technique to study the
rigidity problem for compact submanifolds in a hyperbolic space form with flat
normal bundle.

2 Preliminaries

Let M™ be an n-dimensional compact submanifold immersed in an (n+p)-dimensional
Riemannian manifold M"*?(c) of constant curvature c¢. We choose a local field of
orthonormal frames ey, . .., e,4, in M"™*P(c) such that at each point of M™, ey, ..., e,
span the tangent space of M™ and form an orthonormal frame there. Let wy, ..., wy4p
be its dual frame field. In this paper, we use the following convention on the range
of indices:

Then the structure equations of M™*?(¢) are given by

dwa = wap Awp, wap+wpa =0, (1)
B
1
dwap = wac Nwep — B > Kapcpwe Awp, (2)
c CD
Kapep = c(6acdpp — d0apdpe)- (3)

Restrict these form to M™, we have
wo =0, n+l1<a<n+np. (4)
From Cartan’s lemma we can write

Wai = Z h%wj, h% = h?z (5)
J

From these formulas, we obtain the structure equations of M™:

dw; = Zwij ANwj, wij +wj =0, (6)
J
1
dwij = wik A wij — 3 > Rijrwr, A wi, (7)
% Kl
Rijir = (i1 — 6ubj) + > (h5.hS — hhsy), (8)

where R;;; are the components of the curvature tensor of M".
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Denote Ly = (A )nxn and Hy = (1/n) 3, hf; for a =n+1,--- ,n+p. Then the

mean curvature vector field £, the mean curvature H and the square of the length
of the second fundamental form S are expressed as

SZ ZHaeaa H = |§|7 S = Z(h%)Qa

a,t,J

respectively. Moreover, the normal curvature tensor {Ragr}, the Ricci curvature
tensor { R;,} and the normalized scalar curvature R are expressed as

Raﬁkl = Z(h’gmhil - hlamh’fnk)?

m

Rik = (n — 1) C(Sik + nZ(Ha)hfﬁg - Z h’%h?k’
@ a,j

1 2
— c+——(H>=5). 9
R C+n(n—1)<n %) 9)
Define the first and the second covariant derivatives of {hg;}, say {hg;} and
{h%kl} by
Z h%‘kwk = dh% + Z hgjwki + Z h?kwkj —+ Z hfjwﬁa, (10)
k k k 8

S S awr = RS+ > R i + D By Y RS wok + Y hwga. (1)
! m m m 8

Then, by exterior differentiation of (5), we obtain the Codazzi equation

It follows from Ricci’s identity that
W — & = > B Rt + > B Rt + > B Rgan. (13)
m m B

The Laplacian of h¢; is defined by AR = 3, hy,. From (13), we have

AR = nHag+ S0 Rt + 308 Rk + 3 W R

k,m k,m k,3
= nHy;;+nchi —ncHyi;+n Z thf‘mhfnj — Z Saghfj
B,m 8

+2 > hfkh?mhrﬁnj - h’zthikhgj - > hfkhgmhgzp
67k7m m7k7ﬁ 137k7m

where So3 = >, heh? for all a and (. Define N(A) =3, ; a? for any real matrix

J "Yigtlig ij
A = (aij)nxn- Then we have

Y OhEARY = nY Hagh$ +neS, — cn*HZ +nY HgTr(L2Lg)
i,j i3 g

-> Sgﬁ — Y N(LoLg — LgL,), (14)
B8 B8

where S, =3, ;(hg;)?, for every a.
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Suppose H > 0 on M"™ and choose e, = {/H. Then it follows that
H,..=H, H,=0, a>n+1. (15)
From (10) and (15) we can see
Hyqpwiy =dH, Hypwp = Hopiia a>n-+1. (16)
From (11), (15) and (16) we have

1
Hyyim = Hy — 7 Z HgrHgy, (17)

B>n+1

where dH =%, Hw; and VH, =Y, Hyw; = dHy, + Hywy, for all k.
Using (14) and (17), we have

jz:h%+hﬁhzfl — 71§E:fﬂjhz+l 2:: E: -H%Zliﬁjhn+1

1,7 1,7 1,j B>n+1
—i—ncSnH —cn®*H* +nHfp 1 — Z +1ﬁ
B>n+1
— > N(LnwiLg — LgLpyr). (18)
B>n+1

where f1 = Tr(L,1)3.
M. Okumura [8] established the following lemma (see also [1]).
Lemma 2.1. Let {a;}"; be a set of real numbers satisfying >, a; =0, >, a
2 where t > 0. Then we have

2 e ad <
n(n —1) Z n(n —1)

n—2 _n=2 5

and the equalities hold if and only if at least (n — 1) of the a; are equal.
Denote the eigenvalues of L,;1 by {\?*1}”_,. Then we have

nH = ZX;Ha Sn+1 = Z ()\?+1)2’ fn+1 = Z ()\?H)g- (19)

Set I__’n+1 = Lpi1 — HIy,o fop1 = fas1 = 3HSp1 + 2nH3, S = Sppq — nH?,
and A\ = \I'"'! — H where I,, denotes the identity matrix of degree n. Then (19)
changes into

0= Z S\?H’ SYn+1 = Z(S‘?H)Qa fn+1 = Z(S\?H)g- (20)
By applying Okumura’s Lemma to f,1, we have
= n—2 — — n—2 _ —
fos1 > ———=S8,11\/Sn+1 < fui1 > 3HS1—2nH*——=—35, .1\/ Sy 1.
n(n —1) n(n —1)
So we have
necSpin —cn’H? +nHf g — SELH
_ _ S,
> Sp{nc— (S, —nH?) —n(n —2)H,| —+ 1. (21)

n(n —1)
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It follows from (15) that

Z +16_ Z {Z hnﬂ Hé@] j}2' (22>

B>n+1 B>n+1 4,5

Denote S; = Y 55,41 53. From (22), we have

> Snip < SasaSr (23)

B>n+1

Let T'= 3, ; Tijwjw; be a symmetric tensor on M™ defined by
We introduce an operator O associated to T acting on f € C%(M") by
Df:ZEjflj Zhn+1fzj_nHAf7
i3

where A is the Laplacian. Since (7};) is divergence-free, it follows from [2] that the
operator O is self-adjoint relative to the L2-inner product of M™.
Choosing f = H in above expression, we have

Zh"“H = 0H +nHAH. (25)

Denote S = S, 1 + S;. Substituting (21), (23) and (25) into (18), we get

1
STORETARET > nOH + 5n?A(HQ) —n?|VH|?

i
— 33 HaaHyhly

,6’>n+1 @]
o Z N(Ln1Lp — LgLns1)
B>n+1

_ _ S
2§ p(n— _Oni1
HSwafnetnH? =8 —n(n = 29H, —oES)(26)

In codimension one case, Cheng-Yau [2] gave a lower estimation for |Vo|?, the
square of the length of the covariant derivative of o. They proved that, for a hy-
persurface in a space form of constant scalar curvature ¢, if the normalized scalar
curvature R is constant and R > ¢, then |Vo|? > n*|VH|%

In higher codimension cases, Hou [3] proved the following

Lemma 2.2. Let M™ be a connected submanifold in M"P(¢) with nowhere
zero mean curvature H. If R is constant and R > ¢, then

Vo> = > (hf;k) > n?|VH|. (27)

B9,k

Moreover,
(i) when R — ¢ > 0, if the equality in (27) holds on M™, then H is constant.
(ii) when R—c = 0, if the equality in (27) holds on M™, then either H is constant
or S; =0 on M" and M™ lies in a totally geodesic subspace M""!(c) of M™*?(c).
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3 Submanifolds with flat normal bundle

In this section, we propose to study the rigidity problem for submanifolds in H"*?.
We continue use the same notations as in section 2. Let M™ be a compact sub-
manifold in H™"P suppose that the normalized mean curvature vector field £/H is
parallel and choose e,1 = &/H. Then w1, = 0 for all a. It follows from (11) and
(16) that

Hyp=0, Hyum=0, (28)

forala>n+1land k,l=1,--- n
Suppose in addition that the normal bundle of M™ is flat. Then

1
Qup = _§Raﬁklwk ANwp =0, (29)

for all  and 3 on M™. For all o and 3 we have L,Lg = LgL,, which is equivalent
to that {L,}n’? ; can be diagonized simultaneously.

We denote the eigenvalues of L, by {A{,---, A%} for every a. It follows from
[15] that
1
55 = Yo (h$)? +n > Hogihi +> 0> Kij(AY — A9) (30)
i,5,k,a ,J,0 a i<j

where K;; = =1+ 34 )\f )\f denotes the sectional curvature of M™ corresponding to
the plane section spanned by {e;, e;} for every pair of i < j.
Assume that R is constant and R+ 1 > 0. From (25) and (28), we have

> (hiw) +nZHM]hO‘_nDH+ A( PH?) + > (hiy)? —n’|VH.

i,5,k,« 1,J,00 i,5,k,«

Note that AS = A(n?H?). Therefore (30) turns into

0=nOH+ > (h5y)? —n?|[VHP + Y3 Ki(AF — A9)%

1,5,k,« <y o

Integrating the both sides of above equality on M", we have

O:/M"<Z<Zk> —HQ\VH\Q)*1+ZZ/ (A —A9)? 1

1,5,k a i<j «
If K;; >0 on M", it follows from (27) and the above equality that

> (W) =0 VAP KA - A9 =0, (31)

(i7j7k7?a)

for every o and ¢ < j. Hence we can prove the following theorem

Theorem 3.1. Let M" be a compact submanifold with non-negative sectional
curvature in H"*?. Suppose that the normal bundle N (M) is flat and the normalized
mean curvature vector is parallel. If R is constant and R 4+ 1 > 0, then either
M™ = M; x My x ... x M, such that each M, is a minimal submanifold of a
totally umbilical submanifold N; (with codimension > 0) and the N;’s are mutually
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perpendicular along their intersections; or M™ lies in a totally geodesic subspace
H"Y of H™P,

Proof. From the first equality of (31) and Lemma 2.2, we have that either H is
constant or Sy = 0 on M™. If H is constant on M™, then ¢ is parallel. Hence the
proof follows from the result of Yau (Theorem 9, [16]). Otherwise, if S; = 0 on M™,
then M™ lies in a totally geodesic subspace H"*! of H™? and this completes the
proof of the Theorem 3.1.

In [10], Ryan completely classified the complete hypersurfaces with at most two
distinct constant principal curvatures in H"*!, from this we know that the compact
hypersurface in H"*! with at most two distinct constant principal curvatures is
totally umbilical. Using this fact and making the same process of the proof of
Theorem 2 and Theorem 3 in [5], we can obtain the following theorem

Theorem 3.2. Let M" be an n-dimensional (n > 3) compact hypersurface with
constant normalized scalar curvature R in H""!. If

(1) R=R+1>0,

(2) the norm square S of the second fundamental form of M" satisfies

(n—2)(nR —2) In(

nR<S< n—1R?—4(n—1)R+n], (32)
then M™ is a totally umbilical hypersurface.

Now we want to extend the above theorem to higher codimensional case. For
this purpose, we need the following

Lemma 3.1 [11]. Let A and B be n X n-symmetric matrices satisfying Tr A = 0,
TrB=0and AB— BA=0. Then

-2
S (Tr A)(Tr BY)Y? < Tr A%B <
n(n—1) n(n—1)

n —

(Tr A?)(Tr 32)1/2, (33)

and the equality holds on the right (resp. left) hand side if and only if n — 1 of the
eigenvalues x; of A and the corresponding eigenvalues y; of B satisfy

(Tr A%)1/2 _ (Tr B%)1/? (Tr32)1/2>

|xz‘ = m7 T Xj >0, Yi = (1) ( resp. Yi = \/m

Choose a suitable normal frame field {eg}giﬁ .o such that S5 = 0 for all a # 3.

Then
S os,- Y sies e

a,B>n+1 B>n+1

where the equality holds if and only if at least p — 2 numbers of S,’s are zero.
Taking sum with respect to & > n + 1 on both-sides of (14), we have

Yo hgARY = (—n+nH*)S +nH Y Tr(LiLy.)
ijya>nt1 azntl

o Z Sr2z+la_ Z ng (35>

a>n+1 a>n+1

Using the left hand side of (33) to Tr(L2L,,1), we have

Sn+1

Tr(L2Lp) > —(n— 2)Sa e
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Substituting this into (35) and using (23) and (34), we have

> hEARY >SS (—n+nH?) —n(n—2)H O gl (36)
i,5,a>n+1 n(n B 1)

Substituting (28) into (26), we have

1
STREIARST > nOH + 5A(nQHQ) —n?|VH|?
i

n(n—1

+Spt1 {(—n +nH?) —n(n—2)H Sniﬂ) - 5’} . (37)

Note that AS = A(n?H?) and

1 [0 2 n n [e% (6%
JAS =3 (Bw)” + 2R ARG+ ST b AR, (38)
1,5,k a 2, i,j,a>n—+1
From (36), (37) and (38), we obtain
0 >nO0H+ > (h%k)Z —n?|VH|?
(i7j7k7’a)
+S{ (—n+nH?) —n(n —2)H S St (39)
n(n—1)
Note that B B B
Spt1 < Spp1 +Sr=5. (40)
Substituting (40) into (39) and using (27), we have
_ -2 — _
02nDH+S{(—n+nH2)—;mHVnS—S}. (41)
Integrating the both sides of (41) on M™, we have
_ n—2 — _
0>/ S{(—n+nH?) — HVnS — S}« 1. 42
= . {( n+nH?) i1 n } * (42)

Therefore we can prove the following

Theorem 3.3. Let M" (n > 3) be a compact submanifold with parallel normal-
ized mean curvature vector field immersed into H™*P. Suppose that R is constant
and R = R+ 1> 0. If the normal bundle N (M) is flat and

n _ _

nR<S< [n(n —1)R* — 4(n — 1)R + n), (43)

~ (n—2)(nR-2)

then M™ is totally umbilical.
Proof. By (9), we know

S:S—nHZZR—_l

n

(S —nR). (44)
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By use of (42) and (44), we get

n—1 _ - n—2_, n—2 = =
0> —nR)[-n+2(n—1)R— . 1 —nR).
> [ = (S—nR)[-nt2(n—1) RS V(n(n —1)R+ 5)(S — nR)]
(45)
It is a direct check that our assumption condition (43), i.e.
n _ _
< . — )R> —4(n—1 4
S < (n—2)(nR—2)[n(n )R (n—1)R+nl, (46)
is equivalent to
_p2 P _ _
(—n+%n—DR—nn Sf2<nﬁ>(Mn—DR+SXS—nm. (47)
But it is clear from (46) that (47) is equivalent to
_ -9 -2 = -
n+2n—1)R-" —=5> n - Jn =R+ S)(S—nR).  (48)
From (45) and (48), we have either
S =nR, (49)
and M" is totally umbilical; or
n _ _
= _ —DR>—4(n—-1 .
S eI [n(n—1)R (n—1)R+ n] (50)

In the latter case, all of the inequalities concerned become equalities. From (40), we
have S; = 0. So M™ lies in a totally geodesic subspace H"*! of H"*?. The rest of
the proof follows from Theorem 3.2. This completes the proof of Theorem 3.3.
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