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Mathematical treatment of a model for smoldering combustion
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ABSTRACT. Finger-like smoldering patterns are observed in experiments under micro-
gravity. For theoretical understanding of such pattern phenomena, a model of reaction-
diffusion system has been proposed. In this paper, we prove the existence and
uniqueness of a solution for this reaction-diffusion system. We also consider a
large-time behavior of solutions.

1. Introduction

It is reported that thin solid, for an example, paper, cellulose dialysis bags
and polyethylene sheets, burning against oxidizing wind develops finger-like
patterns or fingering patterns ([4]). Thin solid is stretched out straight onto the
bottom plate and they also control the adjustable vertical gap, denoted by a
parameter A, between top and bottom plates. The oxidizing gas is supplied in
a uniform laminar flow, opposite to the directions of the front propagation
and they control the flow velocity of oxygen, denoted by Vg,. When Vi, is
decreased below a critical value, the smooth front develops a structure which
marks the onset of instability. As Vp, is decreased further, the peaks are
separated by cusp-like minima and a fingering pattern is formed, as shown in
Figure 1. Similar phenomena were also observed in a micro-gravity exper-
iment in space (see [2]).

In order to theoretically understand the experimental results above, we
propose a phenomenological minimal model described by the following
exothermic reaction-diffusion system for the (Kelvin) temperature u (v =0
corresponds to the temperature outside of the experimental device), the density
of paper v and the concentration of the inflammable mixed gas w.
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Fig. 1. Instability of combustion front when Vp, decreases from a to e. Oxygen flows from
downward and the combustion front moves upward (Figure 2 in [4]).

A

%:LeAu+/1'2—z+yf(u)vw—g(u), (x,y) el x Q2,1>0,
(RD) % = —f(u)vw, (x,y) el xQ,t>0,

ow ow .

E_Aw—l—/la—f(u)vw, (x,y) el xQ,t>0,

where the constants Le, called Lewis number, and y are positive constants, A
and A" are nonnegative constants, / is a bounded interval (0,/;) or a whole line
(—c0,0), 2 <R" is a bounded domain, and A= 0%/ox>+ Y1, 8%/ay? is
Laplacian as usual. For the nonlinear terms f(u) and g(u), we are concerned
with

) :{A exp(—B/(u—0)), u>0,

0 0<u<x<é,

)

for some constants 4, B >0 and 6 >0, and g(u) = au™ for a >0 and m > 1.
The function f as above is called Arrhenius kinetics and g is heat radiation in
combustion. Keeping the Arrhenius kinetics and the heat radiation in mind,
we assume that the nonlinear terms f and g satisfy the following conditions:
(1) The function f is locally Lipschitz continuous and nonnegative for
u=>0.
(2) The function g is locally Lipschitz continuous for u > 0, g(0) = 0, and
positive for u > 0. Furthermore g is monotone increasing for u > 0.
(3) The functions f and g satisfy

) e ) e A OB (A)

u—0 U u—0 g(u) u—x g(u)
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which indicate that f(0) =0. In this paper, we consider the nonlinear terms
generalized as above.

Next we consider the boundary and initial conditions to (RD). We
suppose that if 7 =(0,/;), u and w satisfy

ou ou ow
— (0 = A_ l‘c ) :Oa Al 07 )t :07 lx7 1) = wy 0
7y (00 0) =52l 3, 0) a3y (00 1) Ww(le, ;1) = wy >

for any ye 2 and ¢ >0, and if 1 = (—o0, 0),

‘llim u(x, y,t) =0, lim w(x, y,t) = w,, lim w(x, y,t)=w; =0
Xx|— o0 X— 0 X —00

for any y € Q and ¢ > 0, where w, and w; are some non-negative constants. In
both cases we also suppose that u, w satisfy

ow

t)=0
av(xayﬂ )

ou

5 (X, 2 [) = 07
for xe I, ye 0Q and ¢t > 0, where v is the unit exterior normal vector on 0Q.
We suppose that the initial functions satisfy

u(xvyao):uo(xay) >0, v(x,y70):vo(x,y) >0,
w(x, 7,0) = wo(x, ») = 0.

We first show some 2-dimensional numerical simulations. We assume
the domain to be rectangle, taking /' =0 and /1 in (RD) as a controlled
parameter. If 1 is large, a smooth flame front is observed (see Figure 2
(a)). When 4 is decreased, the instability of a smooth flame front occurs (see
Figure 2 (b)). As A is decreased further, a fingering pattern is formed (see

(a) (b) () (d)
A=15 A=0.7 A =0.35 A=0.2

Fig. 2. Spatial patterns of burned paper v (Le =03, y=20, 1A' =0, g(u) =025, f(u)=
exp(—1/0.415u)).
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Figures 2 (c), (d)). We can say that numerical simulations suggest that the
system (RD) exhibits a qualitative agreement with the experimental results
in Figure 1. We thus find that (RD) generates diverse patterns when some
parameter is globally varied. This motives us to study qualitative behavior of
solutions to (RD). As the first step, the present paper discusses the funda-
mental problem, namely, we will show the existence and uniqueness of global
solution of (RD) and study the asymptotic behavior of the global solution.
This paper is organized as follows: In Section 2, using the upper bound of
a solution of (RD) (Lemma 1), we show the global existence and uniqueness
of a solution of (RD) (Theorems 1 and 2). In Section 3, we consider the
asymptotic behavior of the global solution given in Section 2 (Theorem 3).

2. Existence and uniqueness of a global solution

In this section, we prove the existence and uniqueness of a global solution.
We first show the existence and uniqueness of a local solution. For this
purpose, we replace w by z such as w =z + w, where w = w(x) is a smooth
positive function and satisfies w(/,) = w, and @’(0) =0 if I = (0,1,), or @ — w,
as x — oo and w — w; as x —» —oo if I = (—o0,00). Then we consider the
following system derived from (RD) with respect to (u,v,z);

%:qu+w%+y@w@+m—mm,<&we1xat>m

6—1;: —f(w)v(z + w), (x,y) eI xQ,t>0, (2.1)
0z 0z " [P
E:Az—i—}.a—x—f(u)v(z—&—w)—i—w +0", (x,y)elxQ t>0.

The initial functions ug, vy and z, are

”(xvyao):MO(X,J’) 207 D(x7y70):00(xay) 207
(2.2)

2(x, »,0) = wo(x, y) — o(x) = z0(x, ¥)

for xel and ye Q. Here we assume wp(x,y) >0 as in Section 1. We
suppose that u satisfies

Ju Ju .
3(0, »t) = a(lx,y, 1) =0, if 1=(0,1,),

lim u(x, y,t) =0, if 1= (—o0,00)

|x|— 00

for ye Q2 and >0 and z does
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Z =20 =0, i I=(04)
(2.4)
‘l‘im z(x, y,1) =0, if I=(—o0,00)
for ye Q2 and > 0. In addition, we suppose that u and z satisfy
Hern=0.  Zxypn=0 25)

ov ov

for xel, ye 0 and t > 0.

We prove the existence and uniqueness of a local solution of the above
system. In the proof, we shall use the standard theory of an analytic
semigroup and prove the existence of the following integral equation;

t
(1) = T(1)Dy +J T(t— s)F(P(s))ds, (2.6)
0
where @ = (u,v,z)', ®o = (uo,v0,20)', T(f) is a semigroup generated by a
differential operator 4 defined by

LeA+2'a 0 0
ox
A= 0 0 0
0 0 A—Hi

“Ox
and

1f (u)o(w + z) — g(u)
F(®) = —f(w)v(w +2)
—f(w)v(w+z) + 0" + I’

We consider the integral equation (2.6) in the functional space X defined by
X=L"IxQ)xL*(IxQ)x LI xQ)
for p >n+1. Here the domain of A, denoted by D(A), is defined by
D(A) = WgP(I x Q) x L*(I x Q) x Wyh(I x Q),
where Wa?(I x Q) is defined by

WPl x Q) = {u e WHP(I x Q) %: 0

for xe I,y e 0Q and u satisfies (2.3)}



354 Kota IKEDA and Masayasu MIMURA

and W,%,”%(I x Q) is defined by

Wih(I x Q) = {z e WP(I x .Q)‘ % =0

for xel,y e 0Q and z satisfies (2.4)}.

The functional space W??(I x Q) is a usual Sobolev space. Although the
domain 7 x 2 may not have the smooth boundary, even if Q2 has a smooth
boundary, it follows from the standard argument that —L, and —L. generate
analytic semigroups 7,(¢) and T.(¢), respectively (see [l]), where L, =
—Led — 2'0/0x and L. = —4 — }0/0x. In fact, these can be expressed by two
analytic semigroups because / x Q is a cylindrical domain, which shall be
proved in Appendix.

We assume that ug € D(L}), vo € C*(I x Q) and zo e D(L?) for 1/2 < a < 1
and 0 < x < 1. The functional spaces D(L}) and D(L?) are called fractional
spaces (see Section 2.6 of [3]), and C*(I x Q) is the Holder space with a Holder
exponent . Then we have the following theorem for existence of a local
solution:

THEOREM 1.  Assume that p >n+1,1/2<a<1,0<x < 1, and 0Q € C>.
In addition, suppose that the Holder continuous function @ has the second order
continuous derivatives in x €l and they are Hdlder continuous, belonging to
LP(I). Then, for any (ug,vo,z0) € D(LY) x C*(I x Q) x D(LY), there exist
T > 0 and a unique local classical solution (u,v,z) of (2.1)—(2.5) for 0 <t < T.

Theorem 1 can be shown by a standard argument (see Section § of [3]).
So we omit the details. In fact, the local solution obtained in Theorem 1 exists
globally in time. To prove it, we need to obtain the following a priori estimate:

Lemma 1. Let (u,v,z) be a solution given in Theorem 1 and set w = z + w.
Then there exists a constant R > 0, depending on initial functions uy, vy and wy,
such that for any (x,y)el x Q, t >0,

0<u<R, 0<v<R, 0<w<R

Proor. We first have 0 < v < [[vg]| ;40 because we can solve the second
equation (2.1) withe respect to v such as

v(x, y,t) = vo(x, y) exp (— J(: S (u(x, y,s))w(x, y,s)ds). (2.7)

Since w = max{||wo|| .« (;x0), Wr, Wi} is a super-solution of w, we obtain w < w.
Setting
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i = max{|luol| L= (rxq) SUP{u > O Pl[voll Lo (10 Wf () = g(u) > 01},

we readily see that u is a super-solution of u, so that we obtain u <u. From
the maximum principle, it is easy to see that # and w are nonnegative. Thus
the proof is completed.

From the above lemma, the following theorem holds:

THEOREM 2. Let (u,v,z) be a solution given in Theorem 1. Then (u,v,z)
exists globally.

Proor. From Lemma 1 we already know that v is bounded in ¢ > 0. In
addition, if # and z are Holder continuous, v is also Holder continuous because
of (2.7). Therefore, in order to prove Theorem 2, it suffices to show that
lull,, = Nl Logen) LGl Lorrgy and (2], = 112l Lrgeo) HILZZ] Lorcg) exist for
all > 0.

First of all, we obtain the estimate of [[ul|,,;.q)- Since there exist some
constants ¢y >0 and e (-0, c0) such that ||T,(¢)|| < coe’, we have

t
lull Lorxe) < COeﬁI”“O”u(IxQ) +a Jo P9y Lo(1x0)45S,

where ¢; > 0 is a constant. Hence it follows from Gronwall’s inequality that
ull o (rxa) < coe’ (1 + em)H”()”u(IxQ) = 2COe(ﬁJrcl)tH”O||LP(1xQ)~

Next we estimate the norm ||Ljull;,;y0). Since [|L7T. ()] < cpe?' /¥
holds for >0 and LT, (t)uo = T,(t)Liuy for ug € D(L}) (see Theorem 6.13
in Section 2 of [3]), we obtain by using (2.6)

t
o o Cl —S
|L2ullrco) < o™ | LitolLoreo) + JO = Mllirayds

< CoeﬁfHLZMOHLp(]XQ) + C2tl_ae(ﬂ-’_cl)t”uOHLﬂ(le)

for a constant ¢ > 0. Therefore ||u||, exists globally. By using a similar
argument, it can also be shown that ||z||, exists globally.

3. Asymptotic behavior of u, v and w

In this section we consider the asymptotic behavior of classical solutions of
(RD).

THEOREM 3. Set I = (0,1,) and let (u,v,z) be a solution given in Theorem

1l and w=z+w. Then u, v and w have the following asymptotic behavior (i),
(i) and (iii):
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(i) For any (x,y) el x Q, lim, . u(x, y,t) =0.

(ii) There exists v,(x,y) e L*(I x Q) such that lim,. . v(x,y,t) =
Voo (X, p) for (x,y) €l x Q and the function vy, has a positive value
at any points (x,y) €l x Q where vy(x,y) > 0.

(iii) For any (x,y) €l x Q, lim,_, w(x, y, 1) = Wy

We need two lemmas to prove Theorem 3. As the first step of the proof
of Theorem 3, we prove that the reaction term f(u)vw approaches 0 as t — 0.

LemMA 2. Let (u,v,z) be a solution given in Theorem 1 and set w = z + w.
Then it holds that f(u)vw — 0 as t — oo for any (x,y) el x Q.

ProoF. Since the statement of the lemma is equivalent to v, — 0, we prove
it. Tt is easy to see that there exists ve,(x, y) such that v(x, y,7) — vy (x, y) as
t — oo because v decreases monotonically and is nonnegative. Hence, for any
¢>0 and (x,y) el x Q, there exists T > 0 such that for t > T,

‘U(X, 2 l) - UOC(X7 y)| < 82'
Then we see that

U(X,y,l+6) —U(X,y,t)
&

< 2¢,

so that we have
|U[(X,y7[+98)‘ < 28

for some 6 e (0,1). Thus it follows that

lim sup |v,(x, y, £)| = limsup |v,(x, y, t + O¢)| < 2.
11— o0 t— 0

Since ¢ is any small parameter, we have lim,_ ., v,(x, y,) = 0, which completes

the proof.

We note that the similar result to Lemma 2 in the case of / = (—c0, o)
can be shown.

Now we define a constant M by M = sup,., f(«)/g(u). The constant M
is well-defined because of the assumption (A).

LemMa 3. Set I =(0,l;) and let (u,v,z) be a solution given in Theorem
1. Then it holds that u— 0 as t — o at any (x,y) el x Q.

Proor. From Lemma 2 and the assumption (A), there exists 7> 0 such
that 9f (u)ow < g(u)/2 for any ¢t > T and (x,y) el x Q. Then u satisfies
ou g(u)

Uy SLCAH‘F/V&—T
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for any r > T and (x,y) € I x Q. Now we use a constant R given in Lemma 1
and define g = ¢(¢) by a solution of

s (3.1)
q=R, t=T.

Using u < R and applying the comparison principle to «# and ¢, we have u < ¢
for t > T. Since g(u) is positive for u > 0 and locally Lipschitz continuous
for u>0, g(t) -0 as t — oco. Hence we find that u approaches 0, which
completes the proof.

Now we are in a position to prove the asymptotic behavior (ii), (iii) of
Theorem 3. Let g = ¢(¢) be a function given in the proof of Lemma 3. As
stated previously, we have 0 <u < ¢ forany ¢ > T and (x,y) € I x Q. Then it
follows from the second equation of (RD) that

v = —f (w)ow = —MRg(u)v > —MRg(q)o,

where R is a constant given in Lemma 1. By using this inequality, we obtain

t

v(x, y,1) = v(x, »,T) exp (—MRJ g(q)ds)

T
= v(x,,T) exp(=2MR(¢(T) — q(1)))
> v(x, y,T) exp(—2MRq(T)). (3.2)

Here we have an estimate of v(x, y, T) such as
T
o T) = ) exp( — | G )
0

> vo(x, ) exp(— sup f(u)RT>7 (3.3)

O<u<R

because of w < R and u < R. Therefore it follows from (3.2) and (3.3) that

v(x, y, 1) = vo(x, y) exp (— sup f(u)RT — 2MRq(T))7

0<u<R

which implies that v, (x, y) > 0 if vo(x, y) > 0.
Next we prove (iii) of our theorem. In the third equation of (RD), we set
¢ =w—w,. Then ¢ satisfies the equation
¢ ¢

— =4 A
o+ ox

3 (u)vw, (3.4)
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and the boundary conditions (2.4) and d¢/dv =0 for xe I, y € dQ and ¢ > 0.
Using the analytic semigroup 7.(f) generated by —L, = 4 + Ad/dx, we rewrite
(3.4) as the integral equation

0) = T~ D) ~ [ Tt o)l i)

T

for t > T, where T > T is sufficiently large and references to the space variable
of functions are omitted for notational convenience. In fact, we can show that
there exists a constant ¢g > 0 such that

. 1
VTl ey < €0 mm{l,ﬁ}wnwxg)

for any Yy € L*(I x Q). Let @ = @(t) be a fundamental solution of d/0t—
0% /ox* — J0/0x. Then we can show that WDl (1) @(1) and [[Y| 1« (1xq) are
super-solutions of 7.(¢z)y. Hence we obtain

I T 1 (1x0) < MIn{||P| 1 10y IV e (1x0)

. 1
< mln{l,%}H‘PHL*(IxQ)‘

Hence it follows that

t
C ~
— == I¢(T)ll < (1) + OB JT 1S @) L= (1<) 9

||¢(Z)||LW([><Q) =< m

< O P gy + € jfgw(s))ds

Vi—-T

)
Vi—T

for a constant ¢ > 0, from which we have

()| 1) + 2¢(a(T) = (1)

tim sup [|6(1) | = (1x0) < 2¢4(T). (3.5)
— 00

Since 7T is any large constant and ¢ — 0 as r — oo, the right side of (3.5) tends
to 0 as 7 goes to co. Hence we have (@, (o) = W —willp2(rxq) — 0 as
t — 0.

4. Appendix

In this section we show that the differential operators —L, and —L.
generates analytic semigroups, denoted by 7,(¢) and 7.(¢), in L?(I x Q) and
can be expressed by two analytic semigroups, as described previously.
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First of all, we generally consider the linear parabolic equation in the
cylindrical domain

ﬁu_

E—Lu, xel,yeQ, t>0,
0 4.1
a—”v‘:o, xel, yedQ, 1> 0, (41)

u(x, »,0) =¢(x,y), xel, yeQ,

and also consider the boundary condition of either (2.3) or (2.4), where
Lu = adu + b ou/0x + b, -Vyu+cu, a>0, byeR, b,eR"” and ceR are
coefficients, and V), = (0/dy1,...,0/0y,). We consider the above problem in
L?(I x Q) for p > 1 and let the domain of L be W,%,”’(I x Q) if we consider
(2.3), or Wf,’f)(lx.()) if we consider (2.4). Recall that Wy”(I x Q) and
W]%,”(’)(I x ) were defined in Section 2. Let 7.(¢f) be an analytic semigroup

generated by
o’ o

L.=a—+b,—+¢
“axﬁ “8x+c

with the boundary condition (2.3) or (2.4) and 7,(7) be also an analytic
semigroup generated by

L,=ad,+b,-V,

with the homogeneous Neumann boundary condition, where 4, = "7 | 8%/dy?.
It is shown in [3] that L, and L, generate 7T\(¢) and 7)(f), respectively. In
addition we let T'(f) a one-parameter operator defined by 7'(¢) = T,(#)T)(t) for
t>0. Our purpose in this section is to show that 7(¢) is an analytic
semigroup generated by L.

PropoSITION 1. T'(t) = T(¢)T,(t) is an analytic semigroup generated by L.

Proor. We first see that
T.()T,(t)¢ = T () T(1)¢

for any ¢e LP?(I x Q). Since Q is bounded, T,(¢) can be expanded by the
pairs of the eigenvalues and eigenfunctions of L,, denoted by (x;,¢;) for i > 1,
such as

o0
Ty(1) =Y e"'Cop0 0,
i=1
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where (-, -) is the pairing between L?(Q) and the dual space of L?(Q2), denoted
by (L?(Q))". Without loss of generality, we assume that Re u; > Re u, >
-+ — —oo and ¢; € (L?(Q))" satisfies <{p;, ;> =1 for any i. Since T,(t)¢

belongs to L7(I x Q), [T,(6)¢](x,y) =D 2, e"" Lp(x,-), 0 >p:(p) is a LP(I)-
function in almost every y e 2 by Fubini’s theorem. Hence it holds that

T(OT(0h = 3 M (To(0) <, 07 )0
i=1

We can easily check
Tx(t)<¢v (01*> = <Tx(l)¢7 (/),*>

by using a similar expansion of Tx(f) to T,(¢) if I is bounded, or an explicit
formula such as

o0 X — , 2
TR = —— | exp<—i+m+cz>F(f)dé

for F e L?(—o0,0) if I = (—o00,00). Therefore it follows that

TOT, (09 = 3. e CT (1), 07 59, = To(D T(0)g.
i=1

Since T(t) and T)(¢) are commutative and analytic semigroups, it is easy
to see that T'(f) = T,(f)T,(¢) is an analytic semigroup.

From the above proposition, 7,(f) and 7.(z) can be expressed by two
analytic operators, respectively.
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