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Abstract

We obtain the characteristic numbers of the variety of non degenerate
cuspidal plane cubics in P3, namely, the non-zero intersection numbers which
arise from considering 10 (possibly repeated) conditions from among the fol-
lowing: P , that the cuspidal cubic go through a point; ν, that the cuspidal
cubic intersect a line; and ρ, that the cuspidal cubic be tangent to a plane. In
order to reach this goal, we consider a suitable compactification of the variety
of non degenerate cuspidal plane cubics in P3 and we calculate, using several
degeneration formulae, some of its non-zero intersection numbers, including
all the characteristic ones.

1 Introduction

The characteristic numbers problem for families of algebraic curves in P2 deals with
how many prefixed degree plane curves there are through a given number of points
and tangent to a given number of lines. Maillard [5] and Zeuthen [11] independently
found the characteristic numbers of the family of cuspidal cubics in P2; their results
were refined by Schubert [10] and cross-checked, in different ways, by Sacchiero [9],
Aluffi [1] and Kleiman-Speiser [4]. As a matter of fact, in Miret-Xambó [7, 8] not
only the characteristic numbers of cuspidal cubics were computed, but also all those
relative to the singular triangle.
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The aim of this paper is to study the case of these curves in projective space.
More precisely, we justify the accuracy of the characteristic numbers of the family
of cuspidal plane cubics in P3 given by Schubert in [10]. To do so, we first consider
the projective bundle Xcusp which is a compactification of the 10-dimensional variety
Ucusp of non-degenerate cuspidal plane cubics in P3, and we give consideration to the
conditions c (that the cusp be on a plane), q (that the cuspidal tangent intersect a
line) and µ (that the plane determined by the cuspidal cubic go through a point), as
well as to the properly called characteristic conditions : ν (that the cuspidal cubic
intersect a line), ρ (that the cuspidal cubic be tangent to a plane), and the second
order condition P (that the cuspidal cubic go through a point). Thus, the charac-
teristic numbers we are going to deal with express the amount of non-degenerate
cuspidal plane cubics that intersect k given lines, go through i given points and
touch 10 − 2i − k given planes. By transversality of general translates [3], these
numbers coincide with the degree of the 0-cycles P iνkρ10−2i−k of Xcusp, so they will
be denoted simply by P iνkρ10−2i−k in what follows.

We justify a degeneration formula which express the ρ condition in terms of the
µ, ν conditions and the σ degeneration (whose points correspond with figures of a
conic with a tangent line) and, consequently, we check the intersection numbers of
the form µiνkρ10−i−k given by Schubert. Then, the computation of the characteristic
numbers P iνkρ10−2i−k of the family of cuspidal plane cubics in P3 follows readily from
the incidence formula P = νµ− 3µ2.

Further, we construct – by means of a suitable blow-up – a new compactification
Zcusp where the condition z (that the line joining the cusp with the inflexion intersect
a given line) is well defined. Then, we give the expressions of c, q, z and the
conditions v (that the inflexion point lies on a given plane), w (that the inflexional
tangent intersect a given line) and y (that the point where the cuspidal and the
inflexional tangents intersect lies on a given plane) in terms of µ, ν and σ, and,
from them, we get all the non-zero intersection numbers of the form µiανkρ9−i−k for
α = c, q, z, v, y, w.

2 The variety Xcusp of cuspidal plane cubics

In the sequel, P3 will denote the projective space associated to a 4-dimensional
vector space over an algebraically closed ground field k of characteristic 0, and the
term variety will be used to mean a quasi-projective k-variety. Moreover, we will
also write ζ to indicate the degree of a 0-cycle ζ, if the underlying variety can be
understood from the context.

Let U denote the rank 3 tautological bundle over the grassmannian variety Γ of
planes of P3. Then, the projective bundle P(U) is the variety defined by P(U) =
{(π, xc) ∈ Γ × P3 | xc ∈ π}. Let L be the tautological line subbundle of the rank
3 bundle U|P(U) and let Q be the tautological quotient bundle. Thus, if we write
F to denote the projective bundle P(Q∗), it is clear that the elements of the flag
variety F are triples (π, xc, uq) such that uq is a line contained in the plane π that
goes through the point xc.

We define Ecusp as the subbundle of S3U∗|F whose fiber over (π, xc, uq) ∈ F is the
linear subspace of cubic forms defined over π that have multiplicity at least 2 at xc,
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and for which uq is a cuspidal tangent at xc. Let us consider the natural inclusion
map i : OF(−1) → Q∗|F and the product map p : Q∗|F → S3Q∗|F. There exist maps
of vector bundles

h : U∗|F ⊗OF(−2) → S3U∗|F and j : S3Q∗|F → S3U∗|F,

whose images are clearly contained in Ecusp. Proposition 2.1 of [6] ensures that the
sequence

0 −→ Q∗|F ⊗OF(−2)
α
−→ (U∗|F ⊗OF(−2))⊕ S3Q∗|F

β
−→ Ecusp −→ 0, (1)

where α =
(

i⊗1
−p

)

and β = h + j, is an exact sequence of vector bundles over F and,
therefore, it determines a resolution of the vector bundle Ecusp which allow us to
compute all of its Chern (and Segre) classes.

Let Xcusp be the projective bundle P(Ecusp) over F. Then, Xcusp is the 10-
dimensional subvariety of P(S3U∗|F) whose points are pairs (f, (π, xc, uq)) such that
f is a cuspidal cubic contained in the plane π, that has a cusp at xc and uq as
the cuspidal tangent at xc (see figure 1). Given a point (π, xc, uq) ∈ F, and taking
projective coordinates x0, x1, x2, x3 so that π = {x3 = 0}, xc = [1, 0, 0, 0] and
uq = {x1 = x3 = 0}, we can express the cubic curves f of the fiber of Xcusp over
(π, xc, uq) as follows:

a0x0x
2
1 + a1x

3
1 + a2x

2
1x2 + a3x1x

2
2 + a4x

3
2 = 0, ai ∈ k, i = 0, . . . , 4. (2)

xc

uqπ

Figure 1: A closed point of Xcusp .

We also denote by µ and c the pullbacks to Pic(Xcusp) of the hyperplane classes
µ = c1(OΓ(1)) and c = c1(OP(U)(1)), respectively, under the natural projections, so
that µ is the class of the hypersurface of Xcusp such that π goes through a given
point and c coincides with the class of the hypersurface of Xcusp such that xc is on a
given plane. The pullback to Pic(Xcusp) of the hyperplane class c1(OF(1)) coincides
with q − µ, where q is the pullback to Pic(Xcusp) of the class of the hypersurface of
F such that uq intersects a given line. In addition, let us denote by ν the class of
the hypersurface of Xcusp consisting of the pairs (f, (π, xc, uq)) such that f intersect
a given line. Then the relation c1(OXcusp

(1)) = ν − 3µ holds in Pic(Xcusp) (see [6]).
Thus, using the projection formula, we have

∫

Xcusp

µicjqhνk =

∫

F

µicjqhs6−i−j−h(Ecusp ⊗OΓ(−3)), (3)

where st(Ecusp⊗OΓ(−3)) denotes the t−th Segre class of the vector bundle Ecusp⊗
OΓ(−3), which can be calculated from the resolution (1). This allow us to compute
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all the intersection numbers of Xcusp in the conditions µ, c, q and ν. In particular,
we have :

µ3ν7 = 24, µ2ν8 = 384, µν9 = 3216, ν10 = 17760. (4)

Let Ucusp be the subvariety of Xcusp whose points are pairs (f, (π, xc, uq)) such
that f is an irreducible cuspidal cubic. In fact, we have that Xcusp is a compact-
ification of Ucusp, whose boundary Xcusp − Ucusp consists of two codimension one
irreducible components : Xconic and Xtrip (see [6] for a proof), where

– Xconic parameterizes pairs (f, (π, xc, uq)) such that f is a cubic consisting of
the line uq and a conic tangent to uq at xc (see figure 2). Actually, Xconic is a
projective subbundle of Xcusp, so we can compute the intersection numbers of
Xconic in the conditions µ, c, q and ν in a very similar way as the one we have
used for Xcusp;

– Xtrip = P(S3Q∗|F) parameterizes pairs (f, (π, xc, uq)) such that f is a cubic
consisting of three lines concurrent at xc (see figure 2). Notice that Xtrip is a
projective subbundle of Xcusp and, in particular, Xtrip is an irreducible closed
set of dimension 9.

xc uqπ

xc

uqπ

Figure 2: A closed point of Xconic and a closed point of Xtrip .

On the other hand, if we denote the classes in Pic(Xcusp) of the Xconic and Xtrip

degenerations by σ and τ respectively, we have the next result :

2.1 Proposition. The group Pic(Xcusp) is a rank 4 free group generated by µ, c, q
and ν. Furthermore, we have the following relations :

3c = −9µ + 5ν − 2σ − 3τ and 3q = −6µ + 4ν − σ − 3τ.

Proof. See theorem 3.1 and proposition 6.1 of [6]. �

3 Characteristic numbers of Xcusp

We denote by ρ the class of the hypersurface of Xcusp whose points (f, (π, xc, uq))
satisfy that f is tangent to a given plane. In this section we will consider the
tangential structure of the figures of Xcusp in order to introduce this condition and
compute the characteristic numbers.
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Notice that the dual curve f ∗ of an irreducible cuspidal cubic f is also a cuspidal
cubic. Furthermore, the map f 7→ f ∗ is a birational map whose indeterminacy locus
is the 2-codimensional closed set of Xcusp consisting of points (f, (π, xc, uq)) such
that f degenerates and contains a double line. If a degenerate cuspidal cubic f is
such that (f, (π, xc, uq)) is on the open orbit of Xconic, then f = f ′ · uq where f ′ is
a non degenerate conic tangent to uq at xc, and its dual consists of the dual conic
f ′∗ and the pencil of lines over π with focus xc. Thus, we may consider the closure
Xconic of the graph of the rational map Xconic → P(S2U|F) that assigns the conic of
tangents f ′∗ to a given cubic f ′ · uq where the conic f ′ has rank ≥ 2. The variety
Xconic is a compactification of Xconic where the dual conic is always well defined
and, consequently, since we can express ρ in terms of the generators of Pic(X conic),
we can compute all the non-zero intersection numbers in the conditions µ, ν and ρ.
Here we have listed all those numbers:

3.1 Proposition. The following results hold in A∗(Xcusp):

µ3σ : 42 87 141 168 141 87 42
µ2σ : 588 1086 1584 1767 1518 1053 606 294
µσ : 4296 7068 9222 9393 7626 5136 3003 1587 768
σ : 20040 28344 31356 26994 18816 11190 6054 3051 1464 696

where the numbers listed to the right of a given µiσ correspond to the intersection
numbers µiνkρ9−i−kσ, for k = 9− i, . . . , 0.

These numbers coincide with the ones given in the Tabelle von Zahlen σ in page
117 of [10]. Now, we are ready to express the condition ρ ∈ Pic(Xcusp) in terms of
µ, ν and the degeneration σ; generalizing, in this way, the degeneration formula for
ρ in P2 given by Zeuthen [11] and proved in Kleiman-Speiser [4].

3.2 Proposition. The following relation holds modulo Z[τ ] in Pic(Xcusp):

ρ + ν = 3µ + 2σ.

Proof. The degeneration formula of Zeuthen says that ρ + ν = 2σ in P2 (see [4]).
Moreover, we know from proposition 2.1, that there exist a rational number s0 such
that ρ = s0µ − ν + 2σ holds modulo Z[τ ] in Pic(Xcusp). From (3) and from the
intersection numbers of Xconic in the conditions µ, c, q and ν, we have 3µ2cν6ρ =
3µ2cν6(s0µ − ν + 2σ) = 36s0 + 1500. From the first formula of proposition 2.1
and from the numbers of proposition 3.1 we get 3µ2cν6ρ = µ2ν6ρ(−9µ + 5ν −
2σ − 3τ) = 5µ2ν7ρ − 2712. Then, 36s0 = 5µ2ν7ρ − 4212, and by proposition 3.1,
µ2ν7ρ = µ2ν7(s0µ− ν + 2σ) = 24s0 + 792, so s0 = 3. �

This proposition implies that the intersection numbers µiνkρ10−i−k in Xcusp can
be obtained as µiνkρ10−i−k = µiνkρ9−i−k(3µ − ν + 2σ), because the unique de-
generations of the 1-dimensional systems µiνkρ9−i−k are the ones consisting of a
degenerated conic with a tangent line. Thus, from (4) and proposition 3.1, we are
now able to compute all the non-zero intersection numbers of the form µiνkρ10−i−k

in Xcusp.
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3.3 Proposition. In A∗(Xcusp) we have:

µ3 : 24 60 114 168 168 114 60 24
µ2 : 384 864 1488 2022 2016 1524 924 468 192
µ : 3216 6528 10200 12708 12144 9156 5688 3090 1488 624
∗ : 17760 31968 44304 49008 43104 30960 18888 10284 5088 2304 960

where the numbers listed to the right of a given µi (∗ for µ0) correspond to the
intersection numbers µiνkρ10−i−k, for k = 10− i, . . . , 0 .

3.4 Proposition. If, given a point p ∈ P3, we denote by P the class of the subvariety
of Xcusp consisting of pairs (f, (π, xc, uq)) such that p ∈ f , the relation P = νµ−3µ2

holds in A2(Xcusp).

Proof. Let Y be the variety defined by the pairs ((f, (π, xc, uq)), p) in Xcusp ×

P3 such that p ∈ f . We have projections Y
α
→ Xcusp and Y

β
→ P(U) where

α ((f, (π, xc, uq)), p) = (f, (π, xc, uq)) and β ((f, (π, xc, uq)), p) = (π, p). Thus, we
get the expected incidence formula by simply applying α∗β

∗ to the relation µ3 −
µ2a + µa2 − a3 = 0, which holds in A∗(P(U)). �

Finally, from this last formula and from the table of proposition 3.3, we get the
characteristic numbers of cuspidal plane cubics in P3, which ratify the ones given in
the Dritte Tabelle on page 143 of [10].

3.1 Theorem. The following results hold in A∗(Xcusp) :

P 2 : 240 504 804 1014 1008 840 564
P : 2064 3936 5736 6642 6096 4584 2916 1686 912
∗ : 17760 31968 44304 49008 43104 30960 18888 10284 5088 2304 960

where the numbers listed to the right of a given P i (∗ for P 0) correspond to the
characteristic numbers P iνkρ10−2i−k, for k = 10− 2i, . . . , 0.

4 More fundamental conditions

If we consider a cuspidal cubic of (2), the analytical expressions of the inflexion point
xv, the inflexional tangent uw, the point xy where the cuspidal and the inflexional
tangent intersect and the line uz joining the cusp with the inflexion are as follows:

xv = [27a1a
2
4 − 9a2a3a4 + 2a3

3, −27a0a
2
4, 9a0a3a4, 0],

uw = {27a0a
2
4x0 + (27a1a

2
4 − a3

3)x1 + (27a2a
2
4 − 9a2

3a4)x2 = 0, x3 = 0},
xy = [3a2a4 − a2

3, 0, −3a0a4, 0],
uz = {a3x1 + 3a4x2 = 0, x3 = 0}.

Notice that there exist cuspidal cubics such that some of these distinguished
elements is not well defined. In this section we will construct a new compactification
Zcusp as the blow-up of Xcusp along the projective subbundle P(U∗|F ⊗ OF(−2))
(consisting of those cubics with a3 = a4 = 0), in such a way that it parameterizes
the family of cuspidal plane cubics that have the cusp in xc, for which uq is a cuspidal
tangent at xc, and where the line uz is always well defined.
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First, we will describe generically the blow-up of a projective bundle P(E) over a
variety X along a projective subbundle P(F ). Let G be the quotient vector bundle
E/F and p the canonical projection p : E → G.

4.1 Proposition. If p̃ : P(E) → P(G) is the rational map induced by p, the closure
of its graph Γp̃ ⊆ P(E) ×X P(G) coincides with P(H), where H is the subbundle
of E|P(G) whose fiber H[w] over P(G)x, x ∈ X, consists of those v ∈ Ex such that
p(v) ∈ 〈w〉.

Proof. Notice that P(H) is the subvariety of P(E)×X P(G) consisting of the points
([v], [w]) such that p(v) ∈ 〈w〉. Hence P(H) contains the graph of p̃. In addition,
notice that P(H) is an irreducible closed set of P(E)×X P(G) so Γp̃ ⊆ P(H). On the
other hand, rank(H) = rank(F ) + 1. Thus, it turns out that dimP(H) = dimP(G) +
rank(F ) = dimP(E) = dim(Γp̃), and now it is clear that Γp̃ = P(H).

�

Furthermore, the vector bundle H is just the pullback of OP(G)(−1) under the
map E|P(G) → G|P(G) induced by the projection p : E → G whose kernel coincides
with F |P(G). Thus,

0 −→ F |P(G)
ι

−→ H
p̄

−→ OP(G)(−1) −→ 0,

where ι is the inclusion of F |P(G) in H and p̄ derives from p, is an exact sequence of
vector bundles. In fact, P(F |P(G)) is a divisor of P(H), and as we can assume that
X is an affine variety and that the bundles F and E have trivializations such that
Γp̃ = P(H) locally, the following result holds :

4.1 Theorem. The natural projection P(H) → P(E) is isomorphic to the blow-up
of P(E) along P(F ), and P(F |P(G)) is the exceptional divisor.

In our case, E = Ecusp, F = U∗
F ⊗ OF(−2) and, from the resolution (1), G =

E/F = S3Q∗/(Q∗ ⊗ OF(−2)). If we denote by Zcusp the blow-up of Xcusp along
the projective subbundle P(U∗|F ⊗ OF(−2)) and by Hcusp the corresponding H, we
get by the former theorem, setting G = P(G), that Zcusp = P(Hcusp) and that the
exceptional divisor coincide with P(U∗|G ⊗ OF(−2)|G) (see figure 3). In fact, the
sequence of vector bundles over G

0 → U∗|G ⊗OF(−2)|G → Hcusp → OG(−1) → 0, (5)

is exact and allow us to compute all the Chern (and Segre) classes of Hcusp.

xc

π

uq

uz

Figure 3: A closed point of the exceptional divisor .
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Moreover, we have that the hyperplane class c1(OG(1)) coincides with z + 2c−
2q−µ, where the pullback of z to Pic(Zcusp) corresponds to the condition of the line
uz intersecting a given line. Then, from the projection formula we have

∫

Zcusp

µicjqhzkνt =

∫

G

µicjqhzks7−i−j−h−k(Hcusp ⊗OΓ(−3)), (6)

where st(Hcusp ⊗OΓ(−3)) can be calculated from the resolution (5). Therefore, we
can compute all the non-zero intersection numbers of Zcusp in the conditions µ, c,
q, z and ν. For instance, we get the following intersection numbers

µ2czν6 = 284, µcqz2ν5 = 192, µq2z3ν4 = 34, z4ν6 = 432,

which are not listed in [10].

4.2 Proposition. The group Pic(Zcusp) is a rank 5 free group generated by µ, c, q,
z and ν. Furthermore, we have the following relations:

σ = −µ− c + q + z,
τ = −µ + ν + c− 2q,
η = −2µ + ν − 2c + 2q − z,

where η is the class of the exceptional divisor P(U∗|G ⊗OF(−2)|G) in Pic(Zcusp).

Proof. Since σ is the class of P(Hcusp|G′), where G′ is the projective subbundle of G

given by

G′ = P

(

S2Q∗ ⊗OF(−1)

Q∗ ⊗OF(−2)

)

,

the expression of σ coincides with the pullback of the expression of [G′] in Pic(G).
Then, using the formula given in [2], we get

σ = −µ + 2c− 2q + z + c1 (S3Q∗/(S2Q∗ ⊗OF(−1)))
= −µ + 2c− 2q + z + 3(q − c).

Concerning the second relation, we have from [2] that

τ = ν − 3µ + c1 ((U∗/Q∗)⊗OF(−2)) = −µ + ν + c− 2q.

Finally, once again by [2], it turns out

η = ν − 3µ + c1 (Hcusp/(U∗ ⊗OF(−2)))
= ν − 3µ + c1(OG(−1)) = ν − 2µ− 2c + 2q − z.

�

Let v, w and y be the classes of Pic(Zcusp) corresponding, respectively, to the
conditions of the inflexion point xv being on a given plane, the inflexional tangent
uw intersecting a given line and the point xy lying on a given plane.

4.1 Corollary. In Pic(Zcusp) the following relations hold modulo Z[τ ]⊕ Z[η]:

3c = −9µ + 5ν − 2σ, 3q = −6µ + 4ν − σ, 3z = ν + 2σ,
3v = 9µ− 4ν + 7σ, 3w = 12µ− 5ν + 8σ, 3y = 6µ− ν + 4σ.
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Proof. The first three equalities come from the relations of proposition 4.2. Regard-
ing the other three relations, we will only show the first one, since the proofs of the
others are very similar. In order to express v in terms of µ, ν and σ, notice that if
we dualize the restriction to µ3 of 3q = −6µ + 4ν − σ, we get 3vµ3 = 4ρµ3 − σµ3.
Now, taking into account that ρ = −ν + 3µ + 2σ (from proposition 3.2) we have
3v = sµ − 4ν + 7σ, s ∈ Z. To determine s, notice that the relation c + v − z = 0
holds in A1(Ucusp) and, using again the relations given in 4.2, we get s = 9. �

From the relations of corollary 4.1 and taking account of the numbers calculated
in propositions 3.1 and 3.3, we have:

µ3c = 12 42 96 168 186 132 72 = µ3w

µ3q = 18 51 105 168 177 123 66 = µ3v

µ3z = 36 78 132 168 150 96 48 = µ3y

µ2c = 176 536 1082 1688 1844 1496 956 512
µ2q = 268 670 1228 1771 1846 1453 910 478

∗µ2z = 520 1012 1552 1852 1684 1210 712 352
µ2v = 932 1562 2054 1931 1358 767 362 134
µ2w = 1024 1696 2200 2014 1360 724 316 100
∗µ2y = 704 1280 1844 2018 1688 1124 620 284

µc = 1344 3576 6388 8852 9108 7264 4706 2688 1392
µq = 2088 4620 7550 9769 9618 7448 4735 2655 1344

∗µz = 3936 6888 9548 10498 9132 6476 3898 2088 1008
µv = 6888 10380 12382 11039 7650 4348 2195 987 384
µw = 7632 11424 13544 11956 8160 4532 2224 954 336
∗µy = 5424 8976 11872 12332 10152 6844 3956 2022 912

c = 6592 14800 22336 25560 22864 16672 10380 5836 3040 1504
q = 10568 20120 28220 30930 26912 19238 11790 6515 3320 1592

∗z = 19280 29552 35672 34332 26912 17780 10332 5462 2672 1232
v = 32728 43096 44692 35766 22864 12298 6006 2677 1096 424
w = 36704 48416 50576 41136 26912 14864 7416 3356 1376 512
∗y = 27232 40192 47440 45072 35008 22912 13152 6820 3232 1408

where the numbers listed to the right (left) of a given µiα — α is one of the
conditions c, v, y, w, q or z — correspond with the intersection numbers µiανkρ9−i−k

(µiαν9−i−kρk), for k = 9− i, . . . , 0. It is worth noticing that the numbers in the last
table coincide, as are supposed to, with the ones expressed in the Erste Tabelle and
Dritte Tabelle in pages 136 and 143 of [10]. On the other hand, those rows not listed
in [10] are marked by ∗.
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