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ABSTRACT. In the present study, we consider the selection of model selection criteria for
multivariate ridge regression. There are several model selection criteria for selecting the
ridge parameter in multivariate ridge regression, e.g., the C, criterion and the modified
C, (MC,) criterion. We propose the generalized C, (GC,) criterion, which includes C,
and MC, criteria as special cases. The GC, criterion is specified by a non-negative
parameter A, which is referred to as the penalty parameter. We attempt to select
an optimal penalty parameter such that the predicted mean squared error (PMSE) of
the predictor of the ridge regression after optimizing the ridge parameter is minimized.
Through numerical experiments, we verify that the proposed optimization methods
exhibit better performance than conventional optimization methods, i.e., optimizing only
the ridge parameter by minimizing the C, or MC, criterion.

1. Introduction

In the present paper, we deal with a multivariate linear regression model
with n observations of a p-dimensional vector of response variables and a
k-dimensional vector of regressors (for more detailed information, see, for
example, Srivastava, 2002, Chapter 9; Timm, 2002, Chapter 4). Let ¥, X, and
& = (g1,...,&,) be the n x p matrix of response variables, the n x k matrix of
non-stochastic centerized explanatory variables (i.e., X'1, = 0;) of rank(X) = k
(< n), and the n x p matrix of error variables, respectively, where n is the
sample size, 1, is an n-dimensional vector of ones, and 0; is a k-dimensional
vector of zeros. Suppose that n—k—p—2>0 and ¢p,...,é&, i N,(0,,2),
where X' is a p x p unknown covariance matrix. Then, the matrix form of the
multivariate linear regression model is expressed as

Y=14+XE+ 6,
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where g is a p-dimensional unknown location vector, and Z is a kX p
unknown regression coefficient matrix. This model can also be expressed as

Y ~ Npp(Lipt' + XE,Z®1,,).

Note that X is centerized. The maximum likelihood or the least squares
(LS) estimators of u and Z are given by = Y'l,/n and £ = (X'X)"'X'Y,
respectively. Since g and £ are simple, and the unbiased estimators of u
and EZ, the LS estimators are widely used in actual data analysis (see e.g.,
Dien et al., 2006; Sarbu et al, 2008, Saxén and Sundell, 2006; Skagerberg,
Macgregor, and Kiparissides, 1992; Yoshimoto, Yanagihara, and Ninomiya,
2005). However, when the multicollinearity occurs, the problems that an
estimator of Z becomes unstable happens. In order to avoid this problem,
a ridge regression was proposed by Hoerl and Kennard (1970) when p = 1.
Several authors extended this univariate ridge regression to the multivariate
case, e.g., Brown and Zidek (1980), Haitovsky (1987), and Yanagihara and
Satoh (2010). The ridge regression estimator of & is given as

= —1y/
.:():M() XY,

where My = X'X + 0I, and 0 is a nonnegative value, which is referred to as
a ridge parameter. Since an estimate of £, strongly depends on the value of
the ridge parameter 6, the optimization of # is an important problem in the
ridge regression.

An optimal 6 is commonly determined by minimizing the predicted mean
squared error (PMSE) of the predictor of Y which is defined by Yy = 1,4 + XE,.
However, we cannot directly use the PMSE to optimize 6, because unknown
parameters are included in the PMSE. Hence, we adopt an optimization
method using a model selection criterion, i.e., an estimator of the PMSE,
instead of the unknown PMSE. As an estimator of the PMSE, Yanagihara
and Satoh (2010) proposed a C, criterion. This criterion includes C, criteria
for selecting variables in an univariate linear model, which was proposed by
Mallows (1973; 1995), for selecting variables in a multivariate linear model,
which was proposed by Sparks, Coutsourides, and Troskie (1983) as a special
case. Yanagihara and Satoh (2010) also proposed the modified C, (MC,)
criterion such that the bias of the C, criterion for choosing the ridge parameter
to the PMSE is completely corrected under a fixed 6. This criterion coincides
with the bias-corrected C, criterion proposed by Fujikoshi and Satoh (1997)
when 0 =0. The MC, criterion has several desirable properties as the esti-
mator of the PMSE as described by, e.g., Fujikoshi, Yanagihara, and Wakaki
(2005), and Yanagihara and Satoh (2010).

Unfortunately, optimizing ¢ by minimizing MC,, i.e., an unbiased esti-
mator of PMSE, does not always minimize the PMSE of ¥;. This indicates
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that there will be an optimal model selection criterion for selecting 6. Thus,
we propose a generalized C, (GC,) criterion that includes the C, and MC,
criteria as special cases (originally, the GC, criterion was proposed by Atkinson
(1980) for selecting variables in the univariate linear model). The GC,
criterion is specified by a non-negative parameter A, which is referred to as
the penalty parameter. From the viewpoint of making the PMSE of the
predictor of Y after optimizing 6 small, we select the optimal penalty parameter
A, which is basically the selection of the model selection criterion. In the
present paper, we optimize 4 by the following three methods:

* (Double optimization): We optimize 6 and A simultaneously by
minimizing the GC, and the penalty selection criteria, respectively.

* (Optimization of A with an approximated value of an optimal ): We
optimize / by minimizing the penalty selection criterion made from the
approximated value of the optimal 6.

* (Asymptotic optimization of 1): We calculate an asymptotic optimal
A from an asymptotic expansion of the PMSE. We then estimate the
asymptotic optimal /.

From the optimization of the model selection criterion, we will perform a
reasonable optimization of 6.

The remainder of the present paper is organized as follows: In Section 2,
we propose the GC, criterion, which includes criteria proposed by Yanagihara
and Satoh (2010) as special cases. In Section 3, we propose three optimiza-
tion methods for A. In Section 4, we compare the optimization methods
by conducting numerical studies. Finally, technical details are provided in
Appendix.

2. Generalized C, criterion

In this section, we propose the GC, criterion for optimizing the ridge
parameter, which includes C, and MC, criteria proposed by Yanagihara and
Satoh (2010). Moreover, we present several mathematical properties of the
optimal ¢ by minimizing the GC, criterion.

The PMSE of f’g is defined as

PMSE[Yy] = Ey[Eu[tr{(U - ¥,)'"(U - Y5) £ '}]],

where U is a random variable matrix that is independent of ¥ and has the
same distribution as Y.

The C, criterion proposed by Yanagihara and Satoh (2010) is a rough
estimator of the PMSE of ¥y, which is defined by

Co(0) = tr(WoS™") +2p tr(M;' M),
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where W, is a residual sum of squares matrix defined by Wy = (Y — Yy)'-
(Y — ¥p), and S is an unbiased estimator of X defined by S = Wo/(n —k — 1).
From the definition of the C, criterion, the first term of C, measures the
closeness of the ridge regression to the data, and the second term evaluates the
penalty for the complexity of the ridge regression. However, the C, criterion
has the bias to the PMSE. The MC, criterion proposed by Yanagihara and
Satoh (2010) is an exact unbiased estimator of the PMSE. By neglecting the
terms that are independent of 0, the MC, criterion is defined as

MC,y(0) = em tr(WoS™") + 2p tr(M ;' M),

where ey =1—(p+1)/(n—k —1). By comparing the two criteria, we can
see that the difference between C, and MC, is a coefficient before tr(WyS™").

Thus, we can generalize the model selection criterion for optimizing the
ridge parameter as

GC,(0,2) = A tt(WpS™ 1) +2p tr(M ;' M), (1)

where /1 is a non-negative parameter. Note that GC,(0,1) = C,(0) and
GC,(0,cm) = MCy(0). In this criterion, the penalty for the complexity of
the model, which is in the second term of (1), becomes large when 1 becomes
small. This means that 1 controls the penalty for the complexity of the model
in the criterion (1). Hence, we can regard A as a penalty parameter. In the
present paper, we consider the optimization of 4 to obtain the optimal 6, which
further reduces the PMSE.
When A is fixed, the optimized ridge parameter 9(/1) is obtained by

(1) = arg 02[1()1&] GC,(0,4). (2)

Since (%) is a minimizer of GC,(6,2), the following equation holds:

9GG,(0,2) _o 3)
00 0=0()

Note that (%) changes with .
Here, we obtain the following mathematical properties of 6(4) (The proof
is provided in Appendix A.l.):

THEOREM 1. Let
(z1,... %) = Q' X'YS™V/2, (4)

2
Al - pd

A J pdjz )
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where z; is a p-dimensional vector, Q is a k X k orthogonal matrix which diago-
nalizes X'X, i.e., Q'X’XQ D= diag(d17 cooydy) and d; (i=1,... k) are eigen-
values of X'X, and r/l | < < r T (m < k) are positive values of v, 1,...,)

Then, 0( \) has the followmg properties:

(1) 0(2) is a monotonic decreasing function with respect to .

(2) 6(2) is not 0 when J.€0,0).

3) 6(2) > > (ry )" when 1| exists. 0()) = oo when r}| does not exist,
er , MaxXj—1 . m ru <0. 7

@) 0(o0) =0, 6(0) =

5) 6(2) = o for any < minyr._« pd/ 51’

We suppose that d; = O(n). We must use an iterative computational algo-
rithm to optimize ¢ because we cannot obtain é(/l) in closed form. In order to
reduce computational tasks, we consider approximating é(l) using an asymp-
totic expansion. By applying Taylor expansion to Equation (3), an asymptotic
expansion of the GC, criterion is derived. From this expansion, we obtain the
asymptotic expansion of é(/u) as the follows:

THEOREM 2. The é(/l) can be expanded as

0(2) = 1) (2) + Op(n™"),

where
5 phi 1 &1 /
O1)(2) 7 + 2y 2= n—/(—l)/ﬂ(/ +1)0(,_1)(4)
X {A¢ +2)ar10(1)(2) — 2pbsit ). (6)

Here, 0)(J) =0, ¥V = X'yYs- YY'X, a; = nl e(VM;Y), by = nd tr(M7), and
0/ )(4) refers to {9 (A .

The proof of this theorem is given in Appendix A.2. Note that 9 )(4)
can be used as an approximated value of (7). There is a one-to-one corre-
spondence between 49 y(4) = pb1/(Zay) and 2, and ém(i) satisfies the properties
1, 2, and 4 in THEOREM 1.

3. Optimization of penalty in the GC, criterion

3.1. Double optimization of # and A. In the previous section, we considered
the model selection criterion for selecting 6, which can be regarded as an
estimator of the PMSE[Y,]. By minimizing the estimator of the PMSE of
Yy, we expect to reduce the PMSE of ¥;. However, since the optimal ridge
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parameter will be changed by the data, it is important to reduce not the PMSE
of Y, but rather the PMSE of Y i.e., the predictor of Y after optimizing
6. In thi§ section, we consider optimizing A using PMSE[Yé( /1)], where Yé( =
1,4 + XEé(l).

Without a loss of generality, we can assume that the covariance matrix
of y; is I, in the PMSE[Y;,]. Therefore, from Efron (2004), we obtain the
PMSE[Y;; ], which can be regarded as a function of 4, as follows:

2. (Y, )

2>

i=1 j=1

PMSE[Y, ;| = Ey[tr(W;, )] +2Ey

ij

where (4); is the (i, j)th element of A. Since (%) depends on (Y);, we can
see that

Y0y o(Xy), +a<fmg, 20(2) )

a( ) a(Y) 0=0(1) a0 0=0(%) 6(Y)ij'
The first term of the above equation is calculated as
oY), LA, . oXM;'X'Y),
oY)y lo—gy  O(Y), a(Y); 0—0(2)
On'); Ly
=),  EMa X
ij
Note *that S o 0 /oY)y = p and 301 ST (XM X); =
p tr(M(;(MMO).
Next, we consider obtaining the second term of (7). Note that
AYp),;, O(XM;'X'Y), s
i: !:—XM_X/YN.
a0 a0 (XM, XY),
Hence, we derive
PMSE[Y; ]| = Ey[t(W, X~")] + 2p{Ey [tr(Mﬂ;(;)Mo)] + 1}
n p N
—2Ey|> > ( (XM, X Y); 5(0(’;) (8)
=1 j=1

Based on this result, we need only to obtain d6(1)/ d(Y); in order to calculate
the PMSE[Yé(i)}. This derivative leads to the following theorem (The proof is
given in Appendix A.3.):
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THEOREM 3. The PMSE of Yﬁ(i) is expressed as

PMSE([Y;, | = Ey[tr(W;, 27" + 2p{te(M; | Mo) + 1} + 4B(O(A)], (9)

)
where

_ 20 te(VM ;> M)
S (VM) =320 tr(VM ;%) + 2p tr(M ;> M)

B(0)

By neglecting the terms that are independent of A, we define the penalty
selection criteria for optimizing 4 as follows:

DerINITION 1. The penalty selection criteria to optimize A are defined as

CH(A) = tr(Wy,,S™") +2p tr(Mj; ; Mo) + 4B(0(%)),

MCH(2) = em te(Wy,, §7") + 2p tr(M;, | M) + 4B(0(2)),

1
(2)
where 0(2) is given by (2) and ey =1— (p+1)/(n—k —1).

Here, C]f(i) is obtained by substituting S~! into £~! when we neglect the
terms that are independent of A in (9). However, there exists a bias because
S~! is not an unbiased estimator of X! (see e.g., Siotani, Hayakawa, and
Fujikoshi, 1985). Based on the results reported by Yanagihara and Satoh
(2010), we may correct the bias of Ey[tr(WéWS*l)] to Ey[tr(Wé(z)E_l)].
Finally, we define MC;‘(/I) by neglecting the terms that are independent of 6
and 1. Using these criteria, 4 and 6 are optimized as follows:

A% =arg min C#(4)  and 0(A%) = arg min GC,(0, %),
A€e[0,00] 0€l0,0]

A =arg )n[ioin] MC}(2)  and  0(if;) = arg gn[l()il}] GC,(0,3%).

These optimization methods are similar to those reported by Ye (1998) and
Shen and Ye (2002).

3.2. Optimization of A with the approximated 0(1). In the previous sub-
section, we proposed the penalty selection criteria for selecting A. These
criteria are made from the optimal ¢ obtained by minimizing the GC,
criterion. This indicates that we need to repeat the optimization of ¢ until
obtaining the optimal /. Hence, many computational tasks are required for
such an optimization. In this subsection, we try to reduce computational tasks
by using the approximated #(A), which is given by (6). Thus, we propose the
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penalty selection criterion when the approximated 03()») is used. As such, we
calculate 06)(4)/0(Y);. The following lemma is useful for obtaining such
a derivative (The proof is provided in Appendix A.4.):

LemMmA 1. For any ¢, the first derivative of a, with respect to (Y)I-j is

calculated as

aa/
oY),

)

where H =1, — 1,1/ /n — XM;'X'.

1
=2/ (S7'Y'XM;"*X'(I, -————YS'Y'H) |,
n—k—1 i

By using this lemma and (6), we obtain the following theorem:

THEOREM 4. The PMSE of Yé(LW«) is expressed as

)+ 2{t(M | M) + 1]

2

PMSE[Y% ol = Exv(t(W;, )X

+2Ey[B'(0,1) (1)),

where

B'(01)(2) = a—lé( n(2) e(My>Mg2 V)

1 2 2

+,1712 r(My MLMV)
— |1 /41

XY= (=D + DOy (DA +2D)ara O (A) = 2pbria}
/=0

BRI P
2%ay = n’ (L-1)

< {A¢ + D)0+ 2)ar0-1)(2) — 2plbri }

L 30._1y(2)
-2 ’ (L-1)
X ZI;(XM% X' V)37 )

i

— 2 .
- a—l;( DN+ D)+ 200, () tr(My )Mé(f)w V).

The proof of this theorem is presented in Appendix A.5. When é(l)(i) is
used, we obtain
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PMSE(Y; (] = Ey[te(W;, ,Z7") + 2p{u(M;!

m(i)MO) + 1}

4n0;1) (2
By |20 pgoapg

ai O1)(4) V)|

Thus, by neglecting the terms that are independent of /4, the penalty selection
criteria. with 6(;)(4) are defined as follows:

DEerNITION 2. The penalty selection criteria to optimize A when ém(l) is
used are defined as follows:

Mgy : -1 -1
G, (/1)—tr(We(l>u)S )+ 2p tr(Mem(z)Mo)
MG () (MM Y
+a_1 (1)(‘) I‘( 0 é(l)(i) )a
MCW(2) = em tr(Ww S Nt+2p tr(MH WMO)
MG () (MM Y
+a_l (1)(“) I‘( 0 é(l)u) )7

where 9(1)(1) =pbi/(Ja;) and em=1—-(p+1)/(n—k—1).

Similar to MC7 (%), MCp (l) can be regarded as a simple bias-corrected
CISI)(A). At least, when H y(4) =0, MCP )(l) completely corrects the bias of
CISI)(}V). If we use a é(L)(/l) other than é(1>(/1), the penalty selection criteria
becomes more complicated as the number of L increases. As an example, we
describe the penalty selection criteria for 0 y(4) in Appendix A.6. From the
viewpoint of an application, C,S )() and MCIS >(/1) are useful because these
are the simplest criteria among all L. When we use C (i) and MC;I)(A),
the optimal 6§ and A are given as follows:

W =arg min V() and G =00 (AL),

2€0,00]

i( = arg min MC M) and é(il(vll)) = é<l)(}“1(v11))~

2.€(0,00]

3.3. Asymptotic optimization for 4. In the previous subsections, we proposed
the penalty selection criteria with 9<1>(i). When such criteria are used to
optimize A, we must perform an iterative procedure. In this subsection, we
consider the non-iterative optimization of A. This requires the calculation of
an asymptotic optimal 4, which minimizes an asymptotic expansion of the
PMSE[YBA(;L)] among A € [0,00]. The following theorem gives such an asymp-
totic optimal value of . (The proof is provided in Appendix A.7.):
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THEOREM 5. An asymptotic optimal A* minimizes the PMSE[YoA(z)] asymp-
totically is given by
I _ Eylai']  2Ey[ar/ai]
2 Eylaj/a]  pbiEylaj/a]]’
where V* = X'YE'Y'X and a; =n/ (V"M ).

By replacing aj with a;, we estimate 4° as follows:
-1
A 2te(My*V
Jo={1- M,y (10)
pr(My°V) (M)

Note that Eyla1] = ¢y Ey[a;] holds. Hence, we can estimate Ey[aj] as cma.
This implies the new estimator of 1" is given by Ay = cm4Ag. When we use 4
and Ay, optimal 0 is given by

0(Jo) = arg Hmin GGy (0, X0) and Ao is in (10),

€[0,00]

0(Am) = arg en[loin] GG, (0, iM) and M = Mo
el0,00

4. Numerical study

In this section, we conduct numerical experiments to compare the PMSEs
of predictors of Y consisting of the ridge regression estimators with the
optimized ridge and penalty parameters. Let R, and 4,(p) be ¢ x ¢ matrices
defined by R, = diag(l,...,q) and (4,(p)); = pli=Jl. The explanatory matrix
X was generated from X = W¥'/2? where ¥ = R,i/zAk(pX)Rll/z, and W is an
n x k matrix, whose elements were generated independently from the uniform
distribution on (—1,1). The k x p unknown regression coefficient matrix =
was defined by E =0FZ; where 0 is a constant, F is defined as
F = diag(1,,0,_,), which is a k x k matrix, and Z; is defined by Z; when
k=15, Z) when k =10, and =, when k = 15, respectively. Here, = is defined
by the first five rows of =, and =, and Z, are given by
0.8501  0.6571  0.2159
—0.2753 —0.2432 —-0.1187
—0.3193 —-0.2926 -0.1671
0.2754  0.2608  0.1766
0.2693  0.2164  0.2066
—0.0676 —0.0663 —0.0561
0.2239  0.2197  0.1880
—0.0352 —0.0346 —0.0305
0.3240  0.3199  0.2868
—0.3747 —0.3727 —-0.3554

I
1
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1.3794  0.0645  0.0330
—0.0766 —0.0241 —0.0143
—0.2618 —0.1396 —0.0951
—0.4619 —-0.2589 —0.1798

0.2381 0.1488  0.1082

0.2140  0.1463  0.1112

0.3002  0.2364  0.1950

0.1155  0.0953  0.0812
—0.2774 —0.2395 —0.2091

0.3392  0.3072  0.2807

0.0016  0.0107  0.0100

0.0438  0.0408  0.0381
—0.3187 —0.3039 —0.2904

0.0529  0.0510  0.0493

0.2505  0.2451 0.2399

[
(3]
Il

Here, 0 controls the scale of the regression coefficient matrix, and F controls
the number of non-zero regression coefficients via x (the dimension of the
true model). The values of the elements of = and =5, which is an essential
regression coefficient matrix, are the same as in Lawless (1981). Simulated
data Y were generated by N,3(XE,2®1,) repeatedly under several selec-
tions of n, k, x, 6, p,, and p,, where X' = R A;( )R ;/2, and the number
of repetition was 1000. At each repetition, we evaluated r(XZ, YA) =
tr{(XZ — f’) (XE-Y, Y;)Z '}, where f’ = 1,4 —&—X_AG, which is the predicted
value of Y obtained from each method. The average of np + rH(XE, Y, 5) across
1000 repetitions was regarded as the PMSE of Y In the simulation, a
standardized X was used to estimate the regression coeﬂicients.

Recall that GC,(0, A) is defined in (1). Here, 4 and 0 are optimized by the
following methods:

Method 1: 0 = arg 011[101n] GCy(0, A) and A= i, where g is defined in (10).
Method 2: f=a arg min GGC,(0, j.) and 1= iM = cMio, where e =1-—

0e[0,00]
(p+1)/(n—k 1.
Method 3: 6 =arg H[lom] GG, (0, A) and 1= arg rr[un C#( ), where C7(%)

0,00]
is given by DEFINITION 1.
Method 4: 0 = arg Hrr[10in] GCp(0,4) and i =arg min MCY(%), where
€[0,00

2.€(0,0]
MC}(2) is given by DEFINITION 1.
Method 5: 6= 9(1)(2) and 1 = arg Arr[loin] CISI)(X), where é<1)(/1) and Clgl)(ﬂ,)
are defined in (6) and by DEFINITION 2.
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Method 6: 0 = 9(1)(2) and 1 =arg min MCISI)()L), where MC,EI)(/I) is given
by DEFINITION 2. *<(]

For the purpose of comparison with the proposed methods, we prepare
conventional optimization methods, which are obtained using the following
methods:

Method 7: 0c = arg min Cy(0) =arg min GC,(0,1).
0 o0 0€0,0]

€[0,00]
Method 8: Oy =arg min MC,(0) =arg min GC,(0,cm), where ey =1 —
0e0,00] 0€l0,00]

(p+1)/(n—k—1).
In Methods 3 through 8, the fminsearch function in Matlab is used to find
the minimizer of the penalty selection criterion or model selection criterion. In
the fminsearch function, the Nelder-Mead simplex method (see e.g., Lagarias
et al., 1998) is used to search the value that minimizes the function. When
Methods 1 through 4 are used, an optimal 6 is searched using the fminsearch
function. We can see that the computational speeds of Methods 1 and 2
are the same as those of Methods 5 and 6. Furthermore, the computational
speeds of Methods 5 and 6 are almost the same as those of Methods 7 and
8 because these six methods optimize one parameter. It is easy to predict that
the computational speeds of Methods 3 and 4 are slower than the other
methods because Methods 3 and 4 optimize two parameters simultaneously.

In this paper, we proposed Methods 1 through 6 as referred to above, and
these methods can be regarded as the estimation methods for the optimal A.
To obtain the optimal A, called A™, which minimizes the PMSE, we divided a
range [0,2] into 100 parts and used each point. Then we compute r(XZ, Yé)
for each point in each repetition. After 1000 repetitions, we compute the
averages of these values for each point which are regarded as the main term of
the PMSE qf Yé. By comparing the average values, the A is obtained. For
comparing A which is estimated 4 by using each method in above Methods 1
through 6, we show the Figure 1 which is the boxplot of 2 of 1000 repetitions
in several situations. The horizontal line means the A**. Tables 1 through 4
show the averages of (i — },**)2 across 1000 repetitions, which is referred as the
mean squared error (MSE) of A, for each method.

In THEOREM 2, we derived the expansion for é(i) and we suggested to
use ‘Ehe first term of the expansion which is referred as é(m(i). To compare
the 0(4) and 0(1)(4), we show the scatter plots in several situations when we
fix 2 as 1 or 2 in Figure 2. In each scatter plot, the 45-degree line means the
line of (%) = ém(i). When the scatter plot closes up this line, é(l)(l) closes
to 6(4).

Tables 7 through 12 show the simulation results obtained for PMSE[Yé] /
{p(n+k+1)} x 100 for the cases in which (k,n)= (5,30),(5,50),(10,30),
(10,50), (15,30), and (15,50), respectively, where p(n+k+ 1) is the PMSE



Selection of model selection criteria for MR regression 85

of the predictor of Y derived using the LS estimators. We note p = 3 in this
numerical studies. In the tables, bold face indicates the minimized PMSE, and
italic face indicates the second-smallest PMSE.

Figure 1, we can see the dispersion of J and the differences between 4
and 1. Methods 2, 4 and 6 give always smaller values than Methods 1, 3
and 5. The dispersions of J. obtained from Methods 2, 4 and 6 are smaller
than those obtained from Methods 1, 3 and 5. This facts mean that the
formal bias correction of each method makes A and dispersion of 4 smaller.
We note that the dispersions of J. obtained from Methods 1 and 2 are smaller
than other methods. When p, and p, are small, our optimization method
gives nearly closer value to A**. From Tables 1 through 6, we can see the
numerical evaluation for each method. When k and ¢ are zeros, Method 6 is
the best and Method 5 is the second best. Methods 2 and 4 are the best and
the second best when x and ¢ is small. When «x is equal to k£ =10 and ¢ is
large, Method 6 is the best method. On the other hand, when k = x = 15 and
0 is large, Method 6 or 2 is the best in p, is small or large. Consequently,
Method 6 and 5 was, on average, the best and the second best method except
k=15. When k =15, Method 5 was the best. Hence we recommend using
Method 6 to optimize the penalty parameter A.

Figure 2, we can see the difference between dispersions of 6}(1)(2) and 0;(])
in each situation. We note that 4 becomes large, the difference between 6(1)
and 0 )(4) becomes small. Also when p, or n becomes large, the difference
between 6( ) and 6 (1(4) becomes small.  On the other hand, the difference
between 0(1) and 0 )(4) becomes large when p, is large. In almost case, 0 ) (4)
is smaller than 49( ) This fact is corresponding the result G(1) = 0 (A)
OP(n’l) in THEOREM 2. When p, or J becomes large, the dlspersmn of
0() becomes small. The each value of A(J) and 0 )(4) become small when
Pys Py, O O A becomes large.

Based on the simulations, we can see that all of the methods improved the
PMSEs of the LS estimators in almost all cases. All of the methods greatly
improved the PMSE when n becomes small or & becomes large. Moreover,
the improvement in the PMSE of the proposed method increases as p,
decreases. The improvement in the PMSE when x #0 and J # 0 of the
proposed method increases as p, increases. A comparison of several methods
reveals that Methods 2 and 4 were better than Methods 1 and 3, respectively,
in almost all cases when p, is large. When k and p, become large, Methods
5 and 6 provide a greater improvement in the PMSE than Methods 3 and
4. When k becomes small and n becomes large, Methods 4 and 6 improve
the PMSE more than Methods 2 and 4 in most cases. Occasionally, Method
7 improves the PMSE more than Method 8, especially when x and ¢
become large. Consequently, Method 6 was, on average, the best method. In
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Table 1. MSE of 4 in which (k,n) = (5,30)

Method

o py Py 1 2 3 4 5 6
0 02 02 1.470 1.014 | 1.475 1.145 0.039 0.014
095 | 1.644 1.135 | 2.599 2.151 0.036 0.013
095 0.2 1.327  0.896 | 1.239 0.907 0.033 0.013
095 | 1.593 1.092 | 2.482 2.050 0.035 0.012
1 02 02 0.030  0.002 | 0.009 0.015 0.181 0.331
0.95 | 0305 0.114 | 0424 0.266 0.378 0.445
095 02 0.006 0.016 | 0.001 0.032 0.055 0.167
0.95 | 0.340 0.137 | 0.327 0.169 0270 0.338
3 02 02 0.008 0.012 [ 0.004 0.017 0.001 0.030
095 | 1.577 1.095 | 1.261 0.815 0.303 0.154
095 0.2 1.322 0918 | 1.293 0.894 1.253 0.861
095 | 1.516  1.053 | 1.359 0.927 0.677 0.397
Average 0928 0.624 | 1.039 0.782 0.272 0.231

Table 2. MSE of 4 in which (k,n) = (5,50)
Method

o py Py 1 2 3 4 5 6
0 02 02 1.394  1.148 | 1.504 1.277 0.027 0.015
095 | 1.654 1363 | 2.645 2397 0.022 0.012
095 02 1.164 0941 | 1.218 0.998 0.023 0.017
095 | 1.656 1.364 | 2.680 2.436 0.020 0.010
1 02 02 0.010  0.001 | 0.003 0.003 0.076 0.136
095 | 0.288 0.176 | 0.413 0.310 0.406 0.442
095 02 0.003  0.003 | 0.001 0.008 0.015 0.048
0951 0232 0133 | 0.187 0.121 0322 0.377
3 02 02 0.000 0.013 | 0.001 0.016 0.002 0.021
095 | 1.550 1.281 | 1.281 1.040 0.460 0.337
095 02 1.289  1.065 | 1.276 1.054 1.253 1.033
095 | 1.483 1.226 | 1.335 1.100 0.928 0.731
Average 0.894 0.726 | 1.045 0.897 0.296 0.265
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Table 3. MSE of 4 in which (k,n) = (10,30)

89

Method
K 6 p Py 1 2 3 4 5 6
0 0 02 0.2 1.293  0.798 | 0.977 0.773 0.016 0.003
095 | 1.375 0.849 | 1.601 1.261 0.016 0.004
095 0.2 1.292  0.798 | 0.930 0.701 0.017 0.004
0.95 | 1.332 0.815 | 1.539 1.111 0.017 0.004
5 1 02 0.2 0.070  0.001 | 0.028 0.0/ 0.311 0.461
0.95 | 0.328 0.104 | 0.375 0.202 0.311 0.355
095 0.2 0.056  0.000 | 0.020 0.007 0.145 0.284
0.95 | 0.303 0.090 | 0.283 0.127 0.308 0.361
3 02 0.2 0.030 0.004 | 0.0/ 0.015 0.017 0.083
0.95 | 0.181 0.031 | 0.110 0.029 0.329 0.438
095 0.2 0.018 0.011 | 0.007 0.022 0.002 0.054
0.95 | 1.369 0.853 | 1.130 0.673 0.241 0.106
10 1 0.2 0.2 0.035 0.003 | 0.0/10 0.019 0.267 0.450
0.95 | 0.283 0.079 | 0.277 0.141 0.339 0.392
095 0.2 0.043 0.002 | 0.015 0.014 0.121 0.277
0.95 | 0.303 0.090 | 0.215 0.071 0.282 0.348
3 02 0.2 1.299 0.810 | 1.230 0.755 0.936 0.535
095 | 1.411 0.879 | 1.115 0.657 0.122 0.043
095 0.2 1.307 0.815 | 1.259 0.777 1.059 0.624
095 | 1.399 0.872 | 1.159 0.693 0.233 0.094
Average 0.686 0.395 | 0.615 0.403 0.255 0.246

particular, it strongly improved the PMSE when ¢ and x are small. Based
on these results, we recommend using Method 6 to optimize the multivariate

ridge regression.

A. Appendix

A.l. Proof of THEOREM 1.
which shows the properties of 6(1).

tr(WyS™") and tr(M,'M,) in (1) as

g(0) = tr(WpS ) =tr(Y'YS™!) — 2i

h(0) = tr(M,'My) = Xk:
=

dj

dj
+0

J=1

2
gl

d+0

oy dalfd
(4 +0)

In this subsection, we prove THEOREM 1,
Using d; and z; in (4), we can write

Alc—1 ~

ST,
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Table 4. MSE of 4 in which (k,n) = (10, 50)

Method

K 0 p Py 1 2 3 4 5 6

0 0 02 02 1.173 0940 | 0977 0.862 0.016 0.007
095 | 1.282 1.028 | 1.562 1.409 0.008 0.004

095 02 1.129 0902 | 0.890 0.751 0.014 0.007

095 | 1.285 1.031 | 1.598 1.403 0.007 0.003

5 1 02 0.2 0.012 0.000 [ 0.005 0.004 0.200 0.287
0.95 | 0.203 0.111 | 0.183 0.126 0.407 0.437

095 02 0.007 0.001 | 0.003 0.004 0.058 0.115

0.95 | 0.182 0.096 | 0.120 0.067 0.372 0.414

3 02 0.2 0.005 0.002 | 0.003 0.003 0.001 0.015
0.95 | 0.014 0.000 | 0.013 0.024 0.492 0.601

095 0.2 0.006 0.001 [ 0.004 0.002 0.001 0.006
095 | 1.261 1.016 | 1.138 0917 0.455 0.328

100 1 02 0.2 0.004 0.002 | 0.001 0.008 0.158 0.248
095 | 0.171 0.087 | 0.102 0.054 0.426 0.465

095 0.2 0.007 0.001 | 0.004 0.003 0.047 0.104

0.95 | 0.123  0.054 | 0.063 0.022 0.430 0.487

302 0.2 1.224 0986 | 1.217 0.979 1.066 0.8444
095 | 1.325 1.067 | 1.161 0912 0.229 0.147
095 0.2 1.211 0976 | 1.206 0.971 1.124 0.897
0.95 | 1.304 1.050 | 1.194 0.951 0.459 0.325

Average 0.596 0.468 | 0.572 0474 0.298 0.287

Since d; > 0 and 0 > 0, we have

(0) = 0 _ 29 Zd”z”Q >0 ()

with equality if and only if # =0 or § — oo, and

k

h(0) = ; p +9 <0, (12)

with equality if and only if & — oo. Therefore, g(f) and h(6) are strictly
monotonic increasing and decreasing functions of 6 e [0, 0], respectively.
Since GC,(0, ) = 2g(0) + 2ph(0), these results imply that
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Table 5. MSE of 4 in which (k,n) = (15,30)

Method

K 0 p Py 1 2 3 4 5 6

0 0 02 02 1.311  0.660 | 1.046 0.716 0.014 0.002
095 | 1.514 0.762 | 1.364 0.940 0.011 0.001

095 02 1.217  0.594 | 0922 0.540 0.012 0.004

095 | 1.462 0.726 | 1.326 0.861 0.013 0.003

5 1 02 0.2 0.285 0.042 | 0.163 0.036 0.242 0.328
0.95 | 0.864 0.328 | 0.717 0.356 0.080 0.096

095 0.2 0.030 0.024 | 0.013 0.048 0.207 0.471

0.95 | 0.316 0.044 | 0.201 0.049 0.338 0.412

3 02 0.2 0.012  0.047 | 0.005 0.069 0.181 0.473
0.95 | 0232 0.017 | 0.141 0.048 0.427 0.522

095 0.2 0.004 0.063 | 0.003 0.068 0.001 0.111
0.95 | 0.139 0.002 | 0.043 0.018 0.224 0.390

100 1 02 0.2 0.099 0.001 | 0.038 0.020 0.336 0.506
095 | 0475 0.111 | 0.340 0.099 0.253 0.296

095 0.2 0.044 0.014 | 0.018 0.033 0.097 0.301

095 | 0315 0.044 | 0.169 0.038 0.315 0.398

3 02 0.2 1.308 0.667 | 1.139 0.562 0.621 0.249
0.95 | 1.542 0.787 | 1.145 0.547 0.057 0.013

095 0.2 0.002 0.073 | 0.001 0.084 0.002 0.118
095 | 0.114 0.002 | 0.026 0.024 0.210 0.376

15 1 02 02 0.071  0.005 | 0.025 0.023 0.260 0.462
0.95 | 0468 0.109 | 0.307 0.074 0.244 0.292

095 0.2 0.033  0.020 | 0.013 0.040 0.074 0.267

095 | 1.540 0.786 | 1.142 0.540 0.050 0.011

3 02 02 1.259 0.642 | 1.146 0.571 0.841 0.374
095 | 1.527 0.779 | 1.121  0.556 0.104 0.029

095 02 0.006 0.056 | 0.004 0.063 0.001 0.083
095 | 0.121 0.002 | 0.033 0.018 0.149 0.305

Average 0.583  0.264 | 0.450 0.251 0.192 0.246

O(c0) = arg min GC,(0, 0) = arg min tr(WyS~") =0,
0e0,00] 0€l0,00]

0(0) = arg min GCP(H, 0) = arg gn'[loin] tr(MglM(]) = 0.

0e0,00]

On the other hand, from (11) and (12), we derive
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Table 6. MSE of 4 in which (k,n) = (15, 50)

Method

K 0 p Py 1 2 3 4 5 6

0 0 02 02 1.166  0.903 | 0.867 0.753 0.006 0.002
095 | 1.256  0.973 | 1.247 1.059 0.004 0.001

095 02 1.167 0.904 | 0.816 0.701 0.007 0.003

095 | 1.254 0972 | 1.163  0.997 0.004 0.002

5 1 02 0.2 0.023 0.001 | 0.023 0.025 0.520 0.625
0.95 | 0.289 0.163 | 0.210 0.141 0.318 0.340

095 0.2 0.002  0.007 | 0.001 0.009 0.073 0.154

0.95 | 0.044 0.006 | 0.010 0.006 0.555 0.630

3 02 0.2 0.000 0.015 | 0.000 0.017 0.053 0.126
0.95 | 0.035 0.003 | 0.011 0.007 0.557 0.645

095 0.2 0.006 0.041 | 0.006 0.042 0.013 0.059
0.95 | 0.004 0.005 | 0.000 0.015 0.117 0.205

100 1 02 0.2 0.012  0.000 | 0.004 0.005 0.278 0.392
095 | 0.174 0.080 | 0.078 0.036 0.441 0.472

095 0.2 0.004 0.004 | 0.003 0.006 0.034 0.095

0.95 | 0.063 0.0/14 | 0.021 0.005 0.452 0.532

3 02 0.2 1.171 0912 | 1.158 0.900 0.946 0.714
0.95 | 1.261 0.982 | 1.069 0.817 0.126 0.073

095 0.2 0.003 0.034 | 0.003 0.034 0.008 0.046
0.95 | 0.004 0.005 | 0.000 0.014 0.088 0.168

15 1 02 02 0.006 0.003 | 0.001 0.011 0.232 0.345
0.95 | 0.142  0.059 | 0.060 0.020 0.449 0.494

095 0.2 0.002  0.007 | 0.001 0.009 0.030 0.088

095 | 0.053 0.0/0 | 0.015 0.002 0442 0.523

3 02 02 1.197 0932 | 1.184 0.920 1.002 0.761
095 | 1.270  0.989 | 1.056 0.812 0.192 0.122

095 02 0.007  0.002 | 0.007 0.002 0.003 0.005
0.95 | 0.016 0.000 | 0.006 0.003 0.051 0.115

Average 0.380 0.287 | 0.322 0.263 0.250 0.276
0GC,(0,2) G, (0 zk: 2 (0r;,; —1) z":¢ o)
a0 = @+’ T

where r; ; is given by (5). Note that ¢, (GM) <0 when 0 €0, (r; 1)71]. There-
fore, GC,(0,2) <0 when 0¢€0,(r/,)" 1. These imply that GCp(@7 ) is a
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Table 7. Simulation results for the case in which (k,n) = (5,30)

Method

S p o p 1 2 3 4 5 6 7 8

0 02 02 88.34 87.53 | 88.00 87.16 87.30 86.76 | 87.44 86.88
0.95 | 90.24 89.05 | 90.52 89.32 838.34 87.46 | 83.63 87.73

095 0.2 88.49 87.64 | 88.15 87.28 8739 86.82 | 87.53 86.94
0.95 | 90.25 89.03 | 90.37 89.15 88.28 87.41 | 83.56 87.67

1 02 0.2 94.80 94.72 | 94.81 9490 9487 95.10 | 94.72 9491
0.95 | 92.17 91.54 | 92.09 9148 91.25 9096 | 91.34 91.02

095 0.2 9734 9731 | 9734 9736 97.37 9746 | 97.29 97.41
095 | 9347 9294 | 9347 93.00 92.74 92.43 | 92.76 92.45

302 0.2 98.92 9893 | 98.92 9894 9892 9895 | 9891 98.98
095 | 9544 9523 | 95.69 9575 9540 9543 | 9519 95.21

095 0.2 99.37 99.37 | 99.37 99.38 99.37 99.38 | 99.37 99.40
095 | 97.61 9754 | 97.66 97.82 97.72 97.86 | 97.54 97.67

Average 93.87 93.40 | 93.87 9346 9325 93.00 | 93.27 93.02

Table 8. Simulation results for the case in which (k,n) = (5,50)

Method

S p p 1 2 3 4 5 6 7 8

0 02 02 9222 9194 | 92.06 91.70 91.63 91.45 | 91.73 91.54
095 | 9329 9291 | 9352 93.08 92.10 91.80 | 92.27 91.98

095 02 9222 9196 | 92.08 91.72 91.67 91.49 | 91.76 91.58
095 | 9324 92.83 | 93.42 93.01 92.05 91.78 | 9221 91.93

1 02 02 97.46 9745 | 9746 9748 97.52 97.57 | 9746 97.52
095 | 9496 94.79 | 95.00 94.82 94.54 94.46 | 94.57 94.48

095 0.2 98.75 9876 | 9876 98.77 98.77 98.79 | 98.77 98.81
095 | 96.19 96.06 | 96.28 96.20 9596 9592 | 9591 95.87

3 02 02 99.57 99.57 | 99.57 99.57 99.57 99.57 | 99.57 99.58
095 | 97.70  97.67 | 97.80 97.84 97.78 97.83 | 97.66 97.70

095 0.2 99.79  99.80 | 99.79 99.80 99.79 99.80 | 99.80 99.81
095 | 98.73 98.73 | 98.74 9875 98.77 98.80 | 98.74 98.78

Average 96.18 96.04 | 96.21 96.06 95.84 9577 | 9587 95.80
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Table 9. Simulation results for the case in which (k,n) = (10,30)

Method

kK 0 p Py 1 2 3 4 5 6 7 8

0 0 02 02 79.07 77.26 | 78.10 76.70 77.69 76.47 | 77.86 76.56
095 | 81.19 78.61 | 80.54 7824 78.86 77.14 | 79.13 77.28

095 02 78.78 77.07 | 77.90 76.56 7748 76.33 | 77.64 76.41

095 | 81.01 78.44 | 80.29 77.72 78.72 76.89 | 79.03 77.08

5 1 02 0.2 87.14 86.60 | 87.12 87.07 86.75 86.88 | 86.72 86.76
095 | 83.49 81.63 | 8299 8141 81.83 80.74 | 82.01 80.86

095 0.2 91.60 91.36 | 91.45 91.52 9146 91.66 | 91.38 91.56

0.95 | 8521 8347 | 84.66 83.12 83.70 82.59 | 83.87 82.68

302 0.2 95.74 9571 | 9571 95.80 9572 9585 | 95.67 95.83
095 | 88.41 87.52 | 88.34 87.83 87.67 87.21 | 87.713 8§7.23

095 0.2 97.50 97.51 | 97.50 97.56 97.50 97.56 | 97.47 97.58
0.95 | 91.85 91.67 | 9191 92.63 91.77 92.18 | 91.66 92.02

10 1 02 0.2 92.02 91.74 | 9193 9193 91.85 9212 | 91.76 91.98
095 | 84.62 8296 | 84.27 8291 83.14 82.18 | 83.29 82.28

095 0.2 94.53  94.37 | 9450 94.57 94.47 94.68 | 9436 94.57

0.95 | 86.19 84.74 | 85.81 84.66 8491 84.02 | 8503 84.10

3 02 0.2 98.57 98.64 | 98.59 98.71 9859 98.72 | 98.57 98.77
0.95 | 91.50 90.99 | 91.59 91.67 91.12 91.23 | 91.06 91.12

095 0.2 99.69 99.73 | 99.70 99.76  99.70  99.76 | 99.70  99.81
095 | 94.15 93.83 | 9420 94.37 94.00 94.19 | 93.87 94.02

Average 89.11 88.19 | 88.85 88.24 88.35 87.92 | 88.39 8§7.93

monotonic decreasing function with respect to 6 € [0, (rjfl)fl]. Thus, 6(7) >
(rzl)fl. On the other hand, if maxj_; ;<0 is satisfied, $;(014) <0
holds for any 0. This fact means GC,(0,4) is a monotonic decreasing
function with respect to 0 € [0, c0]. Hence, we can see that 9(/1) = oo when
max;_,_ r;; <0. Since max;—;_xr;; <0 holds when A< min__ pd;/

yeeny yeeey

||zj||2, (%) = oo when A < min—; .k pa’j/||zj||2 is satisfied.
Using Equation (3) and GC,(0, 4) = 2g(0) + 2ph(0), we have

7 GCp(0(2),2) = §(0(2)) + =27~ GG, (0(2),2) = 0, (13)

where GC,(0,1) = 0°GC,(0,1)/(80%). Since (1) satisfies (2), i.e., O(2) is the
minimizer of GC,(0,1), GC,(0,4) is a convex function around the neigh-
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Table 10. Simulation results for the case in which (k,n) = (10, 50)

Method

kK 0 p Py 1 2 3 4 5 6 7 8

0 0 02 0.2 8493 84.48 | 84.60 84.09 8441 84.09 | 84.51 84.17
0.95 | 86.22 8543 | 8559 84.96 8499 8448 | 85.19 84.63

095 0.2 84.98 84.50 | 84.62 84.13 8444 84.10 | 84.54 84.18

095 | 86.20 8542 | 8558 8500 85.04 84.60 | 85.20 84.68

5 1 02 0.2 92.65 92.60 | 92.67 92.72 92.66 92.74 | 92.60 92.66
0.95 | 88.43 87.94 | 88.14 87.77 8770 87.40 | 87.82 87.48

095 0.2 9543 9543 | 95.44 9547 9545 9551 | 95.42 95.50

0.95 | 90.03 89.69 | 89.94 89.68 89.55 89.31 | 89.61 §89.37

302 0.2 97.90 9792 | 9790 9793 9790 9793 | 97.90 97.95
095 | 93.17 93.09 | 9336 93.52 93.15 9322 | 93.09 93.14

095 0.2 99.27 9928 | 99.27 99.28 99.27 99.28 | 99.27 99.30
0.95 | 9551 9547 | 9549 95.53 9554 9561 | 9548 95.54

10 1 02 0.2 96.50 96.47 | 96.53 96.55 96.52 96.57 | 96.47 96.53
0.95 | 89.71 89.33 | §9.58 89.32 89.16 88.94 | 89.23 89.00

095 0.2 97.64 97.64 | 97.66 97.68 97.66 97.70 | 97.64 97.70

0.95 | 91.07 90.75 | 91.09 90.91 90.63 90.48 | 90.67 90.51

302 0.2 99.44 99.44 | 99.44 9944 99.44 99.44 | 99.44 99.45
0.95 | 95.66 95.64 | 95.85 9597 9575 9589 | 95.65 95.77

095 0.2 99.46 99.46 | 99.46 99.47 99.46 99.47 | 99.46 99.47
095 | 9731 97.29 | 97.35 97.38 9736 97.43 | 97.30 97.37

Average 93.08 92.86 | 9298 92.84 92.80 92.71 | 92.83 92.72

borhood of 6(2). Hence, we have Gt'p(é(i),i) > 0. Using this result and
Equation (13), we obtain

20(%) 4(0(2))

0h GG (002). )
We derive §(6(2)) >0 because ¢(0) is a strictly monotonic increasing function
of € [0,0]. Hence, d6(1)/(02) <0 is obtained. This implies that (1) is a
monotonic decreasing function with respect to A.

A.2. Proof of THEOREM 2. In this subsection, we present the proof of
THEOREM 2, which describes the expansion of é(}v). In order to prove
this theorem, we expand the GC, criterion in (1) under fixed 4. Recall that
X'1,=0, n—k-1)S=Y'(I,-1,1/n—XM;'X")¥Y, and Q'X'XQ = D.
Hence, we derive
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Table 11. Simulation results for the case in which (k,n) = (15,30)

Method

kK 0 p Py 1 2 3 4 5 6 7 8

0 0 02 02 7283 6939 | 71.66 68.77 70.91 68.51 | 71.05 68.56
095 | 7639 7149 | 7439 70.03 72.67 69.23 | 7291 69.43

095 02 73.86  69.79 | 72.30 69.03 71.62 68.75 | 71.78 68.81

095 | 76.96 71.53 | 7471 7021 72.86 69.12 | 73.14 69.26

5 1 02 0.2 81.70 79.12 | 81.18 79.31 80.22 78.70 | 80.33 78.73
0.95 | 7831 73.62 | 76.23 72.84 7479 7199 | 75.01 72.06

095 0.2 93.65 93.73 | 93.78 9448 9361 94.47 | 93.50 94.31

0.95 | 83.27 80.58 | 82.40 80.94 81.18 80.12 | 81.29 &80.16

302 0.2 95.37 9579 | 9546 9648 9545 96.66 | 9533 96.48
095 | 83.89 81.25 | 83.09 81.71 81.83 80.83 | 81.96 80.84

095 0.2 99.19 99.30 | 99.19 99.32 99.20 99.34 | 99.19 99.40
0.95 | 91.36  90.77 | 91.08 91.36 90.87 91.24 | 90.84 91.15

10 1 02 0.2 86.74 85.67 | 86.32 86.26 86.0/ 86.17 | 86.02 86.09
0.95 | 80.23 76.29 | 78.81 75.65 77.28 74.85 | 77.44 74.89

095 0.2 94.47 9445 | 9446 94.87 9443 9495 | 9433 9484

095 | 8420 81.78 | 83.37 82.11 8229 81.24 | 82.40 &81.27

3 02 0.2 97.61 9751 | 97.59 97.73 97.57 97.76 | 97.48 97.72
0.95 | 86.41 &84.68 | 85.85 8524 85.06 84.55 | 8513 84.55

095 0.2 99.24 9932 | 99.25 99.35 99.25 9935 | 99.24 99.40
095 | 9231 91.76 | 91.97 92.10 91.90 92.16 | 91.86 92.08

15 1 02 02 89.95 89.49 | 89.75 90.12 89.59 90.23 | 89.54 90.11
095 | 81.17 77.65 | 79.74 77.00 78.54 76.39 | 78.69 76.45

095 0.2 95.13 9508 | 95.11 9538 95.09 9547 | 95.00 9539

095 | 84.74 82.63 | 84.10 83.32 83.04 8247 | 83.13 8249

3 02 02 97.99 98.09 | 98.00 98.23 9799 9825 | 97.95 98.28
0.95 | 88.99 87.89 | 88.33 88.61 88.07 8828 | 88.09 88.23

095 02 99.16  99.21 | 99.16 99.23 99.16 99.23 | 99.15 99.27
095 | 92.82 92.25 | 9246 92.53 9240 92.56 | 92.36 92.48

Average 87.78 86.08 | 87.13 86.15 86.53 8582 | 86.58 85.81

WS =Y'(I, - 1,1, /n— XM;'X")’ YS!
=(m—k—DI,+YXM;' - 2M;"' + M;'MM;)X'YS™!
=(m—k—1I,+Y'XQD™V2{I, - D(D + 0I,) '}’ D~'?Q'X'YS .

Based on this result, the GC, criterion is expressed as
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Table 12. Simulation results for the case in which (k,n) = (15,50)

Method

K 0 p Py 1 2 3 4 5 6 7 8

0 0 02 02 79.00 7827 | 7834  71.85 78.34 77.87 | 78.42 7793
095 | 80.06 7892 | 7888  78.24 78714  78.07 | 7890 7817

095 02 78.96 7824 | 7835 7178 78.31 77.80 | 7839  77.86

095 | 80.47 79.24 | 79.11 78.33 79.01 7824 | 79.18 7834

5 1 02 0.2 89.06 88.80 | 89.42  89.64 88.86 88.89 88.84  88.83
0.95 82.51 81.71 81.91 81.31 81.60 81.14 | 81.70  81.20

095 02 9759  97.65 97.60  97.69 97.63 97.76 | 97.61 97.717

0.95 88.51 88.15 88.41 88.35 88.14  88.05 | 88.16  88.04

3 02 0.2 98.10 98.12 | 98.10 98.13 98.11 98.16 | 98.10 98.18
0.95 89.07  88.81 89.06  89.18 88.81 88.87 | 8882  83.84

095 0.2 99.76  99.77 | 99.76  99.77  99.76 99.77 | 99.76  99.77
095 | 9577 9574 | 95.77  95.81 95.77 9583 | 95.73  95.81

100 1 02 02 9346 9341 | 93.49 9355 93.46 93.60 | 93.40 93.53
095 | 8438 83.67 | 8397 8345 83.59  83.15 [ 83.68 8322

095 02 98.01 98.03 | 9802  98.05 98.02 98.07 | 98.01  98.08

0.95 | 89.21 88.93 | 89.27  89.22 88.92 8888 | 88.93  88.87

3 02 0.2 98.84 98.86 | 98.84  98.86 98.85 98.87 98.85  98.89
095 | 92.05 9185 | 92.06 92.11 91.89 9192 | 91.86 91.87

095 0.2 99.68  99.69 | 99.68 99.69  99.68  99.69 | 99.69  99.70
0.95 96.56  96.56 | 96.57  96.62 96.58 96.65 | 96.55  96.64

15 1 02 02 9510  95.05 | 95.13 9517 9510 9519 | 95.05 95.14
095 | 85.64  85.11 8546  85.14 85.04 8476 | 85.11  84.80

095 02 98.37 9839 | 9838 98.41 98.39 98.43 [ 9838  98.44

095 | 89.86 89.58 | 89.72 89.75  89.58  89.58 | 89.59  89.56

302 0.2 99.46  99.46 99.46  99.46 99.46  99.46 | 99.45  99.48
095 | 9382 9365 | 93.77 93.73 93.69 93.71 93.65  93.66

095 0.2 100.0  100.0 | 100.0 100.0 100.0 100.0 | 100.0  100.0
095 | 96.76  96.75 | 96.78  96.81 96.77 96.82 | 96.74  96.80

Average 91.79  91.52 | 91.62 9150 9150  91.40 | 91.52  91.41

GCy(0,2) = A(n—k — 1)p+ 20> tt{D~'2Q'VOD~V*(D + 0I,)*}
+2p{D(D +01;)""}.
Letting t; = (D~'2Q'VQD~'/?)

> We obtain
0%¢;

k -2 -1
0 0
GCy(0,4) =A(n—k—1)p+ E /1<1+j> ?—sz(l‘i‘g)
i=1 ! i 1
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By Taylor expansion around 6 =0, we have
/+1/9f+1

k o«
Cp(0,7) = An—k —1p+xzz df+1 1

i=1 /=1

k 0 (_1)/+1 ,
+2p) | 1= 0
i=1 i

/=1

=An—k—-1)+2k)p

0 ) ’ k 1
+;{ /+1 0/+lzd/+1 _1)/-&-10/;6[_[/}

=An—-k-=1)+2k)p

8

+ 3 (=10 {200 (VM) — 2p (M)}
/=1

Recall that a; = n/ tr(VMO_(Hz)) and b; = n/ tr(M,’). Tt follows that

L (7 )(+1 4

GCy(0,7) = (Aln —k = 1)+ 2k)p + lim > {20a, — 2pb,}.
A

Then, the following equation is derived:

a L /+1/9/ 1
25 GG (0, 2) = lim Z {2(¢ + Da,0 — 2pb,}.
=1

Using the above equation and 6(1) satisfies (3), we obtain the equation in
THEOREM 2.

A.3. Proof of THEOREM 3. In this subsection, we prove THEOREM 3,
which shows the risk function with respect to 4. Recall that g(6) = tr(WyS ™),
h(0) = tr(M;'M,) and GC,(0,7) = /g(0) + 2ph(0). Since 0(2) satisfies (3), we

obtain
0o_ 0 (lag_w) an0) )
ayY), 90 {y_g 00 |p—4)
_00(%) §(0(4))

{2G(6(2)) + 2ph(0(2))} + 2

—aY),

J

ay),

y
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where §(0(4)) = 39(0)/(00)|,_g.)» §(0(2)) = 3°g(0)/(20)*|_g,)» and h(B(2)) =
oh(0)/ (69”0:(?(&)' Thus, we obtain

002) _  M2g(6(2)))/(0(Y);)
oY), GCp(0(2), 2)

because, from Appendix A.l, GC (é(ﬂ) ) = )ug'(é(/l)) +2ph(6(2)) > 0. By
simple calculation, we have §(A(1)) = 20(A) tr(M; oG )V) As in the proof of
LEMMA 1, which is given in Appendlx A.4, we obtain 0 tr(M V) /(0(Y);)

=2(S" Y’XM X{I YST'Y'H/(n—k —1)}); Hence, we derlve
n_p 5 41@(1) tr(V M3 M)
}:ijwr?XYUaW) S
e oY), GGy (0(2), 2)

because X'1, =0, and M, S)MOMT 2) = MT(S)MO. By simple calculation, we

have GC,(0, 1) = 1g(0) + 2ph(0) = 2{20 tr(M;*V) — p tr(M,>M,)} and
~(h -3 5 —4 -3
GC,(0(2), 1) =2{4 tr(Mw) V) —326(%) tr(Méu) V)+2p tr(Méu)Mo)}.

Thus, the theorem is proved.

A.4. Proof of LEMMA 1. In this subsection, we prove LEMMA 1, which
shows the derivative of a, for any /. Since a, = n’ tr( VM(;V”)), My=X'X,
and ¥ = X'YS~'Y’X, we need only obtain the derivative of ¥. We can see
that

o8~ o8
=_g! s-!
a(Y)ij a(Y)ij
1 1 71
== n—k — 1S (ej'Pe;nHY + Y/Hei-nej{.p)s s

where e;,, i1s an n-dimensional vector whose ith element is one and other
elements are zeros. Thus, we obtain

—Xe,,,e S 'YX+ X'ys™! e”,e X

1

_nfkflxlys (e]Peu1HY+YHezne )S YX

From da,/(0(Y);) =n tr{M (r+2) (8V)/(6(Y)ij)}, we derive this lemma.
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A.5. Proof of THEOREM 4. From (8), we obtain

PMSE[Y@LM] = Ey[u(W;, )7 + 2p{tr(Mé_(L1) oy Mo) +1}]

ii: XM 2 X'y aé(L)(’l) .

i=1 j= a(Y)

y

—2Ey

Hence, we need only calculate aé(L)(;,)/ (6(Y)ij).

Using THEOREM 2, we
derive the derivative as follows:

00wy (4) _ 30w, @
ox); — aY); aY),

1 &1 /41
— (=D +1
T 2 DD

X 0,y (DAL + 2)ar 0 1)(2) - 2pb/+1}] .
Recall that 9(0) (A) =0. From LEMMA 1, we have

00y (4) _ pbi day
oY), i aY)

i

2101, (4
_ 0 ®) s yxmix (1, -— _ysvm)),
ap n—k—1 i

and

L1

1
12? _1)’H /+1)0L (4 AL +2)ar10-1)(2) — Zpb/ﬂ}]
/=

YS'Y'H
S'YXMZX'( I, - ————
n—k—1 i

1 , - ) B
= (=) + 10 (DAL + 2)ar101-1)(2) — 2pbria}

’ -

N

=

~
Lol S ]

a

X
> =~
(=} —_

1L1

1
a2 = )+ 1000 (2)

="

X {4+ 1)(4 + 2)ar 101y (2) — zp/bm}w



Selection of model selection criteria for MR regression 101

L
o2 - DN+ D)+ 200 ()
/=0
(s Y' XM, " x’ <I,1nYS‘1Y’H>>.
ji

Thus, we obtain

>SS M2 LX),

i=1 j=1
&1 =
— (=D 41
Ady ;n/ )
X 0,1y (WA + 2ar 01y (2) = 2pbya}
S LY . Fa %)
ra? 0 0y (2)
& 1 (+1
X W(_l) T+ 1)9 (4 VAL +2)ar10(1-1)(2) — 2pbsar }

=0

1 &1 /1
+Tal;7(—1) (¢ + DI (2)

< {20+ 1)(¢ + 2)ar0-1) () — 2plbsi1 }

X'y 360, _1)(%)
x ZZ XM;?  X'Y), 7&;;

i=1 j= ij
n & (+1 /41 (¢+2)
+—-) (1) e+ 1+ 20! )(})tr(M M9(2< ),
1720 !
and
n L 200 (7) 2n9<1>())
Z )lj 6(Y) T g (Mo M, L)<,)V)

i=1 j=1
We derive this theorem by substituting these results into (8).
A.6. The criteria for optimizing 4 when we use 9(2)(1). In this subsection,

we calculate the criterion for optimizing 4 when we use 5(2)(1). From (6), we
obtain
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N A o 1~ ;
0(2)(A) = 9(1)(/L) + %0(1)(/0{3;&20(1)(},) — Zpbz}

= 0 1 a b
a(l)u)veé)(x){ﬂ 2}

ai by

Since b, = n’ tr(M,") does not depend on (Y);, we derive

5@(2)(2) . 5é<1>(/1) 1 0 ~ a bg
o, ~an, w00 %5))

_ 30y() +l{5é(21>(;t) (3% bz) n 30 (7 )5612/611}

aY), aY)y; Car b AY),

oY), n a b n AY), "

y g

_ 9004 {1 L 2004 <3@ _ @) } | 300 () éas/ay

Hence, the third term of (7) is obtained using the result of 65(1)(/1) /(0(Y);) as
follows:

. 000 (2)
S S o, D)

<>{<> (32 o )
*)

a by

+ i p(XMT2 X'Y),|a Oay —a oay
nal =< oo™ T\ oY), oY), )

From LEMMA 1, we obtain

3(9 n zp: 4 Oay 4 oay
nal = Yoy),  “a(y),

1 ij

p
XM
i=1 j=1

1
Y XM (naM - el )X' (I, - ———— YS'Y'H
n—k—1 P
2
(

tr{XM 2 VM53(na1Mgl —a;)X'}

667, (2
= O 1 {M;2M ;>

B VinaiMy" — arl})}.
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Thus, we have

n & 060 (%)
_ -2 ryy Y@
ZZ(XM%)(UX Y)’/ 8(Y)ij

=1 j=1

2n01)(7) I 400 (2) (. as b2 B
_T (Mo Mé<2>(/1) V)+T 361_1 by tr(M, M
—5— tr{M, M )V(Clzlk naiMy")}
al
2né(1)(i) ., 1807, (2)az
== tr(My MH(Z)()V)+7a% (MM V)
862, (2)bs 6n0%,(1)
(1) —2ag-2 (1) 3 )
Ty FMoMG ) V) = MM V).

When we use THEOREM 4, we obtain the same result.
obtain the C, type criteria for optimizing A are defined as

CP(i) = (W, S H+2p tr(Mg(zl)zMo)

)

2(4)

103

V)

Using this result, we

4n01)(2) N 3607 (2)ax g2
ey WMoTM V) e w(My"M; i) V)
1602, (2)b 12067, ()
) —2ar-2 ) SM:?
b (M, Méu(’-) ) - aj (M, Mém(’v) V)
and
MCP (1) = em tr(Wéz)(i)Sfl) +2p tr(Mef(zl)zMo)
4né(1>(i) I 36@21)(/1)612 oy
T MM ) V) e u(M M ) V)
1602, (2)bs 12007, (2)
_TWMVEE “2M ;2 - 0 oM’
——h tr(M M;? V) m tr(M, M=o V).

A.7. Proof of THEOREM 5. In this subsection, we show an asymptotic

expansion of the PMSE[Y(;(L)} for obtaining .

obtained as (9), we consider expanding each term for obtaining 4.

Since the PMSE[Y;,] is

We obtain
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Wé(ﬂ)271 = Y’(In - 1,11:1/}’1 — XM(;(;I)X/)zYE’l

=(mn—k-1)sx!

/ ~1 ~1 ~1
+ Y/ X(Mg' = 2M; ), + M)

—1 l —1
MM, )XY E

) )

=n—k-1)8sx!
+Y'XOD (I, — D{D + 6 I,) VDo X' YE,

because  Y'(I,—1,1'/n— XM;' X\ Y =(n—k-1)S, X'1,=0, and
Q0'X'XQ = D. Hence, we obtain

tr(Wy, 7)) = (n—k = 1) tr(SE~") + 0° tr{(D + 0I,) D' Q'V*Q}.

Since S is an unbiased estimator of X, we have

k A 2 1y * B
Ey[te(W;, £7)] = (n—k — 1)p + Ey lz< 0(4) ) Qv Q)J/]_

S\ +00)) 4

Then, since d; = O(n) and V* = 0,(n*), we can expand the above equation as
follows:

-1 & éz(j‘) 1y * -2
Eylr(Wy,, Z0] = (n—k = D)p+Ey |3 = (Q'V' Q)+ 0p(n?)
j=1 7
%2
=(m—k—-1)p+Ey “‘Hn(’l) + op(nz)].

From simple calculation by Taylor expansion and noting that a; = O,(1) and
b; = O(1), we derive

_ b16(4) _
tr(Mé(LMo) =k — n( +0,(n7?),
X _ 0(A)ar _
20(7) tr(VMé(;Mo) =— 5+ Opln 3,
3y _ A -2
A tr(VMéw) —7+ Op(}’l ),

ay M(Day _
20 tr(VMé(j)) = 512) +0,(n7?),

b
-3 _ U2 -3
tr(M(j(/UMo) —ﬁ"‘r Op(n )
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By substituting these results into the PMSE[IA’W)] in (9), we obtain the

asymptotic expansion of the PMSE[Yé( A)], as follows:
ai0’(2)  2pb10(2) N 4a,0(7) N
n n naj

PMSE|[Y; ;)| = (n+k+1)p + Ey

0,,(112)1 .

From (6), which is proved in Appendix A.2, we have 0(1) = pbi/(la;)+
OP(n’l). Hence, we consider minimizing the following approximated PMSE:

3 pby (pbiai  2pby  4a; -
PMSE[Y; ,\] = k+1 Ey|— - 0 .
[ 9(2)] (m+k+1)p+Ey Lwl < a 7 + 24 +0(n™7)
Hence we obtain the asymptotic optimal A*, which minimizes the second term
of the above equation as in THEOREM 5.
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