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§0. Introduction

Given a CW-spectrum E we call a CW-spectrum W E_-injective if any map

f: X > Y induces an epimorphism f*:[Y, W] —»[X, W] whenever f,: E X

— E,Y is a monomorphism [12, Definition 1i)]. The well known ring spectra

E=S8,HZ/p, MO, MU, MS,, KU, KO and KT satisfy some of nice properties

as stated in [1] or [2]. For example, E E is flat as an E -module, and the

product map vgp: E,E ® n,F — E_F is an isomorphism for any E-module
E,

spectrum F. Then E,X may be regarded as a comodule over the coalgebra
E_E. For such a nice ring spectrum E we gave the following characterization
in [17].

THEOREM 1. Let E be a ring spectrum satisfying the above two properties.
For a CW-spectrum W the following conditions are equivalent:
1) W is an E-injective spectrum,
il) W is an E,-local spectrum such that E W is injective as an EE-comodule,
and
iii) the canonical morphism kg : [ X, W] — Homg (E, X, E,W) is an isomor-
phism for any CW -spectrum X.

In this note we study KZ%-injective spectra for K¢ = KU v KO v KT,
KU v KO, KU v KT, KO v KT, KU, KO and KT where KU, KO and KT
denote the complex, the real and the self-conjugate K-spectrum respectively.
In particular, we give a K%-version of Theorem 1 as our main result (see
Theorem 2 below). For our purpose we use the Bousfield’s abelian categories
CRT and ACRT [9, 2.1 and 5.5] whose objects M = {M€, M® M"} are
modelled on the united K-homologies KS*'X = {KU, X, KO, X, KT, X} for
any CW-spectra X, although our category ACRT is somewhat different from
the Bousfield’s one.

In §1 we first recall the abelian category CRT and then state several
homological properties of CRT established in [9, §2 and §3] for later use. In
§2 we introduce the abelian categories € = CR, CT, RT, C, R and T whose
objects M = {M"} are obtained by restricting their namesakes in CRT, of
which CR and C have already been done in [9, 4.1 and 4.7]. In §3 we give
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simple criteria for projective and injective objects in ¢ (Theorems 3.1, 3.2, 3.3
and 3.4) by referring the CRT cases demonstrated in [9, Theorems 3.2 and 3.3].

In §4 we show that KU A SZ/2%, KO A SZ/2® and KT A SZ/2% respec-
tively are never (KO v KT),-, (KU v KT),- and (KU v KO),-injective where
SZ/2® denotes the Moore spectrum of type Z/2° (Lemma 4.3). This result
gives necessary and sufficient conditions under which a CW-spectrum Wis K%-
injective (Theorems 4.7 and 4.9). In §5 we introduce the abelian categories A%
consisting of objects M of ¢ having a KO, KO-comodule structure when
= CRT, CR, CT, RT, C, R and T, as the united K-homology K{*" X admits a
KO, KO-comodule structure. Although our category A% is not the quite
same as the abelian category A% consisting of objects M of ¥ with stable
Adams operations introduced in [9, 5.5], we use the same notation as
Bousfield’s (see [8, §10]). In fact we can show the same result (Theorem 5.2)
that an object M in our category ACRT has injective dimension <2 as
[9, Theorem 7.3] in Bousfield’s category ACRT. We finally give the following
characterization as our main result (Theorem 5.8).

THEOREM 2. Let € denotes one of the abelian categories CRT, CR, CT,
RT,C,R and T. For a CW-spectrum W the following conditions are equivalent :
i) W is a K&-injective spectrum,
i) W is a quasi KO-module spectrum such that KW is injective in €,
iii) W is a KO,-local spectrum such that KW is injective in A€, and
iv) the canonical morphism «k%:[X, W] —» Hom 4 (K¢X, KEW) is an isomo-
rphism for any CW-spectrum X.

Here a quasi KO-module spectrum W is meant a KO-module spectrum
which is not necessarily assumed to be associative.

§1. The Bousfield’s abelian category CRT

1.1. Let KU, KO and KT denote the complex, the real and the
self-conjugate K-spectrum respectively. In [9] KU is denoted by K and in
[5, 15 and 16] KT is denoted by KC. All of these periodic K-spectra are
commutative ring spectra and their coefficient rings are represented as follows :

n,KU = Z[Bg, B;1]
(1'1) n*KO = Z[BR’ BI;I’ r’R9 é]/{Z"R = 0’ "% = 0’ 62 = 4BR’ nRé = 0}
n*KT = Z[BTy BZ_"17 ’71, (1)]/{2”7‘ = 0, ”%‘ = 0, w2 = Os nTw = 0}

where Bcen,KU xZ, BrengKOx~Z, Bren,KT=Z, ngen,KOxZ/2,
nren; KT=Z/2, {en,KO=~Z and wen,KT=~Z. These coefficient rings
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n, KU, n,KO and n, KT will often be abbrebiated as KU,, KO, and KT,
respectively.

We denote by P = C(n) and Q = C(5?) the cofibers of the stable Hopf map
n: 21 - 2° of order 2 and its square n%: 22 — X° respectively. The complex
K-spectrum KU and the self-conjugate K-spectrum KT have standard
decompositions KU ~ KO A P and KT~ KO A Q as KO-module spectra
([5] or [15]). Hereafter we shall often identify the periodic K-spectra KU and
KT with the smash products KO A P and KO A Q respectively. Since the
elementary spectra P and Q are self-dual [13], there exist duality isomorphisms
1 Dp:[22X,KU A Y]>[P A X,KO A Y]
(2 Dy:[2°X,KTAY]->[Q A X,KO A Y]

for any CW-spectra X and Y.

As relations among the periodic K-spectra KU, KO and KT we have
Anderson’s cofiber sequences ([5] or [9]):

iy koL koS5 kU B, s2k0
2 —
i) r2k0™24 ko -5 kT 2Bl 53K0
Bil(l —yg?
(1.3) i) KT Ky 2=V, yapy B, sipp

(_ T,’CB;I)
_

iv) ZKT KO v Z4K0 <V.B, gy o8, pagr

(—rB¢,rBct)
_— 5

v) Z?KU KO v Z*K0 £Y.Br%, g B, pagy.

Here n: X! — X° denotes the stable Hopf map of order 2, B.: KU —» KU,
Bg: Z8KO0 - KO and B;: 2*KT— KT the periodicity maps, and yc': KU
— KU and y7': KT— KT the conjugation maps which are ring maps with
Yclyct=1 and Y7'yr' =1 The maps c¢: KO- KU, ¢: KO- KT and
{: KT— KU are ring maps with ¢ = (¢, and the maps r: KU —» KO, t: Z*KT
— KO are merely KO-module maps and y: KU — X' KT is a KT-module map
with r = 1y.

Let E be a ring spectrum and F be an E-module spectrum equipped with a
structure map u: F A E—F. For any CW-spectra X and Y we consider the
homomorphism

kF:[X, E A Y] > Hom(F,X, F,Y)

assigning to each map f: X - E A Y the induced homomorphism «*(f), in
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dimension n where kf(f)=(uA )1 Af):FAX—>FAY For an abelian
group G we denote by SG the Moore spectrum of type G. Then there exist
universal coefficient sequences for the periodic K-spectra KU, KO and KT

([6] or [14]):

KU

i) 0- Ext(KU,X, G) > [X, KU A S§G] =~ Hom(KU,X, G) -0
KO

(14) i) 0- Ext(KO,X, G)—[X, KO A SG] =% Hom(K0,X, G) -0
KT

iii) 0— Ext(KT¢X, G) > [X, KT A SG] -2 Hom(K T, X, G) >0

in which all of KU; SG, KO,SG and KT,SG are identified with G.

For any KO-module spectra W and Z we denote by [W, Z]g, the
subgroup of [W, Z] consisting of all the homotopy classes of KO-module
maps. Consider the homomorphisms

i) REU:[W, KU A SGlxo — Hom(ngP A W, G)
(15) ii) RXO:[W, KO A SG]xo— Hom(n,W, G)
iii) ®ET:[W, KT A SG]xo — Hom(n,Q A W, G)

defined by REU(f) = (up A Dy(1 AS),. #5(g) =g, and RET(H) = (ug A 1),
(1 A h), where pp: P A KU - KU and pgy: Q A KT — KT are associated with
the multiplications of KU and KT. As is easily checked, the above k&Y, kX0
and k%7 are isomorphisms for any KO-module spectrum W whenever the
abelian group G is divisible.

1.2. We first recall the abelian category CRT introduced by Bousfield
[9, 2.1]. For any CW-spectrum X the united K-homology

KSRT X = (KU, X, KO, X, KT, X}

is just viewed as a model of an object of the abelian category CRT. An object
CRT is a triple M = {M€, MR, MT} consisting of a KU,-, KO,- and KT,-
module M€, M® and MT equipped with operations below (1.6). Thus M€, M*®
and M7 are united by the following KO,-module maps called operations:

Be: Z2MC S MC, Yot M€ S MC, Bg: S8 MR S MR,
Ng: ZIMR — MR, & 24 MR — MR, By Z4MT S M7,

o Ne: STMT — MT, 0: Z3MT — M7, it MT S MT,
e MR > MT, . 2MT — MR, {: MT — M€ and y: M — X' MT
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where (2"M), = M, _,, which satisfy the following relations listed in [9, 1. 9]:
(7)) 2mg=0, ng =0, & =4Bg, nxl =0,

i) 277 =0,72=0, 0*=0, nrw =0,

iii) Yc've'=1, Yc'Bc= — Beye',

iv) yr'yr'=1 yYr'Br=Bryr’,

V) fng =n, f for any map f: MY - M* where H, Le {C, R, T} and
nc=0,

vi) &Bg = Bke, tB2 = Bgt, Yrle=¢, rl= —1,

vii) (Br= B[, B¢ =By, Yc'{=Wr' = Yrly=—wc'= -,
viii) 1€ = g, tBre =0, ¢ = twe, BretBr! = et + 1,

ix) {p=0, yBl =1, @ =By, and

X) lety=1+yct, wle=2, ety{ =1+ y7', ylet=1—ygt.

A morphism of CRT is a triple f={f€ f® fT} consisting of a KU,-,
KO,- and KT,-module map f€, f® and f7 which commute the above
operations.

An object M = { M€, M®, MT} of CRT is called CRT-acyclic [9, 2.3] when
the three sequences

(1.8) i) - —> ZIMR Tr, MR ppetBel papR MR, pipgR

ii) ... — Z2MR "Ifz,MR_s*MTTB;: S3IMR ”lzlileR_>'“

i) e > MT Sy ppe B VD pape 9Be, papr & papge
become exact in which ¢ = {¢ and r = tp. For each KO-module spectrum W
the united homotopy n$*"W= {n,P A W, n, W, n,Q A W} is viewd as an
object of CRT and it is always CRT-acyclic. Obviously nS*TKO A X =
KSRTX for any CW-spectrum X.

The united K-homologies of the elementary spectra X° P = C(y) and Q

= C(n?) are represented as follows [9, 2.4]:

(1.9) i) KO0,2° = Z{b}, KO,Z° = Z/2{ngb}, KO,Z° = Z/2{nkb},
K0,2° = Z{¢&b}, K0,X°=0 for n= 3,5, 6 and 7,
KUy 2° = Z{cb}, KU,Z° =0, KT,Z° = Z{eb},
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KT, 2° ~Z/2{nseb}, KI,2°=0 and KT32°= Z{web}.
ii) KU,P~Z{b}@®Z{yc'b}, KU;P =0, KO,P = Z{rb}, KO,P =0,
KT,P >~ Z{etyb} and KTyP =~ Z{yB:b}.
i) KT,Q =Z{b}®Z{y7'b}, KT,Q = Z{eth} ® Z/2{nsb},
KTsQ = Z/2{nretb}, KT,Q =~ Z{wb}, KU,Q = Z{(b},
KU,Q =~ Z{letb}, KO,Q =~ Z{ty(b}, KO,Q = Z{1b},
KO0 = Z/2{ngtb} and KOgQ = 0.

For a graded abelian group G = {G,} we denote by SG the wedge sum
v 2"SG, of the suspended Moore spectra. A KO-module spectrum W is said

to be nRT-free if it is expressed as a wedge sum of copies of the KO-module
spectra 2"KU, 2"KO and 2"KT. A KO-module spectrum W is said to be a
SR -cofree if it is expressed as a wedge sum of KO-module spectra KU A SA,
KO A SB and KTA SC where A= {A}o<ic;» B={Bj}o<j<» and C =
{Ci}o<k<3 are graded divisible. A free object of CRT is isomorphic in CRT
to a certain united homotopy 7nS*TW with W nRT-free, and dually a cofree

object of CRT is isomorphic in CRT to nSR"W with W n$RT-cofree.

1.3. We now recall several homological properties of the abelian category
CRT investigated in [9, §2 and §3]. Given an object N = {N€, N® NT} of
CRT we define three homomorphisms

i) ec: Homegr (KGR, P, N) — N§
(1.10) ii) eg: Homggr(KSRT2O N) — N§

iii) er: Homepr(KSE5Q, N) — N§

by ec(f) =f(bc), er(f) =f*(bg) and er(f) =f"(br) for each morphism f=
{fC f® fT} of CRT where boe KU,P, bpe KO, X° and by € KT;Q denote the
standard generators b given in (1.9). Because of (1.9) the united K-homologies
KSRTP, KSRTZO and KERTQ are determined completely by the standard
generators bc, by and b;. Hence we can easily see

LEMMA 1.1. The above ec, eg and ey are all isomorphisms for any object N
of CRT.

By means of Lemma 1.1 there exists a n$*”-free spectrum KO A X and an

epimorphism f: K{®TX —» N in CRT for each object N of CRT. Thus the
abelian category CRT has enough projectives. In [9, Theorem 3.2] Bousfield
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has established a simple criterion for projective objects in CRT.

THEOREM 1.2 [9, Theorem 3.2]. For an object M = {MS, MR, M"} of the
abelian category CRT the following conditions are equivalent:
i) M is projective in CRT,
ii) M is CRT-acyclic with M€ free, and
iii) M is free in CRT, thus it is isomorphic in CRT to a direct sum KSRTP A
SA® KRTSB® KLRTQ A SC where A = {A;}o<ic1, B={Bj}o<j<7 and C=
{Ci}o<k<3 are graded free.

Given an object M = {M€, M®, M"} of CRT and an abelian group G we
define three homomorphisms

i) @c: Homegr(M, KSR% P A SG) — Hom(MS, G)
(1.11)  ii) @g: Homegr(M, KSR, SG) — Hom(M§, G)
i) ¢@r: Homegr(M, KSR%Q A SG) — Hom(M{, G)

by @c(f) = (e A D f5, @r(f) =f§ and or(f) = (g A 1), f5 for each
morphism f= {f€, fX, fT} of CRT. Here pp: KU A P> KU and py: KT A
Q — KT are associated with the multiplications of KU and KT, and all of
KU,SG, KO,SG and KT,SG are identified with G as in (1.4).

When M = KSR 2P, KSRTZ™ or KSR, 2"Q, the above ¢¢, @ and ¢p
admit the following factorizations:

¢c=ke"Dpec, op =k5k%Dpeg and ¢;=k5"Dpe; when M = KSRL,Z"P,
oc = kVec , op =KX, and o¢; = kXTe, when M = KSRTZ™,

¢c = k§"Dgec, or = ki%Dyer and @r =«5"Dye;r when M = K{EL2"Q.
Here ec, eg and e; are the isomorphisms defined in (1.10), k&Y, k5° and xA7T
are the epimorphisms appeared in (1.4) and D, and D, are the duality
isomorphisms given in (1.2). By virtue of these factorizations we can easily
show

LEMMA 13. For any object M of CRT, the above ¢, is always an
isomorphism, and both of @gr and @1 are isomorphisms if the abelian group G is
2-divisible (see [9, 2.5]).

This implies that the united K-homologies KS*TZ"P A SG, KSR 2"SG
and KSRT2"Q A SG are injective in CRT whenever G is divisible. Moreover
there exists a nSRT-cofree spectrum KO A Y and a monomorphism f: M
— KSRTY in CRT for each object M of CRT. Thus the abelian category CRT

has enough injectives, too. In [9, Theorem 3.3] Bousfield has established a
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simple criterion for injective objects in CRT as a dual of Theorem 1.2.

THEOREM 1.4 [9, Theorem 3.3]. For an object M = {M€, M®, M} of the
abelian category CRT the following conditions are equivalent:
1) M is injective in CRT,
ii) M is CRT-acyclic with M€ divisible, and
iii) M is cofree in CRT, thus it is isomorphic in CRT to a direct sum KSXTP A
SA® KSRTSB @® KSRTQ A SC where A = {A;}ocic1, and C = {Clo<x<s are
graded divisible 2-torsion and B = {B;},.;<7 is graded divisible.

14. For any CW-spectra X and Y we consider the homomorphism
k°RT: [X, KO A Y] — Homggr(KSRT X, KSRTY)

assingning to each map f: X - KO A Y the induced homomorphism «CRT(f)
= {5y KXy KXT(f),} where kX(f)=u A DA Af): KAX>KAY
for K=KU, KO or KT. Compose ¢c, ¢r Or @ given in (1.11) after the
above k“*T when Y= P A SG, SG or Q A SG. Then it is easily checked that
kel = ok RT, kKO = @pk®RT and k%7 = @k RT where kXY, kX° and «%X7 are
appeared in (1.4). For any KO-module spectrum W we next compose ¢c, @r
or ¢y after the canonical homomorphism

kSRT: [W, KO A Y]go — Homegr(nSRT W, KERTY)

when Y= P A SG, SG or Q A SG. Then it is immediate that K&V = ¢ xk§RT,
kX0 = @pkERT and #XT = @, kSRT where %XV, %XV and %XT are appeared in
(1.5).
Hence Lemma 1.3 combined with (1.4) and (1.5) implies immediately
Lemma 1.5. If a KO-module spectrum Z is n$RT-cofree, then
i) kRT:[X, Z] > Homcgrr(KSRT X, nSRTZ) is an isomorphism for any CW-
spectrum X, and
ii) k§RT: [W, Z]xo = Homcgp(nSRT W, nSRT Z) is an isomorphism for any KO-
module spectrum W.

Using Theorem 1.4 and Lemma 1.5 ii) we show

LeMMA 1.6. For each KO-module spectrum W there exist ni®"-cofree

spectra Z, and Z, and a cofiber sequence W— Z, — Z, of KO-module spectra
inducing a short exact sequence 0 — nSRTW— nSR*TZy, > nl*"Z, —0 in CRT.

Proor. Choose divisible abelian groups A4;(0 <i<1), Bj(0<j<7) and
C.(0 <k <3)so that m;;P A W, m;, ,Wand m,,;Q A W are embedded into 4;,
B; and C, respectively. Setting Z, = KU A SA v KO A SB v KT A SC with
A = {A;}, B={B;} and C = {C,}, we get a KO-module map f: W— Z, which
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induces a given monomorphism f,: ni}" W—»hnﬁRTzo by means of Lemma 1.5

ii). Consider the cofiber sequence W— Z, — Y. Then the united homotopy
nSRTY is an acyclic object of CRT with n, P A Y divisible, although the cofiber
Y might not possess a KO-module structure which is associative. According to
Theorem 1.4 nSRTY is isomorphic in CRT to a certain united homotopy
nSRTZ, with Z, n$R7-cofree. Using Lemma 1.5 ii) again we get a KO-module
map g:Z,—Z, whose induced homomorphism g, : n$*7Z, - n$RTZ,
coincides with the epimorphism h, : nSR"Z, — nSRTY when nSRT Z, is identified
with n®TY. Since the composite map gf: W— Z, - Z, is trivial, there exists
amap k: Y- Z, with kh = g, which is in fact an equivalence. Thus we have a
cofiber sequence W— Z, — Z, of KO-module spectra as desired.

Puttting Lemma 1.5 i) and 1.6 together we can easily construct the
universal coefficient sequence given in [9, 9.6].

THEOREM 1.7. For a CW-spectrum X and a KO-module spectrum W, there
exists a natural short exact sequence

0 — Exterr(KSRT X, 1SR W) — [X, W] — Homgg(KSRT X, nRTW) — 0.
Combining Theorems 1.2 and 1.4 with Theorem 1.7 we immediately obtain

THEOREM 1.8 Let W be a KO-module spectrum.

i) If n,P A W is free, then W is nSRT-free, thus it is isomorphic as KO-
module spectra to a certain wedge sum KU A SA v KO A SB v KT A SC where
A= {A}o<i<1» B={Bj}o<j<7 and C = {Ci}o<i<3 are graded free.

i) If n,P A W is divisible, then W is a$RT-cofree, thus it is isomorphic as
KO-module spectra to a certain wedge sum KU A SA v KO A SBv KT A SC
where A = {A;}o<i<1 and C = {C}o<i<3 are graded divisible 2-torsion and B
= {Bj}o<j<7 is graded divisible.

See [16, Theorems 2.4 and 3.4] for a direct proof.

§2. The abelian categories € derived from CRT

2.1. By replacing the united K-homologies KS*'X = {KU, X, KO, X,
KT,X} by the simpler K-homology object K®*X = {KU, X, KO X}, K" X =
{KU,X, KT, X} or K{TX = {KO,X, KT, X}, we here introduce new abelian
categories CR, CT and RT.

An object of CR is a pair M = {M¢, M®} consisting of a KU - and KO,-
module M€ and M® equipped with the operations below (see [9, 3.7]). Thus
M€ and MR are united by the following KO,-module maps:
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Be: £2MC 55 MC, Yt M€ 5 MC, Bg: Z8MR 5 MR, ng: Z'MR - MR
E:Z4MR — MR ¢: MR M€ and r: M¢ — MR
which satisfy the relations (1.7) i), iiij) and moreover
(2.1) i) ngBg = Bghg, cng =0, ngr =0,
ii) cBg = Béc, rB¢ = Bgr, Yc'c=c, ryc' =r and
iii) ecr=1+yz!, rc =2, rBec =n3, rBic=¢&, rBic=0.

An object M = {M€, MR} of CR is called CR-acyclic when the two
sequences

22 i) - —Z'MRIE, B, MR S M€ B, p2pqR R, pipR

i) - o g Z2MR B e ST M B g MR —

are exact. Obviously KS®P A X is CR-acyclic for any CW-spectrum X, and
KSRSG is also CR-acyclic for any abelian group G. Let0 - M — N - L—0 be
a short exact sequence in CR. If M satisfies the condition (2.2) i), then the
sequence 0 — nxM®R - ng N® - 5z LR > 0 becomes exact, too.

An object of CTis a pair M = {M€, M"} consisting of a KU,-and KT,-
module M€ and M7 equipped with the operations below. Thus M€ and MT
are united by the following KO,-module maps:

Be: E2MC S M, yot: M€ S MS, Bp: Z*MT S MT, 5y Z1MT — M7,
w : Z3MT — MT, Y7t MT S MT, (- MT — M€, y: M€ — Z'MT and
T 2IMT —- MT

which satisfy the relations (1.7) ii), iii), iv), vii), ix) and moreover

(23) i) n¢Br =B, npyrt =yYrinr=ng, (nr =0, nry =0,

Nr€T = €T = €TeT,

l

i) etB: = Bier, Yrletr= —etyr! =e1, BretBrl =et 4+, and
i) Cety =1+ych, exly=1+y7t, ylet=1—y;t.

An object M ={MS, M} of CT is called CT-acyclic when the two
sequences
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Q24) i) - — MT 5 pe BEOZ¥ED, pape B, sapr Lo pipe
i) o Z2MT g 2 MT S MT s

are exact. Obviously KS{TP A X is CT-acyclic for any CW-spectrum X, and
KSTSH and K$TQ A SG are CT-acyclic for any abelian groups H and G with
H uniquely 2-divisible. Let 0> M — N - L— 0 be a short exact sequence in
CT. If both M and N satisfy the condition (2.4) i), then the sequence 0 —
NeMT > NT -5, LT - 0 becomes exact. We moreover note that y((Kerny)
= 2yM€ and y({(Kern;*Z/2) < nyMT when an object M = {MS, M"} of CT
satisfies the condition (2.4) i).

An object of RTis a pair M = {M®, M} consisting of a KO,- and KT,-
module M® and MT equipped with the operations below. Thus M® and M7
are united by the following KO,-module maps:

~

Bp: Z8MR S MR pp: ZIMR — MR, £: Z4*MR — MR, Bp: S4MT 55 MT,
e ZTMT — MT, 0: Z3MT — M7, Y7t MT S5 M7, ¢ MR — M7,

T (SIMT > MR and (. MT —X'MT
which satisfy the relations (1.7) i), ii), iv), vi), viii) and moreover
(2.5) i) ngBr = Bgfig, N7Br = Briig, np¥r' = Y1 ny =1y, eng = nre,
™y = Mg, Yinr =0 =ngyl,
ii) y(Br=Bry=ow, y7'9{=—Yr'=—y{, yy(=0 and
i) tple=2, etp{ =14+ y7', yler=1—-yz'.

An object M = {M~® MT} of RT is called RT-acyclic when the two
sequences

26)p ) - —> Z2MR My MR E T BrL s3I R MR pipR
i) - — MT/Imny 5 ZUMT/Imny 2 S2MT/Imyy —s -
are exact, and in addition

iii) y((Kerny) < 2MT.

For any 2-torsion free abelian group G, KX"SG and KRXTQ A SG are RTj-
acyclic.

An object M = {M®, MT} of RT is called RT;-acyclic when the two
sequences



284 Zen-ichi YOSIMURA

2.6), i) e Z2 MR MR, pqR &, AT Bl y3 R MR, yipgR
- 1S 1S
i) -+ — Kerny — Kernp — Kernp — -

are exact, and in addition
i) y{(Kernr*Z/2) = nrM”.
For any 2-divisible abelian group G, KXTSG and KRTQ A SG are RTj-acyclic.

2.2. To deal with only the much simpler K-homology KU, X, KO, X or
KT, X, we next introduce new abelian categories C, R and T.
An object of C is a KU,-module M€ equipped with operations

Be: Z2M€ S M€ and ygl: M€ S MC

satisfying the relation (1.7) iii) (see [9, 4.1]). An object M€ of C is called C-
acyclic (or Inv-acyclic [9, 3.5]) when the sequence

27) o> MC ¥, e LU, e LHbel, pe

is exact. Obviously KU, P A X is C-acyclic for any CW-spectrum X.
An object of R is just a KO,-module M® whose operations

Bg: Z8MR S MR yp: ZIMR — MR and &: Z*MR — MR

satisfy the relation (1.7) 1).
An object of T is a KT,-module MT equipped with the following
operations

Br: Z*MT S MT, np: ' MT — M7, 0: 23MT — M7, y;': MT S M7,
et : 2'MT —-MT and y{: MT —Z'MT
which satisfy the relations (1.7) ii), iv) and moreover
(2.8) 1) nyBr= Brnr, "Irlp;l = l//;lﬂT =MNr, NréT = TN = &€TET,
nrye = 0=y{ns.
i) etB% = Ber, Yr'let= — ety ! =et, BretBrl = et +np,
iii) yBr =Byl =0, Y79 =—ylpr' = —{, y(y{ =0 and
iv) eyl =1+yr!, yler=1—yrl.
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An object MT of T is called Tp-acyclic when the two sequences

Q9 i) - —np2?MT g 2 MT S g MT

ii) - — MT/Imn, —yCaZIMT/ImnT LZZMT/ImnT —

are exact, and in addition
iii) y((Kerny) < 2MT.

For any 2-torsion free abelian group G, KT, Q A SG is Tg-acyclic.
An object MT of T is called Tj-acyclic when the two sequences

29); i) - — 2 MT g 2 MT s MT — -
ii) --- — Kerny y—chernT lé»KernT — e

are exact, and in addition
iii) y{(Kernp*xZ/2) = nyMT.
For any 2-divisible abelian group G, KT, Q A SG is Tj-acyclic.

2.3. Let ¢ denote one of the abelian categories CR, CT, RT, C, R and T.
As in the CRT case a KO-module spectrum W is said to be n¥-free if it has
the following form: W= KU A SA v KO A SB, KU A SAv KTA SC, KO A
SBv KTA SC, KU A SA, KO A SB or KT A SC according as € = CR, CT,
RT, C, R or T, where 4= {A;}o<i<1, B={Bj}o<;<7 and C={Ci}o<i<s
are all graded free. Dually a KO-module spectrum W is said to be n%-cofree if
it has the following form: W= KU A SA v KO A SB, KU A SAv KTA SC v
KO A SD, KOASBv KTASC, KUASAv KO ASD, KOASB or KTA
SC v KO A SD according as € = CR, CT, RT, C, R or T, where A = {A;}o<i<1
and C = {C,}o<k<3 are graded divisible 2-torsion, B = {B;},<;., is graded
divisible and D = {D;},.;<3 is graded divisible 2-torsion free.

A free object of € is isomorphic in € to a certain homotopy n%W with
W né-free, and a cofree object of € is isomorphic to n¢W with W n€-cofree.

We shall later use the following result similar to [9, Proposition 3.11] for a
CRT-acyclic object M.

Lemma 2.1. i) Let M = {M MR} be an object of CR satisfying the
condition (2.2) i). Then ngMpg =0 if and only if M€ is C-acyclic.

i) Let M ={MS M"} be an object of CT satisfying the condition (2.4)
i). Then nyMT =0 if and only if M€ is C-acyclic.
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i) Let M = {M~, M} be an object of RT satisfying the condition (2.6)g
i). Then ngM® =0 if and only if nAM® =0 and nretM™ = 0.

Proor. i) The “only if” part is easy. To prove the converse we take an
arbitrary elment x e MR. Then it is expressed as x = ry + ngz for some y e M€
and ze MR So we see that ngzx =niz and nix =0. This means that
ngx =0 as desired,

il) and iii)) are easily shown by routine arguments.

Let M = {M€, MR, MT} be an acyclic object of CRT such that anyone of
M€, M® and MT is uniquely 2-divisible. Then the others of them are
uniquely 2-divisible and hence 7z =0 and 5y =0. So we obtain natural
decompositions MR ~ (MT)* =~ (M€)*, M=~ (M*" @ (M)~ =~ MR@ X2 MK
and MT=MT)* @ MT)" =2 MR@® X "'MR where (Mc)* =Ker(l £ycl)c
M€ and (MT)* = Ker(l £ ;') = MT. Moreover there exists uniquely a
periodicity operation BY?: X*M® —» MR satisfying ¢BY? = Bre, BY?*t = 1By
and BY?BY? = Bgz. Replacing M® and MT by MR@® X?MR® and MR@®
2~ 'MR® respectively we can rewrite the operations of M in (1.6) as follows
(cf. [9, 4.2]):

BC(x, y) = (By, X), BR(Z) = Bz(z)a BT(u’ W) = (Bu’ BW),
!/lC_I(x7 )’) = (x5 - y)a lﬁ;l(u, W) = (ua - W)9 "R(z) = Oa nT(ua W) = 05
€(2) = (z,0), {u, w) =, 0), y(x,y)=(0,2x) and z(u,w)=w

in which (x, yye ME@® ME_,, ze MR, (u, wye MR ® MZ, | and the periodicity
operation BY? is abbreviated as B.
This implies easily

LEMMA 2.2. Let € be one of the abelian categories CR, CT, RT, C, R and
T, and M = {M"} be a €-acyclic object such that anyone of the entries M¥ of
M is uniquely 2-divisible. Then M is extended to a certain CRT-acyclic object
pM = {MS, MR, MT}.

By combining the above lemma with Lemma 1.3 we can show

COROLLARY 2.3. 'Let € and M be ones stated in the above lemma. Then
M is isomorphic in € to the K-homology K§SD where D = {M}}, ;5.

§3. Projective and injective objects in €

3.1. We now give criteria for projective objects in the abelian categories
CR, CT and RT introduced in the previous section corresponding to Theorem
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1.2 for the abelian category CRT (see [9, Proposition 4.8] in the CR case).

THEOREM 3.1. (1) Let € be the abelian category CR or CT. For an
object M of € the following conditions are equivalent:
i) M is projective in €,
i) M is @-acyclic with M€ free, and
i) M is free in €.
(2) For an object M of the abelian category RT the following conditions are
equivalent :
1) M is projective in RT,
ii) M is RTg-acyclic with MR /Imng and M"/Imn; free, and
iiil) M is free in RT.

Proor. It is straightforward to prove (1) by using the method developed
in [9, Proof of Theorem 3.2]. In order to prove (2) we mimic the Bousfield’s
method with a minor device. It is sufficient to show only the implication ii)
— i),

Decompose the free abelian group M} /Imn; as GO Y7 'GAiI*TH®i I
where G@yY;'G, itH and i~ I respectively denote G@®G with yz'
interchanging summands, H with y;'=1 and I with y;'= —1. The
homomorphism 7%: MR — M% is factorized through (M{)*/Im#n; as

ME 5 (M3 Tmny —25s pee(ME)* < ME

where (M{)*/Imn; =4, G@®i*H with 4,G = {(9,¥7'9)eG® y7'G}.
Choose a decomposition i*H=B@C®D so that ngtB~BR Z/2 =~
NRT(MD)* /nAME, nrgriC=C®Z/2=niM8 and ngtD =0. Setting C =
@ Z{c,}, we get an element m, € Mg such that em, — c,e 4, G @ D for each y

Y
as 2(Mg)* < eM§. Since {#im,} forms a basis of n}M§, we may regard as
C=@® Z{em,}. Consider the homomorphism f: KXTSC - M defined by
Y

f(b, r) =m, for each y where SC= v XY and b,reK0,2? denotes the
v

standard generator. As is easily seen, f is a monomorphism. Denote by M
= {MR®, MT} the cokernel of the map f. Then the short exact sequences 0
- KT,SC/Imns — My /Imny — M{ /Imy: -0 and 0- KO;SC/Imng - M¥/
Imng —» M¥/Imng — 0 are evidently split except k = 3 mod 4 and j = 4 mod 8.
The homomorphism y{: MY /Imy; - MT | /Imn, restricted to G@®i* H gives
rise to an isomor-phism y{: G@®i* H - y{(M¥/Imyn;). On the other hand,
{(M¥/Imny) is a direct summand of M”,/Im#n, under the condition (2.6)p
ii) and the freeness of MT/Im#n,. Hence the above former sequence becomes
split even if k =3 mod 4. To observe that the lattter sequence is split when
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j =4 mod 8, we next show that ¢: MR — M] reduces to a monomorphism
¢: MY/Imng —» M]/Imn,;. Take an arbitrary element xe M® with exe
nrM3, and then choose an element xe MY projecting to xe MX. The
homomorphism ¢: KO,SC - KT,SC is just multiplication by 2 on C and
e: MR /Imng - MY /Imn; is a monomorphism. So there exists an element ye
K0,SC with 2x — fR(éy)e ngM%. Then it follows immediately that ex —
BrefR(y)eny MY and hence n3 fR®(y) = 0. Taking an element )y’ € KO,SC with
2y =y, . we see easily that x — fR(¢y)engMX, thus xengMRY as desired.
Consequently we obtain a RTg-acyclic object M = {M® MT} such that
MR/Imng and MT/Imy,; are free and n2MR = 0. Repeat this construction
in successive dimensions to give finally a RTp-acyclic object N = {NX NT}
with N®/Imn; and NT/Im#n, free, and nAN% = 0.

Next decompose the free abelian group NI /Imn; as GO Y !GO i*HD
i"I. The homomorphism nret: N3/Imn, - NT restricted to G gives rise to
an isomorphism #;et: G® Z/2 — nret(NY/Imny) under the conditions (2.6);
ii) and iii). Set G = @ Z{g,} and consider the homomorphism h: K*% ;0 A

SG — N defined by h(b, 1) = g, for each ¢ where SG = v 29 and b, ;€ KT;Q

A X0 denotes the standard generator as given in (1.9) iii). It is evident that h
is a monomorphism. Denote by j: N}/Imyn; >G@®y;'G the canonical
projection, which gives a left inverse of hl: KT,Q A SG=G® y7'G— NY/
Imn;. The compositions y¢{mjer: N*,/Imny > KT,Q A SG= G and etmjyl:
NT/Imn; - KT,Q A SG/Imn; = G give left inverses of h™ | and hT respectively,
where n: G@® Y7 1G — G denotes the projection onto the first factor. Denote
by N = {N® NT} the cokernel of the map h. Then the short exact sequences
0->KT,,3Q A SG/Imn; - NT/Imny - N*/Imn; —» 0 and hence 0 > KO, ,3Q
A SG/Imng - N®/Imng - N®/Imng — 0 are split. Consequently we obtain a
RTg-acyclic object N = {N% NT} such that N®/Imng, and NT/Imn; are
free, N} /Imn, = (NT/Imn;)* @ (N¥/Imns)~, nAN® =0 and ypetNT = 0.
Repeat this construction in successive dimensions to give finally a RTg-acylic
object L= {L® LT} with L® and LT free and LT =~ (L")* @ (L")". Here
Lemma 2.1 iii) is needed to observe that #zL® = 0 and hence both L® and LT
are free. Under the condition (2.6); an arbitrary element x € LT is expressed as
a sum ety + y{z for some y, ze LT. Then a routine computation shows that
LT is always 2-divisible and hence it must be trivial. Thus the original object
M is free in RT.

3.2, As a dual of Theorem 3.1 we next give criteria for injective objects in
the abelian categories CR, CT and RT corresponding to Theorem 1.4 for the
abelian category CRT (see [9, Proposition 4.9] in the CR case).
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THEOREM 3.2. (1) Let ¥ be the abelian category CR or CT. For an
object M of € the following conditions are equivalent:
i) M is injective in €,
il) M is @-acyclic with M€ divisible, and
iii) M is cofree in €.
(2) For an object M of the abelian category RT the following conditions are
equivalent :
i) M is injective in RT,
ii) M is RT-acyclic with Kerng and Kerny divisible , and
iii) M is cofree in RT.

Proor. It is straightforward to prove (1) by using the method in [9, Proof
of Theorem 3.3]. In order to prove (2) we mimic the Bousfield’s method with a
minor device as in the proof of Theorem 3.1 (2). It is sufficient to show only
the implication ii) — iii).

Let D be a divisible 2-torsion group with y2MZY =~ D«Z/2. Choose an
epimorphism « : (Kerng); — D extending the identity on n3 MY when n2 MR is
identified with DxZ/2, and then extend it to an epimorphism o: MX - D. By
means of the RT-version of Lemma 1.3 we get a homomorphism f: M —
K2T | SD such that f§: M% —» KO,SD = D is just the above a. It is easily seen
that f is an epimorphism. Denote by M = {MX, M} the kernel of the map f
and by 7 and 7 the Hopf operations of M, and M, with emphasis. Notice
that f®: ni ' MY - KO;,,SD+Z/2 =~ D+Z/2 is an epimorphism when j =2 or
3, and moreover fT:engMR — KT,SD*Z/2~DxZ/2 is an epimorphism.
Then the short exact sequences 0 — (Kerfjg); — (Kerng); — (Kerng);+; = 0 and
0 — (Ker#j;), = (Kerng), — (KernR),,; — 0 are evidently split except j= —1
mod 8 and k= —1 mod 4, in which the Hopf operations of KO,SD and
KT,SD are written as n2 and n%2. For an arbitrary element xe M®, with
firx = 0 there exists an element ye M} with #;y = 0 such that x injects into
tBrlye MT | and 2f7(y) = 0 because tB;': Kerny — Kerny is an epimorphism
and tB;!: KT;SD — KO,SD is multiplication by 2 on D. We can now replace
the old y by a new one satisfying f7(y) = 0, by using the restricted epimorphism
fr. engM® > KT;SDxZ/2. Thus tB;': (Kerfjy), = (Kerfjg)_, is an epimo-
rphism. This implies that the above remaining sequences are both split, too.
Consequently we obtain a RT;-acyclic object M = {MR®, MT} such that Kerfj,
and Ker#j, are divisible and 72M® = 0. Repeat this construction in successive
dimensions to give finally a RT;-acyclic object N = {N®, N} with Kern, and
Kern, divisible, and y3N® = 0.

Decompose the divisible abelian group (Kernr); = N3 as GO yY7'G @
i*tH®i~ I with G 2-torsion. For arbitrary element xe NT there exists an
element ye NI with n;y =0 and #n;x =y{y under the condition (2.6), ii).
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Since Kern, is divisible, the old y can be replaced by a new one satisfying
2y =0. Then the homomorphism 5yet: NT — N¥ is mapped onto 4, G*Z/2
under the condition (2.6), iii), thus npetN] = 4,GxZ/2. Choose an
epimorphism B: N} — G@® Y1 ! G extending the canonical projection j: (Kerny),
- G®Yr'G. By use of the RT-version of Lemma 1.3 we get a homomor-
phism h: N - K% ,0 A SG such that (ug A 1),h] = (ug A 1),8: N] - KT,SG
~ G where py: KTA Q— KT is the pairing appeared in (1.11). It is not
difficult to see that h is an epimorphism because G has only 2-torsion. Denote
by N ={NR NT} the kernel of the epimorphism h and by 7z and 7, the
Hopf operations of N® and N7. Since h induces epimorphisms h: Kern *Z/2
—Kern$*Z/2 and h: Kerng*Z/2 — Kern$+Z/2, the short exact sequences 0
— Kerfjr - Keryy —» Kern$ -0 and 0 — Kerfjp —» Kerng —» Kery$ -0 are
split where the Hopf operations of KT,Q A SG and KO,Q A SG are written as
n$ and n§. Consequently we obtain a RT;-acyclic object N = {N® NT} such
that Kerfjz and Kerfj,; are divisible, (Kerfj;); = (Kerfiz)7 @ (Kerfip);, fANR
=0 and 7;etNT=0. Repeat this construction in successive dimensions to
give finally a RTj-acyclic object L= {L®, L'} with L® and LT divisible and
LT~ (L")*®(LT)~. However LT and hence LR must be 2-torsion free since
an element x € L™ with 2x = 0 belongs to (L)* n(L")™ = {0}. By applying the
RT-version of Lemma 1.3 (or Corollary 2.3) we observe that the final object
L is isomorphic in RT to the cofree object KXTSB with B = {L{},.;<s.
Thus the original object M is cofree in RT.

3.3. We finally give the corresponding results for the abelian categories C,
R and T to Theorems 1.2 and 1.4 in the CRT case (see [9, Propositions 3.6 and
3.8] in the C case).

THEOREM 3.3. (1) For an object M€ of the abelian category C the
following conditions are equivalent:
i) MC is projective in C,
ii) MC€ is C-acyclic and free, and
iii) MC is free in C.
(2) For an object MR of the abelian category R the following conditions are
equivalent :
i) MR is projective in R,
ii) MR® is projective as an KO, -module, and
iii) MR is free in R.
(3) For an object MT of the abelian category T the following conditions are
equivalent .
i) MT is projective in T,
i) M7 is Tg-acyclic with MT/Imn, free, and
iii) MT is free in T.
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Proor. (1) has already been shown in [9, Proposition 3.6], and (3) is
immediately done by using the method in the proof of Theorem 3.1.

(2) It is sufficient to show only the implication ii) — iii). Set M¢ =
KU, ® M® and M" = KT, ® M® for a projective KO,-module MR. Then

KO« KO,
the triple M = {M€, M®, M"} is viewed as a CRT-acyclic object with M¢
free. According to Theorem 1.2 the object M is free in CRT. From Lemma
4.5 below it follows that the projective KO, -module MR® is certainly isomorphic
in R to some free object KO,SB with B = {B;},.;<- free.

THEOREM 34. (1) For an object MC of the abelian category C the
following conditions are equivalent:
i) MC is injective in C,
il) MC€ is C-acyclic and divisible, and
iiiy MC€ is cofree in C.
(2) For an object MR of the abelian category R the following conditions are
equivalent :
i) MR is injective in R,
i) MR is injective as a KO,-module, and
iii) MR is cofree in R.
(3) For an object MT of the abelian category T the following conditions are
equivalent :
i) MT is injective in T,
i) M7 is Ty-acyclic with Kerny divisible, and
i) MT is cofree in T.

Proor. (1) has already been shown in [9, Proposition 3.8], and (3) is
immediately done by using the proof of Theorem 3.2.

(2) It is sufficient to show only the implication ii)— iii). Set M€
= Homy,,(KU,, M®) and MT = Homg, (KT,, M®) for an injective KO,-
module MR Then the triple M = {M€, M®, M"} is viewed as a CRT-acyclic
object with M€ divisible. Theorem 1.4 combined with Lemma 4.4 below
asserts that the KO, -module M® is certainly isomorphic in R to some cofree
object KO,SB with B = {B;},;<, divisible.

§4. K¥%-injective spectra

4.1. Let us denote hereafter by € one of the abelian categories CRT, CR,
CT. RT, C,Rand T. Given CW-spectra X and Ya map f: X — Y is said to be
K&-monic if it induces a monomorphism f,: KX - K{Y. We call a CW-
spectrum W K%-injective ([12] or [17]) if any K¥-monic map f: X — Y induces
an epimorphism f*:[Y, W] - [X, W] (see [9, §9] for a different definition
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which is equivalent to ours). In the above definitions K¢ may be regarded as
the following KO-module spectrum: K¢ = KU v KO v KT, KU v KO,
KU v KT, KO v KT, KU, KO or KT according as ¥ = CRT, CR, CT, RT, C,
R or T. If a CW-spectrum W is K¥-injective, then it is a quasi KO-module
spectrum by [17, Lemma 1.4]. Here we mean by a quasi E-module spectrum
W an E-module spectrum which is not necessarily associative for a fixed ring:
spectrum E. Thus the map 1 A 1: W— EA W admits a left inverse u: EA W
— W where 1: S - E denotes the unit of E.

As a special case of [17, Proposition 1.6] we have the following result (see
also [17, Proposition 3.7 ii)] when € = C, R and T).

LEMMA 4.1. A CW-spectrum W is K%-injective if and only if it is a retract
of a certain extended KO-module spectrum KO A'Y which is n&-cofree.

Using [4, Theorem 2.8] and [3, Theorem 2.2] together we show

LemMa 4.2. 1) Let K denote the periodic K-spectrum KU or KO. Then
the smash product K A K is decomposed as a K-module spectrum into the wedge
sum v K of countable copies of K.

ii) The smash product KT A KT is decomposed as a KT-module spectrum
into the wedge sum (v KT) v (v Z3KT) of countable copies of KT and Z3KT.

Proor. i) Recall [4, Theorem 2.8] that the product map v: 7, KO ®
KOy,KO - KO_KO is an isomorphism. Set G = KO,KO, which is torsion
free by [4, Proposition 2.1], and then choose a KO-module map g: KO A SG
— KO A KO inducing the above isomorphism v in the homotopy. Using the
homotopy equivalence g the smash product KU A KU is written into the
wedge sum KU A SG v 22KU A SG as a KU-module spectrum. This implies
that G = KO,KO is exactly countable free because KU, KU is so according to
[3, Theorem 2.2]. The result is now easy.

ii) follows immediately from i) since the smash product KT A KT is
written as a KT-module spectrum into the wedge sum KT A KO v Z3KTA
KoO.

4.2. We now prove the following result as is expected.

LEMMA 4.3. Let G be a divisible 2-torsion group. Then
i) KU A SG is never KXT-injective,

ii) KO A SG is never K -injective, and

iii) KT A SG is never K$®-injective.

Proor. It is sufficient to show our result for G = Z/2*.
i) Assume that KU A SZ/2® is KRT-injective. The map y A 1: KU A
SZ/2->Z'KTA SZ/2 is KX -monic since y,: KU,SZ/2—-KT,_,SZ/2 is a
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monomorphism. So there exists a map f:Z'KTA SZ/2— KU A SZ/2®
such that the composite map f(yA 1): KU A SZ/2 - KU A SZ/2® is the
canonical map 1 A i, associated with the inclusion Z/2 — Z/2%®. Obviously
the map f induces a monomorphism f,: KT,SZ/2 - KU,SZ/2°. However
this is a contradiction because #;,: KT,SZ/2 - KTSZ/2 is an isomorphism
and KU,SZ/2* = 0.

ii) Assume that KO A SZ/2 is K{"-injective. Since the map ¢ A 1: KO
ASZ/2- KT SZ/2 is K{"-monic, there exists a map g: KT A SZ/2 - KO
A 8Z/2® such that the composite map g(eA 1): KO A SZ/2 - KO A SZ/2%
coincides with the canonical map 1 A i,. Obviously the map g induces an
isomorphism g,: KT3SZ/2 - K0,SZ/2*. However this is a contradiction
because ng, : KO3SZ /2% - KO,SZ /2% is a monomorphism and 7, : KT38Z/2
- KT,SZ/2 is trivial.

iii) Assume that KT A SZ/2® is KSR-injective. Since (etBgl), :
KU, ,,8Z/2—KT,SZ/2 is trivial, the map (—t A 1,tBf' A 1): KT A SZ/2
—(Z7'KO v X3KO0) A SZ/2 becomes KO,-monic by (1.3) iv). On the other
hand, the map 1 Aip A 1: KTASZ/2-5>KTA P ASZ/2 is evidently KU,-
monic. So there exists a map h: (KTA P v X 'KO v 23KO) A SZ/2 - KT
A 8Z/2° such that the composite map h(1 Aip A1, —T A1, tBr! A 1):
KTASZ/2— KTA SZ/2% coincides with the canonical map 1 A i,. Obviously
the map h induces an epimorphism h,: KT,P A SZ/2@® K03S8Z/2 - KT,SZ/
2°. How-ever the above h, must be trivial because n;,: KT,P A SZ/2 -
KT P A SZ/2 is trivial, 5y, KT,8Z/2* - KT3S8Z/2® is a monomorphism,
Nry: KO,8Z/2 - K0;SZ/2 is an epimorphism and KT,SZ/2® = 0. This is a
contradiction.

Using the argument developed in the proof of Lemma 4.3 ii) and iii) we can
immediately show the following result, which was needed in the proof of
Theorem 3.4 (2).

LEMMA 4.4. Let G be a divisible 2-torsion group. Then neither KU, SG nor
KT,SG is injective as a KO,-module, and KU_SG is not injective as a KT,-
module.

Let G be a divisible 2-torsion free group. Then the extended KO-module
spectrum KO A SG admits a unique KT-module structure such that the
composite map y{e A 1: KO A SG—X'KTA SG is a KT-module map.
Although the KT-module spectrum KO A SG is KT,-injective, its homotopy
KO,SG is never injective as a KT,-module.

By a dual argument to the proof of Lemma 4.3 (or Lemma 4.4) we can
easily show the following result, which was needed in the proof of Theorem 3.3

Q).
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LemMa 4.5.  Neither n, KU nor n KT is projective as a KO,-module, and
n, KU is not projective as a KT,-module.

4.3. Combining Theorem 1.8 with Lemma 4.3 we obtain a stronger result
than Lemma 4.1 when W is a KO-module spectrum.

PROPOSITION 4.6. Let W be KO-module spectrum. Then W is K$-injective
if and only if it is mé-cofree.

Proor. It is sufficient to show the “omly if” part. If a KO-module
spectrum W is K¥-injective, then n,P A W is divisible by means of Lemma
4.1. Then Theorem 1.8 asserts that the KO-module spectrum W is nSR”-
cofree. So we can easily observe that W is in fact n¢-cofree by virtue of

Lemma 4.3.
By using Lemmas 4.1 and 4.2 and Proposition 4.6 we show

THEOREM 4.7. The following three conditions are equivalent:
i) W is a K¢-injective spectrum,
i) W is a quasi KO-module spectrum such that KO A W is K&-injective, and
iti) W is a quasi KO-module spectrum such that KO A W is ©é-cofree.

Proor. If a KO-module spectrum Z is né-cofree, then the smash product
KO A Z is also né-cofree by virtue of Lemma 4.2 i) for K = KO. Therefore the
implication i) — ii) follows from Lemma 4.1. The inverse implication ii) — i) is
immediate. On the other hand, the condition ii) is equivalent to iii) because of
Proposition 4.6.

When € = R, RT or CRT we have

LEMMA 4.8. Let W be a KO-module spectrum. Then

i) W is KO,-injective if and only if n,W is injective as a KO -module.
ii) W is KR .injective if and only if n,Q A W is injective as a K T,-module.
iii) W is KSR -injective if and only if n, P A W is divisible.

Proor. The “only if” part is evident by Proposition 4.6.

The “if” part: i) When =, W is injective as a KO,-module, there exists a
natural isomorphism «X°:[X, W] - Homy, (KO, X, n, W) for any CW-
spectrum X. Hence the result is immediate.

ii) Similarly we see that Q A W is KT,-injective when n,Q A W is
injective as a KT,-module. From Lemma 4.1 it follows that n,P A W is
divisible because P A W is a retract of P A Q A W. Thus the KO-module
spectrum W is n$®T-cofree by means of Theorem 1.8. So it is in fact nx’-
cofree by virtue of Lemma 4.3 since Q A W is KT,-injective.

iii) is immediate by use of Theorem 1.8.
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Combining Theorem 4.7 with Lemma 4.8 we can easily show

THEOREM 4.9. A CW-spectrum W is K%-injective if and only if it satisfies

the following condition according as € = CRT, CR, CT, RT, C, R or T:

i) W is a quasi KO-module spectrum such that KU W is divisible,

il) W is a quasi KO-module spectrum such that KUW is divisible and
nrKO, W2 g KO ,W-"25 KO, . W is exact,

iii) W is a quasi KT-module spectrum such that KU W is divisible,

iv) W is a quasi KO-module spectrum such that KT, W is injective as a KT,-
module,

v) W is a quasi KU-module spectrum such that KU, W is divisible,

vi) W is a quasi KO-module spectrum such that KO, W is injective as a KO, -
module, or
vil) W is a quasi KT-module spectrum such that KT, W is injective as a KT,-
module.

§5. The abelian categories A€ of KO, KO-comodules

5.1. For any CW-spectrum X the united K-homology K$*TX = {KU, X,
KO, X, KT,X} admits a KO, KO-comodule structure. Its comodule structure
map Yy = {U%, ¥X, ¥%}: KSRTX - KSRTKO A X — KO, KO ® KX is

KO«

induced by the left unit map 1 A 1: KO —» KO A KO. In particular, ¥ is the
left unit map #,: 7, KO - KO,KO when X = §, the sphere spectrum. Recall
that the product map v: KOy,KO ® n,KO - KO,KO is an isomorphism and
KO,KO is countable free. Choose a countable free basis {z,} of KO,KO with
zo=n,t and fixit. Setn, ¢ =) z,® k€ KO,KO ® n,KO for the generator

ten,KO where k,’s are integers with ko =.1. Thus #.¢& =) kngé z,€
KO,KO where ng: n,KO - KO,KO denotes the right unit map and “-”
stands for multiplication in KO,KO.

In order to introduce the abelian categories A% consisting of objects M of
% having a KO, KO-comodule structure when € = CRT, CR, CT, RT, C, R
and T, we first represent the operations of K{®"KO A X in terms of those of
KSRTX. The operations of KSRTKO A X is written as f in place of f in
distinction from those of KSRTX.

LeMMA 5.1. When KSRTKO A X is identified with KO,KO @ K{* X, the
operations f of KSRTKO A X is expressed as follows: KO
i) f=1®f when f=ng nr,¥c' ¥7's 0,8 tBr' or 9B
ii) f=f®1 when f=By or ¢,
iii) B.=1® B¢ + ;oz,,@a,,(l +YcY)Bce, and
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iv) Br=Y7z,®k,B;r
n

where {z,} is a fixed countable free basis of KOyKO, k, is the integer determined
by the equality n. ¢ =Y z,®k,¢ and a, is a certain integer depending on the
n

integer k, and the multiplication of KU.

Preoor. i) follows immediately since the operations given in i) are all
represented by maps among 2", 2"P and X2"Q smashed with KO. On the
other hand, ii) is easy because the comodule structure map y%: KO,X —
KO,KO A X KO, KO ® KO, X is a left KO,-module homomorphism.

KOy

iii) Let u: P A P - KO A P denotes the map associated with the multipli-
cation of KU. By a routine computation we can easily observe that 8u: P A P
— KO A P is at least decomposed as a sum (z A 1) + a(l A ip)é(jp A jp) for
some map o: P A P — P and some integer a where ip: 2% > P and j,: P > X2
denote the bottom cell inclusion and the top cell projection. In the above
observation we may use the group structures [P, Z"P] and [P A P, 2"P]
calculated in [10, Lemmas 3.2 and 3.6] (and [11, Proposition 2.9]). Such a
map o and an integer a are uniquely chosen. Recall that the periodicity
generator B e, KU is induced by a certain map fen,P with j,f =2. Since
8u(B A1) =0 A Da(B A 1)+ 2a¢ A ipjp, we obtain that 8Bc(h) = (@ A 1),(B A
1 A1) h+2aé-(ipjp A 1),h for each element he KO P A X, in which ¢-
stands for left multiplication by £ e n, KO. Hence it follows immediately that
8B.(g® h) =g ®8Bc(h) + 2a( & — ngé) g ® (ipjp A 1),.h for each element g ®
he KO ,KO ® KO_P A X.

KO«
Take g =2z, =1 A 1€ KOuKO and h=b.e KU,P the standard generator

given in (1.9) ii). Then the above equality implies that ) #ng¢-z, ® ak,(1 +
n#0
Ye B b)) = Y, 2, ® 2ak,(1 + Y ')Be(bc) e KOL,KO® KU, P is divided by

#0 KO«

4 because c£ = 2B%. Therefore ak, is divided by 2 except n=0. Consequently
the previous equality is rewritten as B.(g ® 8h) = g ® Bc(8h) + Y, 2,9 ®

n#¥0
a,(1 + ¢ ')B-(8h) where 2a, = ak, for n #0. This asserts that iii) is valid
whenever KU, X 1is 2-divisible. In fact iii) becomes always valid for any CW-
spectrum X because there exists a monomorphism f: K$RTX — KSRTY for
some n¢R7-cofree KO A Y.
iv) The multiplication of KT is induced by a certain pairing m: Q A Q -
Q. Note that Y{(Br) =) z,® k,Br€ KOoKO®n,KT because & = 2B;.

Then it is easily seen that B (g ® h) = Y z,"g ® k,Br(h) for each element g ®
he KO,KO ® KO, ,Q A X.

KO«
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5.2. For an object M = {M*} of ¥, KO,LKO @ M = {KO,KO ® M%)} is
KO« KO«
viewed as an object of ¥ whose operation are represented by those of M as

given in Lemma 5.1, where € = CRT, CR, CT, RT, C, R or T. An object of
A% is an object M = {M"} of ¢ equipped with a KO, KO-comodule structure
map Y = {Y}: M > KO, KO ® M which commutes all the operations of M

KO«

(cf. [9,5.5]). A morphism of A% is a morphism f= {f¥} of € compatible
with the comodule structure maps. Whenever an object M is injective in €,

its extended comodule KO, KO @ M is injective in A%. Therefore the abelian
KO«

category A% has enough injectives.

Fix a positive integer r such that it is congruent to + 3 modulo 8 when p
=2, and it generates the group of the units of Z/p?> when p is an odd
prime. For each prime p we can form the sequence of CW-spectra

(5.1) Sz, —2 K0Z, Y=L K0z, 4> S0

with trivial compositions (see [7, Theorem 4.3] or [9, 8.4]). Here Skz,,, 18 the
KOZ,-localization of the sphere spectrum S, Y% is the stable Adams
operation, the map i, is induced by the unit :: §—» KO and the map q is
associated with the inclusion gq,: Z,, = Q in the homotopy group. Since the
cofiber of the map 1, coincides with the fiber of the map g, the above sequence
(5.1) gives rise to the following fundamental exact sequence

(5.2)
0 SKTSZyy A W nSKTKOZ yy A W 1SRTKOZ yy A W > SKTSQ A W0

for any nSRT-cofree KO-module spectrum W.

For each object M in ACRT we consider the sequence
0— M(p) L > KO*KO ® M(p)(%( rlz ®’1 KO*KO ® M(p)
KO« KO«

where M, =M®Z, and Yy, =yy®1 for the KO, KO-comodule
structure map ¥, of M. Denote by C(M,)) the cokernel of the endomorphism
Wrinrl—1),01 on KO,KO® M. From (5.2) it follows that

KO«

(5.3) CKRTX,)) = KFTX®Q if KOAX is ngfT-cofree.

Choose a short exact sequence 0 > M —» K$®TKO A X - N -0 in ACRT
with KO A X nSRT-cofree. Then an easy argument using the fundamental
exact sequence (5.2) shows that the sequence
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(54) 0— M) — KO,KO @ M, — KO,KO @ My, 4 cM,) —0

is exact in ACRT. Moreover (5.3) implies that C(M ;) is a Q-module because
KO A KO A X is nSRT-cofree by virtue of Lemma 4.2 i). Therefore the
composite morphism

(5.5) M®Q e, Ko, KO ®M®Y) 4, C(M,)

becomes an isomorphism in ACRT. Thus we obtain a fundamental exact
sequence

(56) 0 —- M, —KO,KOR M, —KO,KORXM, —>MxQ—0.
KO KO,

By means of Theorem 1.4 and (5.5) we observe that
(5.7) M ® Q is injective in ACRT if it is CRT-acyclic.

Using the fundamental exact sequence (5.6) for each prime p and (5.7) as in
the proof of [9, Theorem 7.3] we can easily show

THEOREM 5.2. For each object M in ACRT, its injective dimension is at
most 2 whenever M is CRT-acyclic.

5.3. Owing to [12, Proposition 7] (or [17, Proposition 1.1] we have

PROPOSITION 5.3. A CW-spectrum W is K&-injective if and only if the
canonical morphism k%: [X, W] —» Hom (K¢X, KEW) is a monomorphism for
any CW-spectrum X.

We here give a few results concerning K¢-injective spectra, which
correspond to [17, Propositions 2.3, 2.4 and 2.5].

PROPOSITION 5.4. If a CW-spectrum W is K&-injective, then it is a quasi
KO-module spectrum such that KEW is injective in A€ and x§:[X, W]—
Hom (K¢X, KEW) is an isomorphism for any CW-spectrum X.

Proor. By virtue of Lemma 4.1 it is sufficient to show our result for any
ny-cofree Z. Let Z be a KO-module spectrum which is n¢-cofree. Then the
homotopy n%Z is cofree in ¢ and hence it is injective in ¥. Since the K-
homology K¥Z is isomorphic in A% to the extended comodule KO,KO ®

KO«
n¢Z, it is certainly injective in A%€. By the %-version of Lemma 1.5 we observe

that «%: [X, Z] - Hom (K X, K%Z) is an isomorphism for any CW-spectrum
X. Then it is immediate that «x§:[X,Z] » Hom,(K¢X,K%Z) is an
isomorphism for any CW-spectrum X.
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Making use of Proposition 5.4 we can prove the following results by quite
similar arguments to [17, Propositions 2.4 and 2.5].

PROPOSITION 5.5. If Wis a KO,-local spectrum such that KEW is injective
in A%, then it is a K&-injective spectrum and x§:[X, W] - Hom (K5 X, K§W)
is an isomorphism for any CW-spectrum X (see [9, Lemma 9.3]).

PROPOSITION 5.6.  For each injective object 1 of A€, there exists a K&-
injective spectrum W, whose K-homology KW, is isomorphic in A% to the
injective object I (see [9, Lemma 9.2]).

Putting the above results together we obtain the following characteriz-
ations of K¢-injective spectra (cf. [9, §9]).

THEOREM 5.7. For a KO-module spectrum W the following three conditions
are equivalent:
i) W is a K&-injective spectrum,
i) W is a n-cofree spectrum, and
iil) n¢W is injective in €.

Proor. The implication i) —ii) follows from Proposition 4.6, and the
implication ii) — iii) is immediate. On the other hand, the implication iii) — i) is
shown by use of Proposition 5.5 because K¢ W is injective in A4 when n¥W is
injective in ¥. To show the final implication we may instead use Proposition
4.6 combined with Theorems 1.4, 3.2 and 3.4 by the aid of the #-version of
Lemma 1.5.

THEOREM 5.8. For a CW-spectrum W the following six conditions are all
equivalent :
i) W is a K&-injective spectrum,
i) W is a quasi KO-module spectrum such that KEW is injective in €,
iti) W is a quasi KO-module spectrum such that KEW is injective in A%,
iv) W is a K,-local spectrum such that KEW is injective in A%,
v) K%:[X, W] > Hom,(KEX, KEW) is an isomorphism for any CW-
spectrum X, and
vi) K&:[X, W] > Hom(K¢X, KEW) is a monomorphism for any CW-
spectrum X .

Proor. The implications i) — iii) »iv)—>1i) and i) - v)— vi)—>i) follow
immediately from Propositions 5.3, 5.4 and 5.5. On the other hand, Theorem
4.7 combined with Theorem 5.7 shows the equivalence between i) and ii).
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