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Introduction

Let q be an odd integer and Mq( = M) be the Moore spectrum of type Zq.
It is a ring spectrum with multiplication mM: Mq/\Mq-+Mq and unit i: S-*Mq

[1], where S is the sphere spectrum. A finite CW-spectrum X is called an Mq-

module spectrum if X is equipped with a left inverse mx: Mq/\X-+X, which we

call an Mq-action on X, of i Λ 1 .̂ It is clear that X is an M^-module spectrum
if and only if q\x = Q in [X, X~\. When q is a prime, our M^-module spectrum

is just the Z4-spectrum introduced by H. Toda [10].

The main purpose of this note is to investigate conditions under which an
M^-module spectrum is (non-)associative. Here an M^-module spectrum (X,

mx) is called associative if mx(\Mf\mx) = mx(mM Λ I*). For an M^-module

spectrum X, the order r of lx is a divisor of q and the homology group Ht(X) is
a finite Zr-module, and we shall obtain in § 6 the following theorems on the

associativity and on the non-associativity according as the case g=jέ±3 mod 9

or (r, 3)=1 and the case q= ±3 mod 9 and 3|r.

THEOREM 6.6. Let X be an Mq-module spectrum and in the case of q= ±3
mod 9 assume that the order of 1^ is relatively prime to 3. If X satisfies the

following two conditions, then X admits an associative Mq-action.
(i) #//;(*) is relatively prime to tH^^X) and to %Hi_2(X).

(ii) For any prime p9 the p-component of H^X) is free over the p-com-

ponent of Zq.

Here #G denotes the order of a finite group G. Furthermore we shall see

that in the dual Postnikov system {JfJ of X (Xt is a subspectrum of X realizing

Σ j z i H j ( X ) as its homology group) each Xt is also an associative M9-module
spectrum, (cf. Remark 6.7). We shall also construct, for every prime q>3,
an example which does not satisfy the condition (i) and has a unique M^-action,

which is not associative (Example 6.8).

THEOREM 6.3. Assume that q=±3 mod 9. Let X be an Mq-module spectrum

such that the order of lx is a multiple of 3. Then every Mq-action on X is
not associative.

In §1, we shall study elementary properties of M^-module spectra. In §2,
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we shall define a derivation θ on [X, Y]* for Mή-module spectra X and Y (De-

finition 2.1), which is due to H. Toda [10], and consider M9-maps. An Mq-
map is a map between Mg-module spectra which is compatible with M^-actions

(Definition 2.4). In § 3, we shall quote known results on the Moore spectrum.
In particular, Toda's result [9] (Theorem 3.3) on the associativity of the ring

spectrum Mq plays an important role in the later sections.

In § 4, we shall explicitly construct an M^-action on the mapping cone of an

Mg-map (Theorem 4.3). Furthermore this M^-action is admissible (Definition
4.1), i.e., compatible with the structure of the cofibering. We shall also obtain

exact sequences of M ̂ -module spectra and Mβ-maps derived as usual from a co-
fibering (Theorem 4.5). In § 5, we shall introduce an associator a(mx) e [Σ2X,

X~], whose vanishing is equivalent to mx being associative, and study several pro-

perties of the element a(mx). In § 6, we shall prove the above theorems using
the results of § 5.

In §7, we shall be concerned with associative M^-module spectra X and Y
such that [X, Y~\^—!L*\_X9 γ]^-JL+\_χ9 y]^ is exact. In this case, the subgroup

of [X, Y]* consisting of all M4-maps is a direct summand (Theorem 7.5). We
shall also consider a modification 0 of θ (Definition 7.6) so that the discussions

hold for non-associative case (Theorem 7.7). In the final section, § 8, we shall
notice that the known results ([2], [4]) on the structure of the stable homotopy

ring of the mod pr Moore spectrum (p an odd prime, pr φ 3) also hold for the
case pr = 3 by making use of θ instead of θ.

In this note, except for § 4, we shall work in the stable homotopy category of

finite CW-spectra. In §4 only, we shall distinguish between a map and its homo-
topy class.

§ 1. M-module spectra

We shall denote by 5 and M — Mq the sphere spectrum {Sn, εn=l} and the

Moore spectrum {Sn U qe
n+1, εw = l} of type Zq, respectively. Here q denotes

always an odd integer >0 and the spectra handled in this note are suspension

spectra {Xn, εn} consisting of finite C^-complexes Xn and imbeddings εn: ΣXn

aXn+ί such that ΣXn = Xn+ί and εn=l for sufficiently large n\ Σ being the sus-

pension functor and 1 = \x being the identity map of X or its homotopy class.
There is a cofiber sequence

(1.1) S -L-* 5 -U Mq -JL-* ΣS.

For any spectra X and Y, denote by [X, Y] the set of homotopy classes of

maps X->Y9 and put [X, Y]fe = [ΓfcX, Y] for feeZ([X, Y]0 = [̂ ? *Ί). Then

the direct sum [X, ^ΓU = Σfc[^> X~\k forms a graded ring by the composition
of maps.



Module Spectra over the Moore Spectrum 95

PROPOSITION 1.1 ([10; Lemma 1.2]). The following four conditions are

equivalent to each other.

( i ) i Λ lx e [X, M Λ X~]0 has a left inverse mx e [M Λ X, X~\Q.

(ii) π / \ \ X G [MΛ^, X~]-ι has a right inverse nxe[X, M /\X~\l.

(iii) qίx = Qin [X, X~].

(iv) [X, X~\* is an algebra over the ring Zq.

PROOF. From (1.1), we have the exact sequence

[M Λ X, X] liΛl*); iχ 9 X] j^ [χ9 χ-\ ,

and we see immediately that (i) is equivalent to (iii). Similarly, (ii)o(iii) is proved.
Since ix is the unit of the ring [X, X]*, (iv) is equivalent to (iii).

DEFINITION 1.2. A spectrum X which satisfies one of the above conditions
is called an Mq- (or M-)module spectrum, and a left inverse mx of i Λ lχ is called
an Mq- (or M-)action on X.

If X satisfies the condition (i) of above, then M Λ X is homotopy equivalent
to a wedge X V ΣX9 and hence there is a right inverse nx of π Λ lχ such that

(1.2) mxnx = Q

and

(1.3) (i Λ lx)mx + nx(π Λ lχ) =

Since Πχ = ((ϊΛ lx)mx + n x(πΛ l^π^M^πΛ lχ)n^ = nx for another nx

satisfying (1.2) and (1.3), such nx is unique for rax, (cf. [10; Remark 1.4]).
Thus we have

(1.4) For any M-action mx on X, there exists uniquely the right inverse nx

o / π Λ \x satisfying (1.2) and (1.3).

We shall write (X, mx, nx) (or simply (X, rax)), when X is an M-module
spectrum with the M-action mx and the right inverse nx of π Λ lx corresponding
to mx in the sense of (1.4).

For the wedge sum and the smash product of M-module spectra, the following
are easily verified.

(1.5) Let (X, mx, nx) and (7, my, ny) be M-module spectra. Then XV Y is an

M-module spectra equipped with mχvγ = mxV mγ and nxvγ = nxVnγ via the
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identification M /\(X V Y) = (MΛX) V ( M Λ 7).
(1.6) ([10; (2.2)]) Let (X, mx, nx) be any M-module spectrum and Ύ be
arbitrary finite CW-spectrum. Then

(X Λ 7, mx Λ ly, nx Λ ly),

are M-module spectra, where T: M Λ 7-»7ΛM is ί/ie switching map. In par-
ticular, via the identification M Λ Σt X = Σ*(M Λ X\ (Σ'X, Σlmx, Σln^) is an
M-module spectrum for teZ.

When both X and 7 are M-module spectra, we can consider the two Ab-

actions mx Λ ly and (lx Λ my)(TΛ ly) on X Λ Y.

THEOREM 1.3. Let X be an M-module spectrum. Then, for any M-actions
mx and m'X9 there is uniquely an element d(mx, m'x)e[X, X']ί such that

(1.7) mx = m'x + d(mX9 m'x)(π Λ lx).

The correspondence mx^d(mx, mx) gives a bijection between the set of all M-
actions on X and [X, X~\v. If nx and nx are the right inverse of π /\\x cor-
responding to mx and mx in the sense of (I A), then

(1.7)' ήx = n'x-(i Λ ίx)d(mX9 m'x).

PROOF. For any finite CPF-spectrum 7, we have the following (split) exact
sequences :

0 - > [7, X]k

 U Λ l y ) φ > [7, M Λ X~]k

 ( π Λ l χ )*> [7, X] f c_! - > 0,

0 - > [X, 7]fc+ , ^IJU^ [M Λ X, 7]fe ϋ^^ [X, 7]fc - > 0.

Then mx = m'x + d(πλ lx) and /iχ = Wχ + ( iΛ \x}d' for unique d and d'. By (1.2)
and easy calculations, we have d + d' = Q and so (1.7) and (1.7)'. For any mx

and any d e [X, X] l5 mx + d(π Λ lχ) is also an M-action, and hence the correspond-
ence m'x\-*d(mX9 mx) is bijective.

REMARK. If 7 is an M-module spectrum, then the exact sequences in the
above proof are also split for arbitrary X. In fact, the correspondences

[7, JQi-iB/ -K-υ'-HlM Λ/)nye[7, M Λ X]k,

[X, 7]k9/~my(lM Λ/)e[M Λ X, 7]fc

give the desired splittings.
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LEMMA 1.4. Let X be an M-module spectrum such that lx is of order q.
Then R*(X Zp)Φ0 for any prime p\q, and H#(X; Zp) = 0 for any prime

PROOF. The assumption asserts that the stable order of X in the sense of
[8] is q. Then q divides the square of the order of H*(X\ Z) by [8; Th. 1.5].
Hence, for p\q, fi*(X\ Z) has p-torsion and H*(X; Zp)^0. If p)(q, plx is a
homotopy equivalence and induces an automorphism of H*(X\ Z). So H*(X\

z,)=o.

§ 2. Derivation θ and M-maps

We shall define a derivation on [X, Γ]*. This is due essentially to H. Toda
[10], though its root goes back to P. Hoffman's D [2].

DEFINITION 2.1. Let (X9 mx) and (7, my) be M-module spectra. Then we
define

by the formula

θ(f) = my(lM Λ f)nx,

where nx is the right inverse of π Λ lχ corresponding to mx.

For the M-actions on the wedge sum and the smash product defined in (1.5-
1.6), the following hold easily.

(2.1) θmχvmv,mγvmM V 9) = θmχ>mγ(f) V θmv>mw(g)

for /6[X, ΓU, ge[V, FΓ|».

(2.2) 0m y Λικ,W yΛiU/ Λ flf) = θmχtmγ(f) Λ flf

for /e[X, 7]*, 06[K, PF]*,

and a similar formula holds for the M-action defined from the second coordinate
of the smash product.

THEOREM 2.2. Let mx and mx be M-actions on X, and mγ and m'Ύ be M-
actions on Y. Then

θmχ,mγ(f) = θmί,m,(f)-fd(mx, mi)+(-l)*d(my, m'y)/

foranyfe[_X,Y\.

PROOF. This follows immediately from (1.7) and (1.7)'.
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THEOREM 2.3 ([10; Th. 2.2]). Let X, Y, Z be M-module spectra. Then,
for any /e [X, Y~\k and g€[7, Z]/? the following formula holds:

that is, the operation Θ is derivative.

PROOF. This follows from (1.3) and easy calculations.

DEFINITION 2.4. Let (X, mx), (7, mγ) be M-module spectra. Then an ele-
ment fe [X, 7]fc is called an M-map (with respect to mx and mr) if it satisfies
the equality fmx = my(!M Λ /). Denote by

{x,ryg
the subgroup of [X, 7]k consisting of all M-maps.

If q is a prime, this definition agrees with H. Toda's Zg-map [10; p. 207].
We see immediately that the composition of two M-maps is an M-map, so

(2.3) [X, X]y is a subring of [X, X]*, and [X, 7]̂  is a right [X, X]^-, left
[7, Y^

PROPOSITION 2.5. Let X and Y be M-module spectra, and /e[X,
Then the following three statements are equivalent to each other.

( i ) f is an M-map.

(ii) (-iYnγf=(lMΛf)nx.

(iii) 0(/) = 0.

PROOF. By (1.3), we have

OM Λ/)n x = (i Λ ly)θ(/) + (- \)knγf.

Since (πΛl x)* and ( iΛly)* are monomorphic, we obtain the proposition.

COROLLARY 2.6. Let X and Y be M-module spectra, and /e[X, 7]fc.
Denote simply by θ the derivation θmχttnγ for fixed M-actions mx and mγ. Then
there exist M-actίons mx on X and m'Y on Y such that f is an M-map with respect
to mx and m'Y if and only if θ(f) lies in the image of /*+/*: [X, X]ι®[7, 7]x

^[^y]*+ι '
PROOF. This is clear by Proposition 2.5 and Theorems 1.3 and 2.2.
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§ 3. Moore spectrum

We denote the stable homotopy ring of sphere by

G« = [S, S],.

From the known results on G*, *£Ξ/c, the group [M, M]*, *</c, is easily

computed by using exact sequences derived from (1.1) (cf. [4; Th. 3.5] and [11]),
and we obtain the following

LEMMA 3.1. Let M = Mq and p be the minimal prime dividing q. Then
[M, M]fc = 0/or k< -1 and for 0</c<2p-4, [M, M]_1=Z^ with the generator

δ = iπ, [M, M]0 = Zg wzί/i f/ie generator 1M, and [M, M]2p-4 = Zp wΐ ί f t ί/ie

generator ία^^π. Here o^Q?) is f/ie generator of the p-component of G2p_3.

From this lemma we can easily verify the following result, which is essentially

due to S. Araki and H. Toda [1].

THEOREM 3.2. M is a ring spectrum with the unique multiplication mM?

i.e., there is uniquely the map w M :MΛM-»M such that mM(i Λ IM)= IM =

W Λ f ( l j * Λ θ

Also, M is an M-module spectrum with the unique M-action mM of above.

It is equipped with a right inverse nM of π Λ l M , which is unique and satisfies
( l M Λπ)n M =-l M , (cf. [10; Lemma 1.3]).

Consider the element δ = iπe [M, M ] _ } . Then we have

(3.1) < 5 2 = 0 ,

because <52 = iπ/π = 0 and Θ(δ) = mM(\ Λ /)(! Λπ)n M = — 1M.
The following (non-)associativity of mM (and nM) is proved by H. Toda ([9;

p. 202], [10; §6]).

THEOREM 3.3. In the case of qφ ±3 mod 9, mM and nM are associative, i.e.,

mM(mM Λ 1 M) = mM(lM Λ mM) ,

(«M A 1 M)WM = - (1 M A nM)nM.

In the case of q=±3 mod 9, ί/iese are noί associative. More precisely, the fol-

lowing equalities hold:

^M(!M A mM) = mu(mu Λ 1M) + fi^ia^S) (π Λ π A π) ,

(IM A nM)nM = - (nM Λ !M)nM + eβ(ί A i A z>ι(3)π,
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where εq=±l and εq = q/3 mod 3, and we take the sign of the element αx(3)
so that ε3 Ξ 1 mod 3(*}.

Now let r be a divisor of q, and denote by

(3.2) λ:Mr - > Mq and p:Mq - > Mr

the maps which induce the canonical monomorphism Zr-+Zq and epimorphism
Zq-+Zr of homology groups, respectively. Then these maps satisfy (cf. [4; §2])

(3.3) λi = (<?/r)i, πλ = π; pi = i, πp = (<?/r)π.

(3.4) pλ = fo/r)lMr, λp = (*/r)lMf.

PROPOSITION 3.4. Let r be a divisor of q, and (X, mx, nx) be an Mr-
module spectrum. Put

(3.5) mx(q) = mx(p Λ lx), w^) = (A Λ lx)nx.

TAen X is f/ίe Mq-module spectrum having the Mq-action mx(q) and the right
inverse nx(q) of π f\ lx corresponding to mx(q).

PROOF. By virtue of (3.3), mx(q) is a left inverse of i Λ lχ and nx(q) is a right
inverse of π Λ l x . By (3.4), mx(q)nx(q) = (q/r)mxnx = Q. The equality (1.3)
for mx(q) and nx(q) is obtained from the fact :

(3.6) Let mx and nx be arbitrary left inverse of ϊ ' Λ l χ and right inverse of
π Λ lχ, respectively. Then (1.2) and (1.3) are equivalent.

PROPOSITION 3.5. Let r be a divisor of q. Let (X, mx) and (7, mγ) be
Mr-module spectra. Then

foranyfelX.Yl*.

PROOF. This is immediate from (3.4) and (3.5).

COROLLARY 3.6. Let r be an integer such that r2\q. Let (X, mx) and
(Ύ, mγ) be Mr-module spectra. Then any map fe[X, Y]* is an Mq-map
with respect to the Mq-action (3.5).

PROOF. Since rpf, y]* = 0, this follows from Propositions 2.5 and 3.5.

(*) Toda's result [9; §4] does not make mention of the sign εq depending on q. By [4; Lemma
2.1 (iv)], the map p in (3.2) is a morphism of ring spectra, and hence εq= (<//3)3δ3=#/3
mod 3 for #=0 mod 3.
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REMARK. More precise discussions show the following result: Let r and s
be integers such that rs\q. Let X and Y be Mr- and Ms-module spectra. Then
any map /epf, 7]* is an Mq-map with respect to the Mq-action (3.5).

Let G be a finite Zg-module, i.e., a finite abelian group such that qx = Q for any
x e G. Let M(G) be the Moore spectrum of type G. Then we have a decomposi-
tion G = ZΓl® 0ZΓί for some η|g, and hence M(G) = MΓl V ••• VMΓ I. In the
same way as Lemma 3.1, we see [MΓ, MJ1=0 for odd r and s, and so [M(G),
M(GJ]l = 0. Hence we have obtained the following

PROPOSITION 3.7. Let G be as above. Then M(G) has a unique Mq-

action m±(q) V ••• VWj(g), where mf is the multiplication (Mr -action) on Mn.
In particular, for any r\q, Mr has a unique Mq-action nιMr(q) = mMr(p Λ lMr).

§4. Mapping cone

In this section only, we shall usually distinguish between a map and its
homotopy class.

For any map/: ΣkX-*Y, we shall denote by

(4.1) ΣkX ~L-> y-iU C(f) -̂ U Σk+ίX

the cofiber sequence for the mapping cone C(/) of/.

DEFINITION 4.1. Let (X, mx) and (7, my) be M-module spectra and
f:ΣkX-*Y be any map. Assume that C(/) is also an M-module spectrum.
Then an M-action mc on C(/) is called admissible if if and πf in (4.1) are the
M-maps with respect to mc.

We shall construct an admissible M-action on C(/) for any M-map /.

CONSTRUCTION 4.2. Let (X, mx) and (7, my) be M-module spectra and
/:X-»7be an M-map. We shall distinguish a map from its homotopy class.
By the homotopy extension property for the pair (M Λ W9 W)9 W= X, 7, we

can take the map mw so that mw(i Λ 1^) is equal to 1 w as a map. Let Ft: M Λ X

-»7be a homotopy from F0 = mγ(lMλf) to F1—fmx. Define a map

mc = mc(Ft): M Λ C(f)

by mc(m Λ y) = mΎ(m Λ y) for m Λ y e M Λ 7cM Λ C(/) and

F2s(m Λ x) if 0 ̂  s ^ 1/2,
mc(m Λ s Λ x) =

(2s-1) Λ mx(m Λ x) if 1/2 g s g 1,
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for m Λ s Λ x e M Λ / Λ X c: M Λ C(/), where / = [0, 1 ] with the base point 1
(so / Λ X is the cone CX over X). In the notation of [5; Lemma 2.5], mc = e(Ft)
via the identification C(1MΛ/) = MΛ C(/). This map mc satisfies m c(lMΛz/)
= ifmγ and πfmc~Σmx(\M/\πf), where ~ means "is homotopic to". Put

/ί = FίO'Λlχ): X-+X. This is a homotopy from /0=/ to /ι=/, and the map
e(ft): C(/)->C(/) constructed in the same way as above is a homotopy equivalence
such that mc(i f \ \ C ( f ^ ) — e(ft), e(ft)if=if and πfe(ft)~πf. Thus we obtain a
map

Λ C(/) - > C(f)

by the formula mc = β(/1_f)mc.

THEOREM 4.3. T/ie mop mc constructed above is an admissible M-action
on C(/), namely, the mapping cone of any M-map has always an admissible
M-action.

PROOF. Since e(fί_t) is a homotopy inverse of e(ft) such that e(/ι -*)*/ = '/

and π/e(/ι-f)~π/> we have w c(/Λ !C(/))~ !<:(./> mcθM A if) = ifmγ and
~£w;r(lM Λ n j ) as desired.

For any maps/: ^->yand ^r: 7->Z, we denote by

(lz,/)
(4.2)

the maps defined by (1Z,/)|Z=1Z, (1Z,/)|C^ = C/ and by ( ,̂ lx)|7=^ fe, lx)|
CX=1 C Λ . It is easy to see that Oz,//') = (W)(lz,/') and (g'g, \x) = (g', \x)
(g, l λ ) for/': M -̂>^ and g':Z-*U.

THEOREM 4.4. Let X, Ύ and Z be M-module spectra, and f : X-+Y and
g: Y-*Z be M-maps. Then there exist admissible M-actions on C(/), C(g)
and C(gf) such that the maps (lz, /) and (g, \x) of (4.2) are M-maps.

PROOF. Let Ft:M/\X-^Y and Gt\Mf\Y^Z be homotopies with F0

= my(!MΛ/), F1=fmx and G0 = mz(lM/\g), Gί=gmγ. Define the homotopy
Ht: M /\X-*Z from H0 = mz(lM /\gf) to Hί=gfmx by

Λ f ) f o r O ^ ί g l / 2 ,

for l / 2 g ί ^ l .

Then we shall prove that mc(F^), mc(Gt) and mc(H^) are the desired M-actions on
and C(fl/ ).

Define a homotopy K9: M ΛC(gf)-+C(g) from K0 = (\J)mc(Ht) to K!
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= m c(G ί)(lMΛ(l,/))by

Kθ(m Λ z) = mz(m Λ z),

G45/(i+i)(wι Λ/(x))

tf/Us-β-iO A x)

103

Λ s Λ x) =

(2s- 1) Λ Λ x)

for 0 ^ s g ( l + 0)/4,

for (l + 0 ) / 4 g s £ l / 2 ,

for 1/2 ̂  s ̂  1,

where weM, zeZ, SE/, xe X. Then kθ = Kθ(i ^ic(gn) is a homotopy from

fc0 = (l,/X/ι f) to fcι=<^)(l,/), where ht = Ht(iΛlx) and flff = C f(iΛ ly). There-
fore (l9nm^Ht)^m^Gt)(l Λ(l,/)), and (I,/) is an M-map.

Next define a homotopy Lθ: M Λ C(/)->C(0/) by

Lθ(m Λ j) = ^β(̂  Λ j),

Λ 5 Λ x) = x)

(2s- 1) Λ mx(m Λ x)

for O g s ^ ( l - ί

for (l-θ)/4 ^ s ̂  1/2,

for 1/2 ^ s g 1.

}) = e(ht)(g9 1) andThen L0 = wc(// f)(lΛ(0, 1)), Lί=(gy l)mc(Ftl L0(iΛ

L j ( / A !C(/)) = (̂ , l)e(/f) Hence (̂ , 1) is also an M-map.

THEOREM 4.5. Let (X, mx) and (Y, mγ) be M-module spectra and f: ΣkX
->Y be an M-map. Then, with respect to any admissible M-action on C(f)
in Construction 4.2, the following sequences are exact for any M-module spectrum
(Z, mz):

---- > [Z, X^k J±+ [Z, 7]f -i^ [Z, C(/)]f J^ [Z, ̂ jf,., — > .",

---- > [AT, Z]f+fc+1 -i* [C(/)f Z]f JL [F, Z]f -̂  [Z, Z]f+4 — -..

To prove the theorem, we prepare the following

LEMMA 4.6. Let X and Y be M-module spectra andf: X-*Ύbe an M-map
with a homotopy Ft: M /\X-+Y from FQ = mγ(\M/\f} to Fί=fmx. Assume that
f is homotopic to the constant map. Then there are a retraction r: C(f)-+Y
and an inclusion I: ΣX-*C(f) which are M-maps with respect to the M-action
mc(Ft) on

PROOF. Let/,: X-> Y be a homotopy from /0 =/ to/i = *. Then r is defined
by r(y) = y for ye 7, r(tλx)=ft(x) for t f\xεl f\X = CX. Since / x O l l / x l

U 0 x / is a retract of / x /, we can construct a double homotopy #s>ί : M Λ X-» 7,
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(s, O Ξ / X / , such that #S,0 = >%(1MΛ/S), HSίl=fsmx and H0tt = Ft. Define a
homotopy Ke:M/\ C(/)-»7 by

K0(m Λ 3;) = wy(m Λ y),

Λ x) for 0 ̂  ί ̂  1/2,
Λ f Λ x) =

H2t_ίfθ(m Λ x) for 1/2 ^ ί ̂  1.

Then K0 is homotopic to w y(lMΛr) and Kί = rmc(Ft\ Therefore r is an M-
map. The proof of / being an M-map is similar.

PROOF OF THEOREM 4.5. It suffices to show the theorem for the case
j = /c = 0. We take an mc on C(/) in Construction 4.2. Let g be any element
in [Z, xy*ι = [Z, ZX]M such that /*(#) = 0. Then the composition

g=(l9g)l:Z - > C(/0) - > C(/)

satisfies πf*(g) = g and is an M-map by Theorem 3.4 and Lemma 3.6. This shows
the exactness at [Z, X]^ in the first sequence. From the definition of mc=
mcCFf)> we can easily construct a homotopy Pt from P0 = mx(l / \ Σ ~ ί π f ) to P!
= (I'~1π/)mc such that the M-action mc(Pf) on Y=C(Z~1π/) coincides with the
original one my. So we can replace (7, my) by (C(Σ~ίπf)9 mc(Pt))9 and hence
the exactness at [Z, C(fJ]ff follows from the same discussion as above. The
exactness at [Z, Y~]ff is also the same. The proof for the second sequence is
similar.

The following result is an improvement of the second half of [10; Lemma
2.3].

LEMMA 4.7. Let X be an M-module spectrum, and Y be a finite CW-
spectrum. Let f : ΣkX-+Y be a map such that C(f) is an M-module spectrum.
If [7, X]_k = 0, then Y is also an M-module spectrum and there are M-actions
mx on X and mγ on Ysuch that f is an M-map with respect to mx and mγ. Fur-
thermore there is a homotopy from my(!M Λ /) to fmx such that the M-action
on C(f) given by Construction 4.2 using this homotopy coincides with the original
one on C(f).

PROOF. From the assumption, π j : [X, X]1->[C(/), X~\-k is an epimorphi-
sm. Hence 0(7 )̂ = 0 for suitable mx by Corollary 2.6. (Here we notice that
the M-action on C(/) is fixed). Since 7= C(Σ~lπf), there is an my on 7 such that
/ and if are M-maps. The last statement on the M-action on C(/) is proved by
a similar discussion to the proof of Theorem 4.5.
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§ 5. Associator

In this section, we always consider the smash product M Λ X to be the M-

module spectrum with the M-action m M Λ l x even if X is also an M-module

spectrum.

LEMMA 5.1. For any M-module spectrum (X, mx, nx)9 there hold θ(i/\

lx) = ttx and 0(πΛ lx) = — mx.

PROOF. This is immediately obtained from mM(lM Λ 0= IM an<l (!M A n)nM

The following result is originally proved by H. Toda [10; Prop. 2.1] under

the assumption [X, X]1=0.

THEOREM 5.2. For each M-action mx on X9 there exists uniquely an ele-

ment a(mx) 6 [X, X~\2 such that

™*(IM Λ mx) = mx(mM Λ lx) + α(mx)(π Λ π Λ lx),
(5.1)

Λ nx)nx = -(nM Λ lx)nx + (i Λ i Λ ίx)a(mx).

PROOF. Operating θ to (1.2) and using Theorem 2.3, we have θ(mx)nx

= mxθ(nx). So we put

(5.2) a(mx) = θ(mx)nx = mxθ(nx).

Since lx is clearly the Aί-map, θ(mx(i Λ lχ)) = 0 and θ((π Λ lχ)wx) = 0. So we have

(5.3) 0(mx) = a(mx)(π Λ lx), Θ(nx) = (i Λ lx)a(mx)9

by the above lemma and (1.3). By the definition of θ(mx) and (1.3) for X = M,

we have

a(mx)(n Λ π Λ lx) = θ(mx)(π Λ 1M Λ lx)

!M Λ mx)(nM Λ lx)(π Λ 1M Λ lx)

Λ mx)-mx(lM Λ mx)(f Λ 1M Λ lx)(mM Λ lx)

Λ mx)-mx(i Λ lx)mx(mM Λ lx)

IM Λ mx)-mx(mM Λ lx).

Hence the first equality of (5.1) is obtained, and the second one is similarly obtain-

ed. Since π Λ π Λ lx has a right inverse (nM Λ lx)nx, α(mx) is unique.
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DEFINITION 5.3. An M-module spectrum (X, mx} (or an M-action mx on
X) is called associative if the equality mx(mM/\lx) = mx(iM /\mx) holds. The
element a(mx) in the above theorem is called an assocίator of mx.

Then (5.1) and (5.3) imply the following

PROPOSITION 5.4. The following five statements are equivalent to each
other.

( i ) mx is associative.
(ii) mx is an M-map.
(iii) nx is associative, i.e., (nM Λ \x)nx= -(1M Λ n^n^
(iv) nx is an M-map.

(v) a(mx) = 0.

For the wedge sum and the smash product of (1.5-1.6), the following are easily

verified.

(5.4) a(mxvγ) = a(mx) V a(mγ).

(5.5) a(mx Λ lr) = a(mx) Λ l r,

and a similar formula holds for (ly Λ mx)(T/\ \x).
The following is a restatement of Theorem 3.3.

(5.6) α(m3f) = 0 if q φ ± 3 mod 9, and α(mM)= ± iα^π^O if q = ± 3 mod 9.

For the M^-action mx(q) of (3.5) defined from an Mr-action mx, r\q, we have

(5.7) a(

by (5.2), Proposition 3.5 and (3.4). As a corollary we see that any mx(q) is

associative ifr3\q2.

By Proposition 3.7 and (5.6-5.7), we have immediately

PROPOSITION 5.5. Let G be a finite Zq-module. Then, in the case of qφ ±3
mod 9, M(G) is always an associative Mq-module spectrum, but in the case of
q= ±3 mod 9, M(G) is associative if and only if G does not contain Z3 as a
direct summand.

THEOREM 5.6. Let mx and m'x be M-actions on X, and write simply Θ
f = θ m . Then

a(mx) = a(m'x)-θ'(d(mx, m'x)) + d(mX9 m'x)
2

= a(m'x) - θ(d(mx, m'x)) - d(mx, m'x)
2.
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PROOF. Put d = d(mx, mx). Then mx = mx + d(π Λ 1 *) and nx = n'x — (i

Mx)d by (ί.7) and (1.7)', and θ(mx) = θ'(mx) + dmx by Theorem 2.2. So

Θ(mx)nx = Θ'(mx)nx by (1.2). Hence α(mx) = 0(rax)nx = θXrax + d(πΛ lχ))(^-

(iΛ l;r)d) = 0Xroi)ni-0'(d)(π Λ lχK-dw^-0'(m*)(/ Λ lx)d+ θ'(d)(n Λ !*)(/
Λ lx)d + dmx(i/\ \x)d = a(m'x)-Θ'(d) + d2 as desired. Since d(mx,mx)=-d,

the second formula is obtained by interchanging mx with mx.

COROLLARY 5.7. Let (X, mx) be an associative M-module spectrum, and

write simply θ = θmχitnχ. Then the set of associative M-actions on X corresponds

in a one-to-one onto fashion to the subset {/|0(/)+/2=0} of [X, X^^.

The following theorem is just the result of H. Toda [10; Th. 6.1, (i)].

THEOREM 5.8. Let X and Y be M-module spectra. Then, for any /e IX,

In particular, θ is a differential on [X, 7]*: 00 = 0, if X and Y are associative.

PROOF. Together with (5.1), easy calculations lead to the theorem. The

details are the same as H. Toda's [10; p. 238].

COROLLARY 5.9. M-maps commute with associators, i.e., for any /e \_X,

THEOREM 5. 10. Let (X, mx) be any Mq-module spectrum, and denote simply

Omχ,mχ by θ Then, in the case of qφ +3 mod 9, 0(a(mx)) = 0, but in the case
of q= ±3 mod 9, 0(a(mx))= ί αj(3)Λ 1*.

PROOF. By (5.3), 0(mx)0(nx) = 0, so we have

θ(a(mx» = Θ(θ(mx)nx) (by (5.2))

= -Θ2(mx)nx (by Theorem 2.3)

= — Wχβ(wMΛχ)wχ + Λ(mx)mx/tx (by Theorem 5.8)

= - mxa(mMAX)nx (by (1 .2) ) .

Since a(mM^x) = a(mM Λ lχ) = α(wM)Λ lx by (5.5), it follows from (5.6) that

mxa(mMΛX)nx = Q for qφ +3 mod 9 and mxa(mM^x)nx= ±a t(3)A lχ for q= ±3
mod 9.

§6. (Non-)associativity

LEMMA 6.1. Let p be an odd prime and α:(p) be a generator of the p-
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component of G2p-3 Then, for any finite CW-spectrum X, cn^p) f\ 1*7*0 if and

PROOF. Denote simply oqQ?) by α. If H*(X; Zp) = 0, the order of lx is

finite and relatively prime to p by [8; Th. 1.5]. Since α is of order p, α Λ 1* is
trivial.

Next assume that α Λ l χ = 0. Then there is a left inverse m: C(ά)λX-+X
of f α Λ lχ, where ϊα: S->C(α) is the inclusion. Let weH°(C(α); Zp) be the class
of the bottom sphere. It is well known that Plu ̂ 0 and this generates H2p~2(C(α);
Zp), where Pn denotes the reduced power operation for the prime p. Take /

such that Hl~2P+2(X; Zp) = 0. Then m*: Hl(X; Zp)-*Hl(C(a)ΛX; Zp) is iso-
morphic and (/ α Λ 1*)* is its inverse. So w*(x) = w®x for xeHl(X', Zp). Then
m*(P"x) = w®P".x + P1M®P''-1x, while there is an n such that P"x = 0. Hence
x = 0 and Hl(X\ Zp) = 0. Thus #*(*; Zp) = 0 and H*(X\ Zp) = 0 as desired.

REMARK 6.2. By using the squaring operation Sqn, Sq2n, Sq4n or SqSn

instead of P", we also obtain the following mod 2 version of the above lemma.
Let X be a non-trivial finite CW-spectrum, and denote the generators of the

2-components of G l 5 G3 and G7 by η, v and σ, respectively (these are odd mul-
tiples of the Hopf classes). Then

(1) 2 1*7*0, i.e., there is no non-trivial finite M2-module spectrum;

(2) /?*(*; Z2) Φ 0 <=Φ ^ Λ I* 7* 0 <=Φ v Λ lx 7* 0 <=» σ Λ lx Φ 0.

REMARK. In the above lemma and remark, the finiteness of X is essential.
In fact, the Brown-Peterson spectrum BP at p gives a counterexample for Lemma
6.1 and Remark 6.2 (2), and the spectrum M 2 Λ#P gives a counterexample for
Remark 6.2 (1).

THEOREM 6.3. Assume that q= ±3 mod 9. Let X be an Mq-module spec-
trum such that the order of lx is a multiple of 3. Then every Mq-action on X
is not associative.

PROOF. From Lemma 1.4 together with the assumption on lx, H#(X'9 Z3)

7*0. Hence a 1(3)AlX7*0 by Lemma 6.1. So 0(fl(rox))^0 by Theorem 5.10
and fl(mx)τ*0. Thus mx is not associative by Proposition 5.4.

LEMMA 6.4. Assume that a finite Zq-module G satisfies the following con-
dition.

(6.1) For any prime p, the p-component of G is free over the p-component of Zq.

Then, for any M-module spectrum X,
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PROOF. By Proposition 3.7, it suffices to show the lemma for the case
G=Zr for r such that q — rs and (r, s)= 1.

Consider the element δ e [Mr, Mr] _ x and put δ' = xδ for an integer x with
XSΞΞ -1 mod r. Then 0(5)= -slMr by (3.1) and Proposition 3.5, so Θ(δ')=lMr.
For any /e[MΓ, X]f and 0e [X, Mr]f , 0(/(5') =/ and θ(δ'g) = (-\}kg by
Theorem 2.3, and hence the lemma for G = Zr is proved.

In the next section, we shall generalize the above result (Proposition 7.2,
Theorems 7.5 and 7.7).

LEMMA 6.5. Let G be a finite Zq-module satisfying the condition (6.1),
and G' be any finite Zq-module. Let (X, mx) be associative and f : ΣkM(G)-+X
be an Mq-map. In the case of q = ±3 mod 9, assume further that H*(C(f))
has no 3-torsion and G' does not contain Z3 as a direct summand. Then, for
any Mq-map g:ΣlM(G') ^C(f) with respect to some admissible Mq-action on
C(f) of Construction 4.2, there exists an admissible and associative Mq-action
on C(f) such that g is also an Mq-map.

PROOF. Let mc be an admissible M-action on C(/) of Construction 4.2.
By Theorem 5.10, Lemma 6.1 and Proposition 2.5, the associator a(mc) is an
M-map. By Corollary 5.9, iJa(mc) = ifa(mx) = Q, so a(mc) = πjh0 for some
/ι0e[M(G), C(/)]&3 by Theorem 4.5. Since [M(G), M(G)]!=0, we have
[M(G), M(G)]^ = 0 by Lemma 6.4, and hence h0 = if*h for some h e [M(G), X^+3

by Theorem 4.5. Again by Lemma 6.4, h = θ(h') for some /ι'e[M(G), X]k+2,
and so ±θ(ifh'πfg) = ifhπfg = a(mc)g = ga(mMG,) = Q by Theorem 2.3, Corollary
5.9 and Proposition 5.5. Hence ifh'nfg is an M-map. Then Theorem 4.5 im-
plies that ifh'πfg = ifh"πfg for some h" e [M(G), X]f+2. Put d = (-l)k+ίif(h'
- h")πf e [C(/), C(/)] l . Then θ(d) = ifθ(h')πf = a(mc) and d2 = 0. Define ano-
ther M-action m'c on C(/) by m'c = mc + d(π/\ lc</)) Then α(m'c) = α(mc)-0(d)
+ d2=Qby Theorem 5.6 and m'c is associative. By the relations dif = Q, πfd = 0
and ί/# = 0 together with Theorem 2.2, if, πf and g are again M-maps with res-
pect to m'c. Thus m'c is the desired M-action on C(/).

Now we are ready to prove the following

THEOREM 6.6. Let X be an Mq-module spectrum and in the case of q=±3
mod 9 assume that the order of \x is relatively prime to 3, or equivalently

has no 3-torsion. If X satisfies the following two conditions, then X
admits an associative Mq-action.

(i) ##;(*) is relatively prime to flH^pO and to #Hί_2(X), where KG
denotes the order of a finite group G.
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(ii) The group H^X} satisfies the condition (6.1).

PROOF. Denote simply Ht(X) by Ht and take integers r and s>0 such that
//. = 0 for i < r and for i > r + s. By a dual consideration of the Postnikov system,

there is a filtration {Xk}r^k^r+s of subspectra of X together with maps fk:
Σk-^M(Hk)-^Xk^ί ( r+lg/c^r + s) such that Xr = ΣrM(Hr\ Xr+s = X, Xk = C(fk)
and the inclusion Xk^X induces isomorphisms H£Xk)ttHi(X) for i g/c. Since
dimX f c = /c + ί, [Xk_3, M(Bk)]_fc+1=0. By the condition (i), [Σ~lM(Hk.2)
V M(Hk_ 0, M(#fc)] = 0. So we have

(*) [X J k _ 1 ,Af(/f J k )]. J k + 1 =0 for r + l g / c ^ r + s.

Let mx be an M-action on X. By applying Lemma 4.7 to (*), we can in-
ductively construct M-actions mk on Xk(mr+s = mχ) such that fk is an M-map
and mk is the M-action on C(/k) given by Construction 4.2. We shall prove
the following statements by the induction on k.

(**)k There is an associative and admissible M-action mk on Xk = C(fk) such
thatfk+ί is also an M-map with respect to mk.

Obviously, (**)r is valid by Propositions 3.7 and 5.5. Assume that (**)&- 1
is valid. Then, by the condition (ii), all the assumptions of Lemma 6.5 are satisfi-

ed for the case G = Hk,(X, mx) = (Xk_ί, mί_j), /=/k, G' = Hk+l and 0=/k+1.
So we obtain (**)fc. The theorem is a restatement of (**)r+s.

REMARK 6.7. In the above dual Postnikov system {Xk} of X, each Xk

also admits an associative M-action by (**)fc. But it may have no M-action
if the condition (i) does not satisfied. Let p be an odd prime and consider the case

q = p, M = Mp. The group [M, M]^p_2 is Zp and its generator α satisfies παί

= «ι(p) ([HI DO; §§5-6] and [4; Th. 5.1]). Let/: N = Σ2P~3M Vl2 p"2M^M
be the map such that// t =<5α and// 2 = α, i.e., f=δapί+ap29 where Γs are the
inclusions and p's are the projections. Put X = C(f). For this X, the condition
(i) does not hold and X is the (4p — 5)-skeleton of the Eilenberg-MacLane spectrum
K(Zp). So X is an M-module spectrum, but X2p.2 = M U CI2^"3M = C(^α)
is not by Lemma 4.7. Tn this case, /is not an M-map with respect to the canonical

M-action mN = mMV nιM on N, while it is an M-map by a twisted one

In a similar manner to the above, we can construct an M-module spectrum

having no associative M-action.

EXAMPLE 6.8. Let p be a prime ̂ 5, M = Mp and put N = MVΣ2M.
Denote by iί e [M, JV]0, i2 e [M, JV]2 the inclusions and by pί e [JV, M]0,

p2 e [N, M]_2 the projections. Define /e [N, N]2p_2 by

/ = ϊ'lOφi — i2δcιδp1 + ί2θφ2 : Σ
2p~2N — ̂  JV,
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where αe[M, M]^-2 is the same as in the above remark. Denote by mN(0)

the canonical M-action w M vΣ 2 w M on N. Since [N, N^ί=Zp, generated by

i2δpί9 by Lemma 3.1, we have

(1) there are just p distinct M-actions on N, which are written as mN(x) = mN(0)

N\ xeZp.

Since iί9 i2, p\ and p2 are the M-maps with respect to wN(0), we see from
Theorem 2.2 that

(2) /: (Σ2p~2N9 mN(x))-*(N, mN(y)) is an M-map if and only if χ = y= — 1.

Since wN(0) is associative by (5.4) and (5.6), and since [N, N]2 = Zp, generated

by ί2pl9 it follows from Theorem 5.6 that

(3) a(mN(x)) = xi2pl9 and hence only wN(0) is associative.

Let X be the mapping cone of /. Then easy calculations show that [X, X] j

= 0 and [X, X~\2 = Zp with the generator h satisfying i*(h) = if*(i2pl). So

(4) X has a unique M-action mx.

By Corollary 5.9 and (3), a(mx)if=ifa(mN(—\J)=—ifi2pl. Hence

(5) a(mx)= — /z^O, i.e., X has no associative M-action.

It is clear that H£X) = ZP for / = 0, 2, 2p-l, 2p+l, so

(6) X does not satisfy the condition (i) in Theorem 6.6.

Let Fbe the mapping cone of α. This is just the spectrum V(ί) [10] and
has a unique associative M-action. Tt is easy to see that X is the mapping cone

of some map g:Σ~lV-+Σ2V. By H. Todays result [10; Th. 3.6] on [F, I/]*,
g is an M-map (in fact, g= ±α'(50). Thus

(7) there is an M-map X^Y such that all the M-actions on X and on Y are

associative but its mapping cone has no associative one.

§ 7. Hoffman's decomposition

P. Hoffman [2; Th. A] obtained the direct sum decompositions

[M, Λffc = [M, M]f ® <5*[M, M]f+1

= CM, Aί]f ®<5*[M, M]f+1

and the split exact sequence
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[M, Af],.! -S-+ [M, M]Λ -«-> [M, M]λ+1

for M = Mq9 qφ±3 mod 9. We shall generalize these results.
We first consider the following condition for an M-module spectrum (X,

CONDITION 7.1. There exists an element δ(mx) e [X, X~\ _ ί such that

( i ) δ(mx)δ(mx) = Q,

(ii) θ(δ(mx))=-lx

and

(iii) δ(mx)a(mx) = 0.

By Theorems 5.8 and 5.10, we see easily that the condition (iii) can be re-
placed by one of the following.

(iii)' a(mx)δ(mx) = Q.

(iii)" a(mx) = Qifqφ±3mod9, and a(mx) = ± (αx(3) Λ lχ)<5(m*) = + δ(mx)

(*ι(3) Λl*) if q= ±3 mod 9.

We shall give several examples of (X, mx) satisfying Condition 7.1. First,
it is clear by (3.1) and (5.6) that

(7.1) M satisfies Condition 7.1 by putting δ(mM) = δ.

PROPOSITION 7.2. Let G be a finite Zq-module. Then the Moore spectrum
M(G) satisfies Condition 7.1 if and only if G satisfies (6.1).

PROPOSITION 7.3. Letf: ΣkM->M be an M-map such that

(7.2) /<5 = (-l)*<5/.

Put X = C(f). Then there exists uniquely an element De[X, X]-ι such
that Dif = if9 πfD = (-l)kδπf, D2=0 and θ(D)=-lxfor any admissible M-
action on X. Furthermore there exists an admissible M-action mx on X such
that Da(mx) = Q. Hence (X, mx) satisfies Condition 7.1 for δ(mx) = D.

REMARK. According to the discussion in [4; §3] and a similar one for the
case q= ±3 mod 9 in the next section, we see that/e [M, M]̂  satisfies (7.2) if
and only if f=hλlM + g for heGk and #e[M, M]]̂  such that πgieGk,l is
divisible by q. By [2; Th. A], for any g' e [M, M]̂  of even degree, the ele-
ment g = (g')q satisfies such a condition.
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LEMMA 7.4. Let r and s be divisors of q, and denote by d = (r, s) and
/ = {r, s} the greatest common divisor and the least common multiple of r and s,
respectively. Then

[MΓ, MJ_ ! = Zd, generated by δFiS = in: Mr - > ΣS - > ΣMS,

[Mr, MJ0 = Zd, generated by εr>s = λρ\ Mr - > Md - > Ms,

and the relation θ(δrfS) = (q/ΐ)εrtS holds as Mq-module spectra.

PROOF. Except for the statement on 0, everything is clear, (cf. Lemma
3.1). We see easily that 0(δΓfβ) = pT: MΓ->Mg-»Ms, and so Θ(δr>s) = (q/r)l(s/d)εrίS

PROOF OF PROPOSITION 7.2. We have proved (6.1)=>7.1 in the proof of
Lemma 6.4. Assume that M(G) satisfies Condition 7.1, and put G = ZΓ1© 0ZΓI,
so M(G) = Mrι V ••• VM,, for rj\q. Let if. Mrj-*M(G) be the inclusion and
Pji M(G)-*Mrj be the projection. By the above lemma, [MG, MG]_ 1 = ^ΣjtkAjtk

and [MG, MG]0 = Σ./,fc£/,fc> where Ajtk and Bjk are the cyclic groups generated
by ikδrj,rkPj and ikεrj,rkpj of order (rp rk). Then, again by Lemma 7.4, 1MG =
ΣkikεrktrkPkEΣj,kθ(Aj)k) implies the congruences qxk/rk = 1 mod rk for some
xk. So rfc and q/rk are relatively prime. This means that G satisfies (6.1).

PROOF OF PROPOSITION 7.3. By (7.2), there is an element D0e[X, X]_!
such that D0if=ifδ and πfD0 = ( — l)kδπf. From the exact sequences derived
from the cofibering for X = C(f) together with Lemma 3.1, we see the following
results on [X, X~\*:

[X, X-]t = ί/φπJ[Λf, M]Λ + ί+1 for / = -3, -2, 1,

[Jf, JQo = (M θ i/*πy[M, M]fc+1,

and the kernel of i^πj: [M, M]fc+ί+1->[Jr, Jί], is 0, {/<5}, {/} and Ofor /= -3,
— 2, — 1 and 0, respectively, where {#} means the subgroup generated by g.

PutD% = ifgπf,gε[_M, M]̂ . Then ifδgπf = D0Dl=D%DQ=(-iγίfgδπf,
and hence δg = (- l)kgδ. Applying Θ to this, we have Θ(g)δ + (- \)kδθ(g)= -2g.
So we define

Then Dif = D0if = ifδ,πfD = πfD0 = (-l)kδπf and D2 =Dg + (( -l)fc/2)ϊX(-l)k

θ(g)δ + δθ(gJ)πf = D%-ifgπf = Q. We can put 0(D) = xlx+i>V xeZ«> 0'
e[M, M]k+1. Then xif = θ(D)if = θ(Dif)= -ίf, and x=-l. Since if(δg'-
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(-l)kg'δ)πf=-θ(D)D + DΘ(D) = θ(D2) = 09 we have δg' = (-ϊ)kg'δ mod {/}.
Applying θ to this, we have -2g' = θ(g')δ + (-l)kδθ(g')9 so θ(D)+lx= -((-I)*/
2)(ifθ(g'}πfD + Difθ(g')πf) = -(1/2)(Θ2(D}D + DΘ2(D)) = Q, because (-l)k+Hfθ

(g')πf = Θ2(D) = Da(mx) — a(mx)D. Thus D satisfies the desired relations.
Let D' also satisfy the above relations. Then D' = D + ifhπf for some h

e[M, M]k. Applying 0 to this, ifθ(h)πf = Q, so θ(/ι) = 0. From the relation
(D + i//ιπ/)

2=0, we have (-l)khδ + δhΞ=Q mod {/£} and so 2/ι = Omod{/}.
Hence ifhπf = Q and D' = D. Thus D is unique.

Take an admissible M-action m'x and put Da(m'x)=ifh'πf for some /i' e [M,

M]fc+2. Then Q=D2a(m'x) = ifδh'πf and <5Λ' = 0, so h' = (-l)*£0(/i'). Hence
Da(m'x) = (-l)kDίfθ(h')πf=-DΘ(ifh'πf). Put d=-ifh'πf and mx = mx + d(π

Λ I*). Then mx is also admissible and satisfies D0(mx) = 0.

We now generalize P. Hoffman's results at the beginning of this section.

THEOREM 7.5. Let (X, mx) be an M-module spectrum satisfying Condition
7.1. Then, for any associative M-module spectrum (7, my), the sequences

[7, x]k_ 1 -LH, [7, XL -̂  [y, ^L+ 1
are split exact and there are the direct sum decompositions:

[X, 7], = [*, 7]f ® δ(mx)*\_X,

PROOF. Since 7 is associative, we see by Theorem 6.3 that qφ ±3 mod 9
or that the order of iγ is relatively prime to 3. In the latter case, 0^(3) Λ l y = 0
by Lemma 6.1. Hence ImθcKerθ by Theorem 5.8 and the condition (iii)".
In the same way as Lemma 6.4, Kerf lc lmθ and the above sequences are exact.
The desired splittings are given by δ(mx)* and δ(mx)^ and we have the direct
sum decompositions.

We next consider a non-associative version of the above theorem.

DEFINITION 7.6. Let (X, mx) satisfy Condition 7.1, and (7, my) be arbitra-
ry M-module spectrum. Define

by the formulas
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= θ(f)-a(mγ)fδ(mx),

respectively.

Clearly 0 = 0 if 7 is associative. If 7 satisfies Condition 7.1, both B
are coincident. For, a(mγ)fδ(mx) = ±(αι(3) Λ \γ)δ(mΎ)fδ(mx)^ ±(- \)kδ(mγ)

)= -(-l)kδ(mγ)fa(mx) if q= ±3 mod 9.

THEOREM 7.7. Lei (Jf, mx) satisfy Condition 7.1. Then, for any M-module
spectrum (7, my),

Ker0 c Ker θ = Im 0 c Im0 m [X, 7]* and in [7, *]*.

Hence Theorem 7.5 vvzί/z 0 replaced by θ holds even if (7, mγ) is not associative.

PROOF. Since 9(/) = - θ(θ(f)δ(mxy) for /e[X, 7], and 9(/) = (-l)*θ
(δ(mx)θ(fj) for /e[7, Jί]fc, the theorem is easily derived from the following
algebraic lemma with φ = δ(mx)^ or ^(m^)* up to sign.

LEMMA. Lei 0 and ψ be endomorphisms (of degree +1 and —1) o/ a
(graded) abelian group A such that Θψ + ψθ=lA and ψ2=Q. Put θ = θψθ.
Then θψ + ψθ=\A, 02=0 and KerflcKer B = lmθcιlmΘ.

Concerning (2.3), we see that Ker θ acts on Ker θ from the both sides:

(7.3) // 0(/) = 0 and 9(#) = 0, then B(fg) = Q. If 0(/) = 0 and %) = 0, then

EXAMPLE. Let )S = ̂ (1)6[M3, M3]n be the element defined by N. Yama-
moto[ll] and H. Toda [10; §6]. Then Θ(β) = δaδβδ = a(mM)βδ(mM)^Q by
[10; Th. 6.4], and so θ(β) = 0. [M3, M3]n is generated by the elements /?,
α2<5α and α3^, and 0[M3, M3]n=0. So (5α5 (̂5 lies in Imθ but not in Im0.
Thus we can not, in general, replace the mark c in Theorem 7.7 by the equal
mark =.

By [10; Th. 6.8], ββ = δxδβδβδ and its 0-image is aδβδβδ-δaδβδβ^Q.
Thus Ker θ can not, in general, form a ring by the composition product.

§ 8. Remark on [Λf 3 , M3 ] *

In [4] and [6; § 8], we studied the ring structure of [M€, MJ* for q a power
of an odd prime /?, in connection with the p-component of the stable homotopy
ring G# of spheres. But only the case q = 3 is exceptional, since M3 is not associa-
tive and θ on [M3, M3]* is not a differential. For this case, similar discussions
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can be done by considering θ instead of θ.
For any αeG f c and /?eG f t _ 1 *Z 3 c:G f c _ 1 , define <α> e [M3, M 3]fc and

e[M3,M3Lby

<α> = α Λ 1M and [£] = (-l)*-ι0(ij5),

where jSe [M3, S]fc_ι is an extension of β, i.e., βi = β. Then we have

= 0;

since 0 ([£]) = ( -I)*'1 ίj5ία1(3)π=iα1(3))?π = α(mM)|j8]5, (cf. [4; Lemmas 3.1-
3.2]). Denote by [Gfc_ !*Z3] and <Gfc> the subgroups generated by those elements
[/?] and <α>, and also by Kk and Kk the subgroups [M3, M3]fc n Ker 9 and [M3,

^3]fcί==[^3» Λf3]fc Π Ker0. Then the following direct sum decompositions
are obtained :

(8.1) [M3, M3]fc = Kk ® δ*Kk+l =Kk® δ*Kk+l,

(8.2) Kk = <G,> 0 [G,_!*Z3] « Gfe 0 Z3 θ Gfc.^Za,

(8.3) Kk = <G,> 0 [JΪ^J » G, ® Z3 0 Hk.l5

where H f c_ 1 = {jSeGJk_1*Z3|α1(3)j5 is divisible by 3} and [H^J is the subgroup
generated by [β] for βeHk^l. The decomposition of [4; Th. 3.5] is also obtain-

ed.
For the composition, the formulas (3.7-3.8) and Proposition 3.8 of [4] also

hold in [M3, M3]sK, but we must correct Proposition 3.9 of [4] as follows:

Let ξeGk.l and ηeGl,l be elements of order 3 such that ζ = <ξ, 3, ^>

has trivial indeterminacy. Then

Concerning the formula (1.11) of [4], we obtain the following result: ηξ
-(-iγιξη = (-l)kl+l+ίiaί(3)πξδηδ = (-l)kiaί(3)πηδξδ for ξeKk and ηeKl9

and in particular ηξ = (—i)klξη further if one of ξ and η lies in K*.
The ring structure of [M3, M3]* has been determined up to degree 31 by N.

Yamamoto [11] and H. Toda [10; §6]. Applying the results on G* [3; Th. B]
to the decompositions (8.1-8.3), we can continue to compute [M3, M3]*. The
following result is proved similarly to the case p^.5 [4; Th. 0.1], and we omit

the proof.

THEOREM 8.1. The ring [M3, M ]̂* is multiplicatively generated up to
degree 66 by the following six elements

<5 = ΐπe[M3, M3].lf α = [α
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ε = [εj e K39, φ = <φ> e K45,

α Z3-basis for [M3, Λ^]* is gfίt en in f f te cited range by the following ele-
ments (a, b = Q or 1 unless otherwise stated):

δ, 1M; αr(5α, α'-1^* /or 1 g r ^ 16, α16(5oc(5;

δa(βwδγβ(1}δ* /or 0 ^ r ^ 4 , δ*xδ(β(ί)δγβ(l)δ
b for r = 0, 1;

δa(β(i)δ)rβ(2)δb for 0 ̂  r g 2, δ°aδ(β(ί)δγβ(2)δ» for 0 ̂  r ^ 2;

δa(β(ί)δγβ(ί}β(2}δ" for r = 0, 1;

δa(β(ί)δYβ(2)δβ(2)δ
b for r = 0, 1, δ'oι(δβwγ(δβw)

2δb for r = 0, 1

The element έ = [ε7] eK3 8 is decomposable while it is not for the case p^5,
and the element corresponding to β ( p + i ) for p^5 does not exist. We can also
determine the multiplicative structure in the cited range, but the result is more
complicated than the case /?^5 and we omit the detail. For example, we obtain
the following relations which are different from the case p^5.

The first relation is a restatement of [7; (5.1)], and the last two are induced by

α^(2)Φ = (^(i)^)2^(i)Φ=±α(^(i))2(^(2))2. In [M3, M3]69, there appears new
indecomposable element /ί(1) with θ(λ(1)) = Q. This is introduced in the proof
of [3; Prop. 17.5], and for the case p^5 there is no element corresponding to

^CD-
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