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Abstract. Finger-like smoldering patterns are observed in experiments under micro-

gravity. For theoretical understanding of such pattern phenomena, a model of reaction-

di¤usion system has been proposed. In this paper, we prove the existence and

uniqueness of a solution for this reaction-di¤usion system. We also consider a

large-time behavior of solutions.

1. Introduction

It is reported that thin solid, for an example, paper, cellulose dialysis bags

and polyethylene sheets, burning against oxidizing wind develops finger-like

patterns or fingering patterns ([4]). Thin solid is stretched out straight onto the

bottom plate and they also control the adjustable vertical gap, denoted by a

parameter h, between top and bottom plates. The oxidizing gas is supplied in

a uniform laminar flow, opposite to the directions of the front propagation

and they control the flow velocity of oxygen, denoted by VO2. When VO2 is

decreased below a critical value, the smooth front develops a structure which

marks the onset of instability. As VO2 is decreased further, the peaks are

separated by cusp-like minima and a fingering pattern is formed, as shown in

Figure 1. Similar phenomena were also observed in a micro-gravity exper-

iment in space (see [2]).

In order to theoretically understand the experimental results above, we

propose a phenomenological minimal model described by the following

exothermic reaction-di¤usion system for the (Kelvin) temperature u (u ¼ 0

corresponds to the temperature outside of the experimental device), the density

of paper v and the concentration of the inflammable mixed gas w.
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ðRDÞ

qu

qt
¼ LeDuþ l 0 qu

qx
þ gf ðuÞvw� gðuÞ; ðx; yÞ A I �W; t > 0;

qv

qt
¼ �f ðuÞvw; ðx; yÞ A I �W; t > 0;

qw

qt
¼ Dwþ l

qw

qx
� f ðuÞvw; ðx; yÞ A I �W; t > 0;

8>>>>>>><
>>>>>>>:

where the constants Le, called Lewis number, and g are positive constants, l

and l 0 are nonnegative constants, I is a bounded interval ð0; lxÞ or a whole line

ð�y;yÞ, WHRn is a bounded domain, and D ¼ q2=qx2 þ
Pn

i¼1 q
2=qy2i is

Laplacian as usual. For the nonlinear terms f ðuÞ and gðuÞ, we are concerned

with

f ðuÞ ¼ A expð�B=ðu� yÞÞ; u > y;

0; 0a ua y;

�

for some constants A;B > 0 and yb 0, and gðuÞ ¼ aum for a > 0 and mb 1.

The function f as above is called Arrhenius kinetics and g is heat radiation in

combustion. Keeping the Arrhenius kinetics and the heat radiation in mind,

we assume that the nonlinear terms f and g satisfy the following conditions:

(1) The function f is locally Lipschitz continuous and nonnegative for

ub 0.

(2) The function g is locally Lipschitz continuous for ub 0, gð0Þ ¼ 0, and

positive for u > 0. Furthermore g is monotone increasing for ub 0.

(3) The functions f and g satisfy

lim
u!0

f ðuÞ
u

¼ 0; lim
u!0

f ðuÞ
gðuÞ ¼ 0; lim

u!y

f ðuÞ
gðuÞ ¼ 0; ðAÞ

Fig. 1. Instability of combustion front when VO2 decreases from a to e. Oxygen flows from

downward and the combustion front moves upward (Figure 2 in [4]).
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which indicate that f ð0Þ ¼ 0. In this paper, we consider the nonlinear terms

generalized as above.

Next we consider the boundary and initial conditions to (RD). We

suppose that if I ¼ ð0; lxÞ, u and w satisfy

qu

qx
ð0; y; tÞ ¼ qu

qx
ðlx; y; tÞ ¼ 0;

qw

qx
ð0; y; tÞ ¼ 0; wðlx; y; tÞ ¼ wr > 0

for any y A W and t > 0, and if I ¼ ð�y;yÞ,

lim
jxj!y

uðx; y; tÞ ¼ 0; lim
x!y

wðx; y; tÞ ¼ wr; lim
x!�y

wðx; y; tÞ ¼ wl b 0

for any y A W and t > 0, where wr and wl are some non-negative constants. In

both cases we also suppose that u, w satisfy

qu

qn
ðx; y; tÞ ¼ 0;

qw

qn
ðx; y; tÞ ¼ 0

for x A I , y A qW and t > 0, where n is the unit exterior normal vector on qW.

We suppose that the initial functions satisfy

uðx; y; 0Þ ¼ u0ðx; yÞb 0; vðx; y; 0Þ ¼ v0ðx; yÞb 0;

wðx; y; 0Þ ¼ w0ðx; yÞb 0:

We first show some 2-dimensional numerical simulations. We assume

the domain to be rectangle, taking l 0 ¼ 0 and l in (RD) as a controlled

parameter. If l is large, a smooth flame front is observed (see Figure 2

(a)). When l is decreased, the instability of a smooth flame front occurs (see

Figure 2 (b)). As l is decreased further, a fingering pattern is formed (see

Fig. 2. Spatial patterns of burned paper v (Le ¼ 0:3, g ¼ 20, l 0 ¼ 0, gðuÞ ¼ 0:25u, f ðuÞ ¼
expð�1=0:415uÞ).
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Figures 2 (c), (d)). We can say that numerical simulations suggest that the

system (RD) exhibits a qualitative agreement with the experimental results

in Figure 1. We thus find that (RD) generates diverse patterns when some

parameter is globally varied. This motives us to study qualitative behavior of

solutions to (RD). As the first step, the present paper discusses the funda-

mental problem, namely, we will show the existence and uniqueness of global

solution of (RD) and study the asymptotic behavior of the global solution.

This paper is organized as follows: In Section 2, using the upper bound of

a solution of (RD) (Lemma 1), we show the global existence and uniqueness

of a solution of (RD) (Theorems 1 and 2). In Section 3, we consider the

asymptotic behavior of the global solution given in Section 2 (Theorem 3).

2. Existence and uniqueness of a global solution

In this section, we prove the existence and uniqueness of a global solution.

We first show the existence and uniqueness of a local solution. For this

purpose, we replace w by z such as w ¼ zþ o, where o ¼ oðxÞ is a smooth

positive function and satisfies oðlxÞ ¼ wr and o 0ð0Þ ¼ 0 if I ¼ ð0; lxÞ, or o ! wr

as x ! y and o ! wl as x ! �y if I ¼ ð�y;yÞ. Then we consider the

following system derived from (RD) with respect to ðu; v; zÞ;

qu

qt
¼ LeDuþ l 0 qu

qx
þ gf ðuÞvðzþ oÞ � gðuÞ; ðx; yÞ A I �W; t > 0;

qv

qt
¼ �f ðuÞvðzþ oÞ; ðx; yÞ A I �W; t > 0;

qz

qt
¼ Dzþ l

qz

qx
� f ðuÞvðzþ oÞ þ o 00 þ lo 0; ðx; yÞ A I �W; t > 0:

8>>>>>>><
>>>>>>>:

ð2:1Þ

The initial functions u0, v0 and z0 are

uðx; y; 0Þ ¼ u0ðx; yÞb 0; vðx; y; 0Þ ¼ v0ðx; yÞb 0;

zðx; y; 0Þ ¼ w0ðx; yÞ � oðxÞ1 z0ðx; yÞ
ð2:2Þ

for x A I and y A W. Here we assume w0ðx; yÞb 0 as in Section 1. We

suppose that u satisfies

qu

qx
ð0; y; tÞ ¼ qu

qx
ðlx; y; tÞ ¼ 0; if I ¼ ð0; lxÞ;

lim
jxj!y

uðx; y; tÞ ¼ 0; if I ¼ ð�y;yÞ
ð2:3Þ

for y A W and t > 0 and z does
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qz

qx
ð0; y; tÞ ¼ zðlx; y; tÞ ¼ 0; if I ¼ ð0; lxÞ;

lim
jxj!y

zðx; y; tÞ ¼ 0; if I ¼ ð�y;yÞ
ð2:4Þ

for y A W and t > 0. In addition, we suppose that u and z satisfy

qu

qn
ðx; y; tÞ ¼ 0;

qz

qn
ðx; y; tÞ ¼ 0 ð2:5Þ

for x A I , y A qW and t > 0.

We prove the existence and uniqueness of a local solution of the above

system. In the proof, we shall use the standard theory of an analytic

semigroup and prove the existence of the following integral equation;

FðtÞ ¼ TðtÞF0 þ
ð t
0

Tðt� sÞF ðFðsÞÞds; ð2:6Þ

where F ¼ ðu; v; zÞ t, F0 ¼ ðu0; v0; z0Þ t, TðtÞ is a semigroup generated by a

di¤erential operator A defined by

A ¼
LeDþ l 0 q

qx
0 0

0 0 0

0 0 Dþ l
q

qx

0
BBBB@

1
CCCCA

and

F ðFÞ ¼
gf ðuÞvðoþ zÞ � gðuÞ

�f ðuÞvðoþ zÞ
�f ðuÞvðoþ zÞ þ o 00 þ lo 0

0
B@

1
CA:

We consider the integral equation (2.6) in the functional space X defined by

X ¼ LpðI �WÞ � LyðI �WÞ � LpðI �WÞ

for p > nþ 1. Here the domain of A, denoted by DðAÞ, is defined by

DðAÞ ¼ W
2;p
N ðI �WÞ � LyðI �WÞ �W

2;p
N;0ðI �WÞ;

where W
2;p
N ðI �WÞ is defined by

W
2;p
N ðI �WÞ ¼

�
u A W 2;pðI �WÞ

���� quqn ¼ 0

for x A I ; y A qW and u satisfies ð2:3Þ
�
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and W
2;p
N;0ðI �WÞ is defined by

W
2;p
N;0ðI �WÞ ¼

�
z A W 2;pðI �WÞ

���� qzqn ¼ 0

for x A I ; y A qW and z satisfies ð2:4Þ
�
:

The functional space W 2;pðI �WÞ is a usual Sobolev space. Although the

domain I �W may not have the smooth boundary, even if W has a smooth

boundary, it follows from the standard argument that �Lu and �Lz generate

analytic semigroups TuðtÞ and TzðtÞ, respectively (see [1]), where Lu ¼
�LeD� l 0q=qx and Lz ¼ �D� lq=qx. In fact, these can be expressed by two

analytic semigroups because I �W is a cylindrical domain, which shall be

proved in Appendix.

We assume that u0 A DðLa
u Þ, v0 A C kðI �WÞ and z0 A DðLa

z Þ for 1=2 < a < 1

and 0 < k < 1. The functional spaces DðLa
u Þ and DðLa

z Þ are called fractional

spaces (see Section 2.6 of [3]), and C kðI �WÞ is the Hölder space with a Hölder

exponent k. Then we have the following theorem for existence of a local

solution:

Theorem 1. Assume that p > nþ 1, 1=2 < a < 1, 0 < k < 1, and qW A C2.

In addition, suppose that the Hölder continuous function o has the second order

continuous derivatives in x A I and they are Hölder continuous, belonging to

LpðIÞ. Then, for any ðu0; v0; z0Þ A DðLa
u Þ � C kðI �WÞ �DðLa

z Þ, there exist

T > 0 and a unique local classical solution ðu; v; zÞ of (2.1)–(2.5) for 0 < t < T.

Theorem 1 can be shown by a standard argument (see Section 8 of [3]).

So we omit the details. In fact, the local solution obtained in Theorem 1 exists

globally in time. To prove it, we need to obtain the following a priori estimate:

Lemma 1. Let ðu; v; zÞ be a solution given in Theorem 1 and set w ¼ zþ o.

Then there exists a constant R > 0, depending on initial functions u0, v0 and w0,

such that for any ðx; yÞ A I �W, t > 0,

0a uaR; 0a vaR; 0awaR:

Proof. We first have 0a va kv0kLyðI�WÞ because we can solve the second

equation (2.1) withe respect to v such as

vðx; y; tÞ ¼ v0ðx; yÞ exp �
ð t
0

f ðuðx; y; sÞÞwðx; y; sÞds
� �

: ð2:7Þ

Since ~ww ¼ maxfkw0kLyðI�WÞ;wr;wlg is a super-solution of w, we obtain wa ~ww.

Setting
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~uu ¼ maxfku0kLyðI�WÞ; supfu > 0 j gkv0kLyðI�WÞ ~wwf ðuÞ � gðuÞ > 0gg;

we readily see that ~uu is a super-solution of u, so that we obtain ua ~uu. From

the maximum principle, it is easy to see that u and w are nonnegative. Thus

the proof is completed.

From the above lemma, the following theorem holds:

Theorem 2. Let ðu; v; zÞ be a solution given in Theorem 1. Then ðu; v; zÞ
exists globally.

Proof. From Lemma 1 we already know that v is bounded in t > 0. In

addition, if u and z are Hölder continuous, v is also Hölder continuous because

of (2.7). Therefore, in order to prove Theorem 2, it su‰ces to show that

kuka 1 kukL pðI�WÞ þkLa
u ukL pðI�WÞ and kzka 1 kzkL pðI�WÞ þkLa

z zkL pðI�WÞ exist for

all t > 0.

First of all, we obtain the estimate of kukL pðI�WÞ. Since there exist some

constants c0 > 0 and b A ð�y;yÞ such that kTuðtÞka c0e
bt, we have

kukL pðI�WÞ a c0e
btku0kL pðI�WÞ þ c1

ð t
0

ebðt�sÞkukL pðI�WÞds;

where c1 > 0 is a constant. Hence it follows from Gronwall’s inequality that

kukL pðI�WÞ a c0e
btð1þ ec1tÞku0kL pðI�WÞ a 2c0e

ðbþc1Þtku0kL pðI�WÞ:

Next we estimate the norm kLa
uukL pðI�WÞ. Since kLa

uTuðtÞka c0e
bt=ta

holds for t > 0 and La
uTuðtÞu0 ¼ TuðtÞLa

uu0 for u0 A DðLa
u Þ (see Theorem 6.13

in Section 2 of [3]), we obtain by using (2.6)

kLa
u ukL pðI�WÞ a c0e

btkLa
u u0kL pðI�WÞ þ

ð t
0

c1

ðt� sÞa e
bðt�sÞkukL pðI�WÞds

a c0e
btkLa

u u0kL pðI�WÞ þ c2t
1�aeðbþc1Þtku0kL pðI�WÞ

for a constant c2 > 0. Therefore kuka exists globally. By using a similar

argument, it can also be shown that kzka exists globally.

3. Asymptotic behavior of u, v and w

In this section we consider the asymptotic behavior of classical solutions of

(RD).

Theorem 3. Set I ¼ ð0; lxÞ and let ðu; v; zÞ be a solution given in Theorem

1 and w ¼ zþ o. Then u, v and w have the following asymptotic behavior (i),

(ii) and (iii):
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( i ) For any ðx; yÞ A I �W, limt!y uðx; y; tÞ ¼ 0.

( ii ) There exists vyðx; yÞ A LyðI �WÞ such that limt!y vðx; y; tÞ ¼
vyðx; yÞ for ðx; yÞ A I �W and the function vy has a positive value

at any points ðx; yÞ A I �W where v0ðx; yÞ > 0.

(iii) For any ðx; yÞ A I �W, limt!y wðx; y; tÞ ¼ wr.

We need two lemmas to prove Theorem 3. As the first step of the proof

of Theorem 3, we prove that the reaction term f ðuÞvw approaches 0 as t ! y.

Lemma 2. Let ðu; v; zÞ be a solution given in Theorem 1 and set w ¼ zþ o.

Then it holds that f ðuÞvw ! 0 as t ! y for any ðx; yÞ A I �W.

Proof. Since the statement of the lemma is equivalent to vt ! 0, we prove

it. It is easy to see that there exists vyðx; yÞ such that vðx; y; tÞ ! vyðx; yÞ as

t ! y because v decreases monotonically and is nonnegative. Hence, for any

e > 0 and ðx; yÞ A I �W, there exists T > 0 such that for t > T ,

jvðx; y; tÞ � vyðx; yÞj < e2:

Then we see that

vðx; y; tþ eÞ � vðx; y; tÞ
e

����
����a 2e;

so that we have

jvtðx; y; tþ yeÞja 2e

for some y A ð0; 1Þ. Thus it follows that

lim sup
t!y

jvtðx; y; tÞj ¼ lim sup
t!y

jvtðx; y; tþ yeÞja 2e:

Since e is any small parameter, we have limt!y vtðx; y; tÞ ¼ 0, which completes

the proof.

We note that the similar result to Lemma 2 in the case of I ¼ ð�y;yÞ
can be shown.

Now we define a constant M by M1 supu>0 f ðuÞ=gðuÞ. The constant M

is well-defined because of the assumption (A).

Lemma 3. Set I ¼ ð0; lxÞ and let ðu; v; zÞ be a solution given in Theorem

1. Then it holds that u ! 0 as t ! y at any ðx; yÞ A I �W.

Proof. From Lemma 2 and the assumption (A), there exists T > 0 such

that gf ðuÞvwa gðuÞ=2 for any t > T and ðx; yÞ A I �W. Then u satisfies

ut aLeDuþ l 0 qu

qx
� gðuÞ

2
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for any t > T and ðx; yÞ A I �W. Now we use a constant R given in Lemma 1

and define q ¼ qðtÞ by a solution of

q 0 ¼ � gðqÞ
2

; t > T ;

q ¼ R; t ¼ T :

8<
: ð3:1Þ

Using uaR and applying the comparison principle to u and q, we have ua q

for t > T . Since gðuÞ is positive for u > 0 and locally Lipschitz continuous

for ub 0, qðtÞ ! 0 as t ! y. Hence we find that u approaches 0, which

completes the proof.

Now we are in a position to prove the asymptotic behavior (ii), (iii) of

Theorem 3. Let q ¼ qðtÞ be a function given in the proof of Lemma 3. As

stated previously, we have 0a ua q for any t > T and ðx; yÞ A I �W. Then it

follows from the second equation of (RD) that

vt b�f ðuÞvwb�MRgðuÞvb�MRgðqÞv;

where R is a constant given in Lemma 1. By using this inequality, we obtain

vðx; y; tÞb vðx; y;TÞ exp �MR

ð t
T

gðqÞds
� �

¼ vðx; y;TÞ exp �2MRðqðTÞ � qðtÞÞð Þ

b vðx; y;TÞ expð�2MRqðTÞÞ: ð3:2Þ

Here we have an estimate of vðx; y;TÞ such as

vðx; y;TÞ ¼ v0ðx; yÞ exp �
ðT
0

f ðuÞw ds

� �

b v0ðx; yÞ exp � sup
0<u<R

f ðuÞRT
� �

; ð3:3Þ

because of waR and uaR. Therefore it follows from (3.2) and (3.3) that

vðx; y; tÞb v0ðx; yÞ exp � sup
0<u<R

f ðuÞRT � 2MRqðTÞ
� �

;

which implies that vyðx; yÞ > 0 if v0ðx; yÞ > 0.

Next we prove (iii) of our theorem. In the third equation of (RD), we set

f ¼ w� wr. Then f satisfies the equation

qf

qt
¼ Dfþ l

qf

qx
� f ðuÞvw; ð3:4Þ
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and the boundary conditions (2.4) and qf=qn ¼ 0 for x A I , y A qW and t > 0.

Using the analytic semigroup TzðtÞ generated by �Lz ¼ Dþ lq=qx, we rewrite

(3.4) as the integral equation

fðtÞ ¼ Tzðt� ~TTÞfð ~TTÞ �
ð t
~TT

Tzðt� sÞf ðuðsÞÞvðsÞwðsÞds

for t > ~TT , where ~TT > T is su‰ciently large and references to the space variable

of functions are omitted for notational convenience. In fact, we can show that

there exists a constant c0 > 0 such that

kTzðtÞckLyðI�WÞ a c0 min 1;
1ffiffi
t

p
� �

kckLyðI�WÞ

for any c A LyðI �WÞ. Let F ¼ FðtÞ be a fundamental solution of q=qt�
q2=qx2 � lq=qx. Then we can show that kckLyðI�WÞFðtÞ and kckLyðI�WÞ are

super-solutions of TzðtÞc. Hence we obtain

kTzðtÞckLyðI�WÞ aminfkFkLyðI�WÞ; 1gkckLyðI�WÞ

a c0 min 1;
1ffiffi
t

p
� �

kckLyðI�WÞ:

Hence it follows that

kfðtÞkLyðI�WÞ a
c0ffiffiffiffiffiffiffiffiffiffiffiffi
t� ~TT

p kfð ~TTÞkLyðI�WÞ þ c0R
2

ð t
~TT

k f ðuðsÞÞkLyðI�WÞds

a
c0ffiffiffiffiffiffiffiffiffiffiffiffi
t� ~TT

p kfð ~TTÞkLyðI�WÞ þ c

ð t
~TT

gðqðsÞÞds

¼ c0ffiffiffiffiffiffiffiffiffiffiffiffi
t� ~TT

p kfð ~TTÞkLyðI�WÞ þ 2cðqð ~TTÞ � qðtÞÞ

for a constant c > 0, from which we have

lim sup
t!y

kfðtÞkLyðI�WÞ a 2cqð ~TTÞ: ð3:5Þ

Since ~TT is any large constant and q ! 0 as t ! y, the right side of (3.5) tends

to 0 as ~TT goes to y. Hence we have kfkLyðI�WÞ ¼ kw� wrkLyðI�WÞ ! 0 as

t ! y.

4. Appendix

In this section we show that the di¤erential operators �Lu and �Lz

generates analytic semigroups, denoted by TuðtÞ and TzðtÞ, in LpðI �WÞ and

can be expressed by two analytic semigroups, as described previously.
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First of all, we generally consider the linear parabolic equation in the

cylindrical domain

qu

qt
¼ Lu; x A I ; y A W; t > 0;

qu

qn
¼ 0; x A I ; y A qW; t > 0;

uðx; y; 0Þ ¼ fðx; yÞ; x A I ; y A W;

8>>>>><
>>>>>:

ð4:1Þ

and also consider the boundary condition of either (2.3) or (2.4), where

Lu ¼ aDuþ bxqu=qxþ by � ‘yuþ cu, a > 0, bx A R, by A Rn and c A R are

coe‰cients, and ‘y ¼ ðq=qy1; . . . ; q=qynÞ. We consider the above problem in

LpðI �WÞ for p > 1 and let the domain of L be W
2;p
N ðI �WÞ if we consider

(2.3), or W
2;p
N;0ðI �WÞ if we consider (2.4). Recall that W

2;p
N ðI �WÞ and

W
2;p
N;0ðI �WÞ were defined in Section 2. Let TxðtÞ be an analytic semigroup

generated by

Lx ¼ a
q2

qx2
þ bx

q

qx
þ c

with the boundary condition (2.3) or (2.4) and TyðtÞ be also an analytic

semigroup generated by

Ly ¼ aDy þ by � ‘y

with the homogeneous Neumann boundary condition, where Dy ¼
Pn

i¼1 q
2=qy2i .

It is shown in [3] that Lx and Ly generate TxðtÞ and TyðtÞ, respectively. In

addition we let TðtÞ a one-parameter operator defined by TðtÞ ¼ TxðtÞTyðtÞ for

tb 0. Our purpose in this section is to show that TðtÞ is an analytic

semigroup generated by L.

Proposition 1. TðtÞ ¼ TxðtÞTyðtÞ is an analytic semigroup generated by L.

Proof. We first see that

TxðtÞTyðtÞf ¼ TyðtÞTxðtÞf

for any f A LpðI �WÞ. Since W is bounded, TyðtÞ can be expanded by the

pairs of the eigenvalues and eigenfunctions of Ly, denoted by ðmi; jiÞ for ib 1,

such as

TyðtÞ ¼
Xy
i¼1

emi th�; j�
i iji;
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where h� ; �i is the pairing between LpðWÞ and the dual space of LpðWÞ, denoted
by ðLpðWÞÞ�. Without loss of generality, we assume that Re m1 bRe m2 b

� � � ! �y and j�
i A ðLpðWÞÞ� satisfies hji; j

�
i i ¼ 1 for any i. Since TyðtÞf

belongs to LpðI �WÞ, ½TyðtÞf�ðx; yÞ ¼
Py

i¼1 e
mi t hfðx; �Þ; j�

i ijiðyÞ is a LpðIÞ-
function in almost every y A W by Fubini’s theorem. Hence it holds that

TxðtÞTyðtÞf ¼
Xy
i¼1

emi tðTxðtÞhf; j�
i iÞji:

We can easily check

TxðtÞhf; j�
i i ¼ hTxðtÞf; j�

i i

by using a similar expansion of TxðtÞ to TyðtÞ if I is bounded, or an explicit

formula such as

½TxðtÞF �ðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
4pat

p
ðy
�y

exp � jx� xþ bxtj2

4at
þ ct

 !
F ðxÞdx

for F A Lpð�y;yÞ if I ¼ ð�y;yÞ. Therefore it follows that

TxðtÞTyðtÞf ¼
Xy
i¼1

emi thTxðtÞf; j�
i iji ¼ TyðtÞTxðtÞf:

Since TxðtÞ and TyðtÞ are commutative and analytic semigroups, it is easy

to see that TðtÞ ¼ TxðtÞTyðtÞ is an analytic semigroup.

From the above proposition, TuðtÞ and TzðtÞ can be expressed by two

analytic operators, respectively.
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