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Introduction

Let g be an odd integer and M, (=M) be the Moore spectrum of type Z,.
It is a ring spectrum with multiplication my: M,AM,—»M, and unit i: S->M,
[1], where S is the sphere spectrum. A finite CW-spectrum X is called an M-
module spectrum if X is equipped with a left inverse my: M, A X— X, which we
call an M -action on X, of i Aly. It is clear that X is an M,-module spectrum
if and only if g1y=0in [X, X]. When g is a prime, our M,-module spectrum
is just the Z -spectrum introduced by H. Toda [10].

The main purpose of this note is to investigate conditions under which an
M module spectrum is (non-)associative. Here an M -module spectrum (X,
my) is called associative if my(1py A my)=my(my Aly). For an M -module
spectrum X, the order r of 1y is a divisor of g and the homology group H(X) is
a finite Z,-module, and we shall obtain in §6 the following theorems on the
associativity and on the non-associativity according as the case g% +3 mod 9
or (r, 3)=1 and the case g= +3 mod 9 and 3|r.

THEOREM 6.6. Let X be an M ;-module spectrum and in the case of g= +3
mod 9 assume that the order of 1y is relatively prime to 3. If X satisfies the
following two conditions, then X admits an associative M -action.

(i) #H(X) is relatively prime to $H;_,(X) and to $H,_,(X).

(ii) For any prime p, the p-component of H(X) is free over the p-com-
ponent of Z,.

Here #G denotes the order of a finite group G. Furthermore we shall see
that in the dual Postnikov system {X;} of X (X; is a subspectrum of X realizing
Y j<iH (X) as its homology group) each X; is also an associative M, -module
spectrum, (cf. Remark 6.7). We shall also construct, for every prime ¢q>3,
an example which does not satisfy the condition (i) and has a unique M -action,
which is not associative (Example 6.8).

THEOREM 6.3. Assume that q= +3mod9. Let X be an M module spectrum
such that the order of 1x is a multiple of 3. Then every M action on X is
not associative.

In §1, we shall study elementary properties of M ,-module spectra. In §2,
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we shall define a derivation 0 on [X, Y], for M -module spectra X and Y (De-
finition 2.1), which is due to H. Toda [10], and consider M,maps. An M,-
map is a map between M -module spectra which is compatible with M -actions
(Definition 2.4). In §3, we shall quote known results on the Moore spectrum.
In particular, Toda’s result [9] (Theorem 3.3) on the associativity of the ring
spectrum M, plays an important role in the later sections.

In §4, we shall explicitly construct an M -action on the mapping cone of an
M ,-map (Theorem 4.3). Furthermore this M -action is admissible (Definition
4.1), i.e., compatible with the structure of the cofibering. We shall also obtain
exact sequences of M -module spectra and M, -maps derived as usual from a co-
fibering (Theorem 4.5). In §5, we shall introduce an associator a(my)e[22X,
X1, whose vanishing is equivalent to my being associative, and study several pro-
perties of the element a(my). In §6, we shall prove the above theorems using
the results of § 5.

In §7, we shall be concerned with associative M,-module spectra X and Y
such that [X, Y],—%[X, Y],—%[X, Y], is exact. In this case, the subgroup
of [X, Y], consisting of all M -maps is a direct summand (Theorem 7.5). We
shall also consider a modification 0 of 0 (Definition 7.6) so that the discussions
hold for non-associative case (Theorem 7.7). In the final section, §8, we shall
notice that the known results ([2], [4]) on the structure of the stable homotopy
ring of the mod pr Moore spectrum (p an odd prime, p"#3) also hold for the
case p"=3 by making use of 8 instead of 6.

In this note, except for § 4, we shall work in the stable homotopy category of
finite CW-spectra. In §4 only, we shall distinguish between a map and its homo-
topy class.

§1. M-module spectra

We shall denote by S and M =M, the sphere spectrum {S", ¢,=1} and the
Moore spectrum {S"U ,e"*!, ¢,=1} of type Z,, respectively. Here g denotes
always an odd integer>0 and the spectra handled in this note are suspension
spectra {X,, ¢,} consisting of finite CW-complexes X, and imbeddings ¢,: 2X,
cX,., such that 2X,=X, ., and ¢,=1 for sufficiently large n; Z being the sus-
pension functor and 1=1; being the identity map of X or its homotopy class.
There is a cofiber sequence

(1.1) S_q_.,S."_,MqL_,ES_

For any spectra X and Y, denote by [X, Y] the set of homotopy classes of
maps X—Y, and put [X, Y], =[2*X, Y] for ke Z([X, Y]o=[X, Y]). Then
the direct sum [X, X1,=Y,[X, X], forms a graded ring by the composition
of maps.
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ProrosiTioN 1.1 ([10; Lemma 1.2]). The following four conditions are
equivalent to each other.

(i) inlye[X, M AX], has a left inverse mye[M A X, X]o.
(ii) wAlye[MAX, X]_, has a right inverse nye[X, M A X],.
(i) qly=0in[X, X].
(iv) [X, X1y is an algebra over the ring Z,,.
Proor. From (1.1), we have the exact sequence

M A X, X]4A0%5 TX, X] 29, [X, X],

and we see immediately that (i) is equivalent to (iii). Similarly, (ii)<>(iii) is proved.
Since 1y is the unit of the ring [ X, X, (iv) is equivalent to (iii).

DEFINITION 1.2. A spectrum X which satisfies one of the above conditions
is called an M- (or M-)module spectrum, and a left inverse my of i A 1y is called
an M- (or M-)action on X.

If X satisfies the condition (i) of above, then M A X is homotopy equivalent
to a wedge X v XX, and hence there is a right inverse ny of m A 1 such that

(1.2) myny =0
and
(1.3) (i A Iymy+ny(n A 1x)=132x.

Since ny=((iAly)my+ny(m Alx)ny=nx(m Aly)ny=ny for another nY
satisfying (1.2) and (1.3), such ny is unique for my, (cf. [10; Remark 1.4]).
Thus we have

(1.4) For any M-action my on X, there exists uniquely the right inverse ny
of A1y satisfying (1.2) and (1.3).

We shall write (X, my, ny) (or simply (X, my)), when X is an M-module
spectrum with the M-action my and the right inverse ny of # A 15 corresponding
to my in the sense of (1.4).

For the wedge sum and the smash product of M-module spectra, the following
are easily verified.

(1.5) Let (X, my, ny) and (Y, my, ny) be M-module spectra. Then XV Y is an

M-module spectra equipped with myyy=myxV my and nyyy=nxV ny via the
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identification MA(XVY)=(MAX)V(MAY).
(1.6) ([10; (2.2)]) Let (X, my, ny) be any M-module spectrum and Y be
arbitrary finite CW-spectrum. Then

(X AY,my Aly,ng A 1y),
(YAX,(y A my)(T A 1x), (T Alx)(1y Any)

are M-module spectra, where T: M A Y- YA M is the switching map. In par-
ticular, via the identification M AXZ'X=Z'(M A X), (2*X, Z'my, Z'ny) is an
M-module spectrum for te Z.

When both X and Y are M-module spectra, we can consider the two M-
actions my Aly and (1x Amy)(TA1ly) on X A Y.

THEOREM 1.3. Let X be an M-module spectrum. Then, for any M-actions
my and my, there is uniquely an element d(my, my)e[X, X], such that

(1.7) my = my+d(my, my)(n A 1y).

The correspondence my—d(my, mYy) gives a bijection between the set of all M-
actions on X and [X, X],. If ny and n% are the right inverse of m Aly cor-
responding to my and ml in the sense of (1.4), then

(L.7y ny = ny—( A lx)d(myx, my).

Proor. For any finite CW-spectrum Y, we have the following (split) exact
sequences:

0—>[Y, X] GA1x)e [Y M A X]k(nl\lx)‘ [Y X]k 1_,0
0— [X, Y] &5 [M A X, Y], Y212 [X, Y], — 0.

Then my=m%+d(n Aly) and ny=n%x+(i A 1x)d’ for unique d and d’. By (1.2)
and easy calculations, we have d+d’'=0 and so (1.7) and (1.7)’. For any my
and any d € [ X, X],, mxy+d(n A 1) is also an M-action, and hence the correspond-
ence my—d(my, my) is bijective.

ReMARK. If Y is an M-module spectrum, then the exact sequences in the
above proof are also split for arbitrary X. In fact, the correspondences

LY, XJi—13f > (=D 11y A lnye[Y, M A X],,
[X5 Y]kameY(lM Af)E[M A Xa Y]k

give the desired splittings.
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LeEMMA 1.4. Let X be an M-module spectrum such that 1y is of order q.
Then H,(X;Z,)#0 for any prime plq, and H,(X;Z,)=0 for any prime pkq.

Proor. The assumption asserts that the stable order of X in the sense of
[8] is . Then g divides the square of the order of A,(X; Z) by [8; Th. 1.5].
Hence, for plg, Hu(X; Z) has p-torsion and H.(X; Z,)#0. If ptq, ply is a
homotopy equivalence and induces an automorphism of H,(X;Z). So H.(X;
Z,)=0.

§2. Derivation 8 and M-maps

We shall define a derivation on [ X, Y],. This is due essentially to H. Toda
[10], though its root goes back to P. Hoffman’s D [2].

DEFINITION 2.1. Let (X, my) and (Y, my) be M-module spectra. Then we
define

6 = Bmx,my: [X’ Y]k — [Xs Y]k+1
by the formula
0(f) = my(lyy A f)ny,
where ny is the right inverse of 7 A 1y corresponding to my.

For the M-actions on the wedge sum and the smash product defined in (1.5-
1.6), the following hold easily.

2.1 Omgvmymyvmy (S V 9) = Oy (S V Oy iy (9)

for fe[X, Y]y, gelV, Wl
(22)  Ouyrrymynin(f A G =0pm(f) A g

for fe[X, Y]y, gelV, Wi,

and a similar formula holds for the M-action defined from the second coordinate
of the smash product.

THEOREM 2.2. Let my and my be M-actions on X, and my and my be M-
actions on Y. Then

BMX,MY(f) = em‘\".m,’r(f) _fd(mX’ m:\’) +('— l)kd(m)” m’Y)f

for any fe[X, Y]

Proor. This follows immediately from (1.7) and (1.7)'.



98 Shichiré Oka

THEOREM 2.3 ([10; Th. 2.2]). Let X, Y, Z be M-module spectra. Then,
for any fe[X, Y], and gelY, Z],, the following formula holds:

0(af) = (= 1)*6(9) f+90(f),
that is, the operation 0 is derivative.
Proor. This follows from (1.3) and easy calculations.

DEFINITION 2.4. Let (X, my), (Y, my) be M-module spectra. Then an ele-
ment fe[X, Y], is called an M-map (with respect to my and my) if it satisfies
the equality fmy=my(1,; A f). Denote by

[X, YI¥
the subgroup of [ X, Y], consisting of all M-maps.

If g is a prime, this definition agrees with H. Toda’s Z,-map [10; p. 207].
We see immediately that the composition of two M-maps is an M-map, so

(2.3) [X, X]M is a subring of [X, X4, and [X, YIY¥ is a right [X, X]MY-, left
LY, YI¥-module.

PROPOSITION 2.5. Let X and Y be M-module spectra, and fel[X, Y],.
Then the following three statements are equivalent to each other.

(i) fisan M-map.
(i) (=DFnyf=(p A f)ny.
(iii) 6(f)=0.
Proor. By (1.3), we have
my(ly A f) = fmx+0(f)(n A 1),
(I A Pdng = (i A 19)0(f)+(=1)*ny f.
Since (m A 1y)* and (i Aly), are monomorphic, we obtain the proposition.

COROLLARY 2.6. Let X and Y be M-module spectra, and fe[X, Y],.
Denote simply by 0 the derivation 0,,, ,,, for fixed M-actions my and my. Then
there exist M-actions myx on X and my on Y such that f is an M-map with respect
to myx and my if and only if 0(f) lies in the image of f«+f*: [X, X],®LY, Y],
—[X, Y41

Proor. This is clear by Proposition 2.5 and Theorems 1.3 and 2.2.
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§3. Moore spectrum

We denote the stable homotopy ring of sphere by
Gy =[S, S«

From the known results on G,, *<k, the group [M, M],, x<k, is easily
computed by using exact sequences derived from (1.1) (cf. [4; Th. 3.5] and [11]),
and we obtain the following

LemMMA 3.1. Let M=M, and p be the minimal prime dividing q. Then
[M, M],=0 for k< —1 and for 0<k<2p—4, [M, M]_,=Z, with the generator
o=in, [M, M]lo=Z, with the generator 1y, and [M, M],,_4=Z, with the
generator io,(p)n. Here a,(p) is the generator of the p-component of G,,_3.

From this lemma we can easily verify the following result, which is essentially
due to S. Araki and H. Toda [1].

THEOREM 3.2. M is a ring spectrum with the unique multiplication m,,,
i.e., there is uniquely the map my: MAM—>M such that my(iAly)=1y=

Mp(1p A D).

Also, M is an M-module spectrum with the unique M-action m,, of above.
It is equipped with a right inverse n,, of n A 1,,, which is unique and satisfies
(Iy Amny=—1,, (cf. [10; Lemma 1.3]).

Consider the element §=ire[M, M]_,. Then we have

(3.1) 02 =0, 0(0) = —1y,

because 62 =inin=0 and 0(0)=mpy(1 A ) (1 AT)npy=—1,.
The following (non-)associativity of m,, (and n,,) is proved by H. Toda ([9;
p. 202], [10; §6]).

THEOREM 3.3. Inthecaseof q# +3 mod 9, m,, and n,, are associative, i.e.,
mp(Mp A 1yy) = mp(Lyy Amyy),
(A Ly = —(1pr Anp)iyy.

In the case of q= +3 mod 9, these are not associative. More precisely, the fol-
lowing equalities hold:

Myl A M) = mp(mp ALy +egia ) (AT AT,

(L Ay = —(ny A pdnpe e, (i A i A Doy (3)m,
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where ¢,=+1 and e,=q/3 mod 3, and we take the sign of the element a,(3)
so that e3=1 mod 3,

Now let 7 be a divisor of g, and denote by
(3.2) A:M,— M, and p:M,— M,

the maps which induce the canonical monomorphism Z,—Z, and epimorphism
Z,~Z, of homology groups, respectively. Then these maps satisfy (cf. [4; §2])

(3.3) M=(q/r)i, mA=m; pi=i, =np=(q/r)n.
3.4) pA=(q/Nly, Ap=(q/")ly,.

PrROPOSITION 3.4. Let r be a divisor of q, and (X, my, ny) be an M,-
module spectrum. Put

3.5) my(q) = mx(p A 1x), nx(q) = (A A 1y)ny.

Then X is the M;module spectrum having the M action my(q) and the right
inverse ny(q) of m A 1 corresponding to mx(q).

ProoF. By virtue of (3.3), my(q) is a left inverse of i A 1y and ny(q) is a right
inverse of mAly. By (3.4), my(q)nx(q)=(q/r)myny=0. The equality (1.3)
for my(q) and ny(q) is obtained from the fact:

(3.6) Let my and ny be arbitrary left inverse of i A1y and right inverse of
7 A 1y, respectively. Then (1.2) and (1.3) are equivalent.

PrOPOSITION 3.5. Let r be a divisor of q. Let (X, my) and (Y, my) be
M,-module spectra. Then

Omxymy@(S) = (@10 my(f)
for any fe[X, Y],.
Proor. This is immediate from (3.4) and (3.5).

COROLLARY 3.6. Let r be an integer such that r%|q. Let (X, my) and
(Y, my) be M,-module spectra. Then any map fe[X, Y], is an Mjmap
with respect to the M -action (3.5).

Proor. Since r[X, Y], =0, this follows from Propositions 2.5 and 3.5.

(*) Toda’s result [9; §4] does not make mention of the sign ¢, depending on ¢g. By [4; Lemma
2.1 (iv)], the map p in (3.2) is a morphism of ring spectra, and hence e¢,= (g/3)*c;=¢/3
mod 3 for g=0 mod 3.
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REMARK. More precise discussions show the following result: Let r and s
be integers such that rs|q. Let X and Y be M,- and M-module spectra. Then
any map fe[X, Y]y is an M,-map with respect to the M -action (3.5).

Let G be a finite Z,-module, i.e., a finite abelian group such that gx=0 for any
xeG. Let M(G) be the Moore spectrum of type G. Then we have a decomposi-
tion G=Z, ®--@®Z,, for some r;|q, and hence M(G)=M, V---VM,. In the
same way as Lemma 3.1, we see [M,, M,], =0 for odd r and s, and so [M(G),
M(G)],=0. Hence we have obtained the following

ProposITION 3.7. Let G be as above. Then M(G) has a unique M-
action my(q)V -V my(q), where m; is the multiplication (M,-action) on M,,.
In particular, for any rlq, M, has a unique M action my (q)=mp (p A 1yy,).

§4. Mapping cone

In this section only, we shall usually distinguish between a map and its
homotopy class.
For any map f: 2¥X —Y, we shall denote by

(4.1) Skx L,y e, o(f) o, Sty
the cofiber sequence for the mapping cone C(f) of f.

DerFINITION 4.1. Let (X, my) and (Y, my) be M-module spectra and
f:Z¥X—>Y be any map. Assume that C(f) is also an M-module spectrum.
Then an M-action m¢ on C(f) is called admissible if i, and mn, in (4.1) are the
M-maps with respect to mc.

We shall construct an admissible M-action on C(f) for any M-map f.

CoNsTRUCTION 4.2. Let (X, my) and (Y, my) be M-module spectra and
f: X—>Y be an M-map. We shall distinguish a map from its homotopy class.
By the homotopy extension property for the pair (M AW, W), W=X, Y, we
can take the map my so that my(i A 1y) is equal to 1, as a map. Let F,: MA X
—Y be a homotopy from Fo=my(1,A f) to F,=fmy. Define a map

e = wid(F): M A C(f) — C(f)
by mc(m A y)=my(mAy) for mAye MA YcM A C(f) and
Fy(m A x) if 0s=<1/2,

mig(m A s A X) =
2s—D) Amy(m Ax) if 12Z5sZ1,
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for mAsAxeMAIANX<=MAC(f), where I=[0, 1] with the base point I
(so I A X is the cone CX over X). In the notation of [5; Lemma 2.5], riic=e(F,)
via the identification C(1,,Af)=M AC(f). This map ric satisfies riic(1y A i)
=imy and m ic~Zmy(lpyy Am,), where ~ means ‘‘is homotopic to”. Put
fi=F(iA1ly): X—>X. This is a homotopy from fo=f to f;=f, and the map
e(f;): C(f)—C(f) constructed in the same way as above is a homotopy equivalence
such that #ic(i A lgip))=e(f), e(f)iy=i, and me(f)~n, Thus we obtain a
map

me = m(F): M A C(f) — C(f)
by the formula mc=e(f, _,)#ic.

THEOREM 4.3. The map mc constructed above is an admissible M-action
on C(f), namely, the mapping cone of any M-map has always an admissible
M-action.

PrROOF. Since e(f;_,) is a homotopy inverse of e(f,) such that e(f;_)i,=i,
and mee(f,_)~mn;, we have mc(iAler)~1cry, Mmc(lyANip)=igmy and myme
~Zmy(1p A7) as desired.

For any maps f: X—Yand g: Y-Z, we denote by
(12, f): Clgf) — C(g),
(9, 1x): C(f) — C(gf)

the maps defined by (15, N)Z=1z (I, ))ICX=Cf and by (g, 1)[Y=g, (g, 1)l

CX=lcx. Itis easy to see that (14 ff')=(lz f)(lz f') and (9'g, 1x)=(g", 1x)
(g, Iy) for f': WX and g': Z—U.

(4.2)

THEOREM 4.4. Let X, Y and Z be M-module spectra, and f: X—Y and
g: YoZ be M-maps. Then there exist admissible M-actions on C(f), C(g)
and C(gf) such that the maps (14, f) and (g, 1x) of (4.2) are M-maps.

Proor. Let F,:MAX—-Y and G,: MAY—>Z be homotopies with F,
=my(1yAf), Fi=fmy and Go=my(1,,Ag), G,=gmy. Define the homotopy
H,: MAX—Z from Hy=mz(1y A gf) to H,=gfmy by

Ga(ly A S) for 0=t=<1/2,

H, =
gF, for 12=t< 1.

Then we shall prove that mq(F,), m¢(G,) and mc(H,) are the desired M-actions on

C(f), C(g) and C(gf).
Define a homotopy Ky: M A C(gf)—C(g) from Ky=(1, f)ii(H,) to K,
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=ic(G,) (In A (1, f)) by
Ky(m A z) = mz(m A 2),
Gusir+a(m A f(x) for 0<s=(1+6)/4,
Kogm A s A x)={( gFs_g_1(m A x) for (1+6)/4 <s=<1/2,
(25s—1) A Fy_o(m A X) for 12=<s=1,

where meM, zeZ,sel, xe X. Then ky=Ky(iAlgys) is a homotopy from
ko=(1, f)e(h,) to ky=e(g)(, f), where h,=H,(i A 14) and g,=G,(i Aly). There-
fore (1, f)mc(H,)~m(G)(1 A(1, f)), and (1, f) is an M-map.

Next define a homotopy Ly: M A C(f)—C(gf) by

Ly(m A y) = Go(m A y),
Gasvo(m A f(x)) for 0=s=(1-0)/4,
Lym A s A x) =( gF4s+o-1y0+0m A x)  for (1-0)/4=s=1/2,
(2s—1) A mxy(m A x) for 12<s< 1.

Then Lo=mi(H)(1A(g, 1)), Ly=(g, Dinc(F,), Lo(in IC(f))'__e(ht)(g’ 1) and
L(i Al¢p))=(g, De(f). Hence (g, 1) is also an M-map.

THEOREM 4.5. Let (X, my) and (Y, my) be M-module spectra and f: Z¥X
—Y be an M-map. Then, with respect to any admissible M-action on C(f)
in Construction 4.2, the following sequences are exact for any M-module spectrum
(Za ’nZ):

v [Z, X1 L (2, Y1 8 (2, CONTY 25 (2, XDy — ooy
= [X, Z]irs =5 [CO), 21 L5 [Y, Z1Y L5 X, 210 — -
To prove the theorem, we prepare the following

LEMMA 4.6. Let X and Y be M-module spectra and f: X—Y be an M-map
with a homotopy F,: MAX—Y from Fo=my(1,, Af) to Fy=fmy. Assume that
f is homotopic to the constant map. Then there are a retraction r: C(f)—Y
and an inclusion 1: X —C(f) which are M-maps with respect to the M-action
mc(F,) on C(f).

Proor. Letf,: X—Ybea homotopy from fy=f to fy=+. Then r is defined
by r(y)=y for yeV, r(tAx)=f(x) for tAxeIAX=CX. Since IxO0UIx1
UOxI is a retract of I x I, we can construct a double homotopy Hy,: M A X—Y,
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(s, )eIxI, such that H o=my(1p Af), H =fimy and Hy,=F, Define a
homotopy K4: M A C(f)— Y by

Kom A y) = my(m A ),

Fae(m A x) for 05t<1)2,
Ko(m /\ t /\ x) =
Hy_6m Ax) for 12Z5t£1.

Then K, is homotopic to my(1,,Ar) and K, =rmi(F,). Therefore r is an M-
map. The proof of | being an M-map is similar.

ProoF or THEOREM 4.5. It suffices to show the theorem for the case
j=k=0. We take an m. on C(f) in Construction 4.2. Let g be any element
in [Z, XM, =[Z, ZX]M such that f,(g)=0. Then the composition

g =gl Z— C(fg) — C(f)

satisfies 7 ,(g)=g and is an M-map by Theorem 3.4 and Lemma 3.6. This shows
the exactness at [Z, XM, in the first sequence. From the definition of mc=
mc(F,), we can easily construct a homotopy P, from Po=my(1AZ"'n,) to P,
=(Z"1n;)mc such that the M-action mc(P,) on Y=C(Z"!n,) coincides with the
original one my. So we can replace (Y, my) by (C(Z~'xn,), mc(P,), and hence
the exactness at [Z, C(f)]¥ follows from the same discussion as above. The
exactness at [Z, Y]¥ is also the same. The proof for the second sequence is
similar.

The following result is an improvement of the second half of [10; Lemma
2.3].

LEMMA 4.7. Let X be an M-module spectrum, and Y be a finite CW-
spectrum. Let f:Z*X—Y be a map such that C(f) is an M-module spectrum.
If [Y, X]_,=0, then Y is also an M-module spectrum and there are M-actions
my on X and my on Y such that f is an M-map with respect to my and my. Fur-
thermore there is a homotopy from my(1 A f) to fmy such that the M-action
on C(f) given by Construction 4.2 using this homotopy coincides with the original
one on C(f).

Proor. From the assumption, n%: [X, X, >[C(f), X]_; is an epimorphi-
sm. Hence 6(n,)=0 for suitable my by Corollary 2.6. (Here we notice that
the M-action on C(f) is fixed). Since Y=C(Z"!n;), there is an my on Y such that
fand i, are M-maps. The last statement on the M-action on C(f) is proved by
a similar discussion to the proof of Theorem 4.5.
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§5. Associator

In this section, we always consider the smash product M A X to be the M-
module spectrum with the M-action my A1y even if X is also an M-module
spectrum.

LemMma 5.1. For any M-module spectrum (X, my, ny), there hold 6(i A
1y)=ny and O(n A 1x)= —my.

Proor. This is immediately obtained from m,(1,; A i)=1, and (1, A m)ny,

——lM.

The following result is originally proved by H. Toda [10; Prop. 2.1] under
the assumption [X, X7, =0.

THEOREM 5.2. For each M-action my on X, there exists uniquely an ele-
ment a(my) e [X, X1, such that
mx(Iy A my) = my(my A 1x)+a(my)(n A m A 1y),
(5.1)
(IM A nx)nx = —(nM A ].x)nx"‘(i AiA lx)a(mx).

ProOF. Operating 6 to (1.2) and using Theorem 2.3, we have O(my)ny
=my0(ny). So we put

(5.2) a(my) = 0(my)ny = mxO(ny).
Since 1 is clearly the M-map, O(my(i A 1x))=0 and 8((m A 1x)ny)=0. So we have
(5.3) 0(my) = a(my)(n A 1x), O(ny) = (i A 1x)a(my),

by the above lemma and (1.3). By the definition of 6(my) and (1.3) for X=M,
we have

amx)(m AT A ly)=0my)(m A 15 A 1y)
=my(Iy A my)(ny A 1) (m A 1y A 1y)

my(1yy A my)—my(lyy A my)(i A 1y A Ly)(mpy A 1x)

mx(1y A my)—mx(i A 1y)my(my A 1y)

= my(lyy A my)—my(my A 1y).

Hence the first equality of (5.1) is obtained, and the second one is similarly obtain-
ed. Since m AmA 1y has a right inverse (ny A 1x)ny, a(my) is unique.
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DEFINITION 5.3. An M-module spectrum (X, my) (or an M-action my on
X) is called associative if the equality my(my A 1x)=my(1, A my) holds. The
element a(my) in the above theorem is called an associator of my.

Then (5.1) and (5.3) imply the following

PROPOSITION 5.4. The following five statements are equivalent to each
other.

(i) my is associative.

(ii) my is an M-map.

(iii) ny is associative, i.e., (ny A 1x)ny=—(1yy A ny)ny.

(iv) ny is an M-map.

(v) a(my)=0.

For the wedge sum and the smash product of (1.5-1.6), the following are easily
verified.

(5.4 a(myyy) = a(my) V a(my).
(5.5) a(my A 1y) = a(my) A 1y,

and a similar formula holds for (1, A my) (TA 1y).
The following is a restatement of Theorem 3.3.

(5.6) a(my)=0 if g# +3 mod 9, and a(m,)= +ix,(3)n#0 if g=+3 mod 9.

For the M -action my(q) of (3.5) defined from an M,-action my, r|q, we have

(5.7) a(mx(q)) = (q/r)*a(my),

by (5.2), Proposition 3.5 and (3.4). As a corollary we see that any my(q) is
associative if r3|q2.

By Proposition 3.7 and (5.6-5.7), we have immediately

PROPOSITION 5.5. Let G be a finite Z,-module. Then, in the case of q# +3
mod 9, M(G) is always an associative M,-module spectrum, but in the case of
g= ~+3 mod 9, M(G) is associative if and only if G does not contain Z3 as a
direct summand.

THEOREM 5.6. Let my and my be M-actions on X, and write simply 0

=0 and 0'=0,,, .. Then

mx,mxy

a(my) = a(my)—0'(d(my, my))+d(my, my)?

= a(my)—0(d(my, my))—d(my, my)>.
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Proor. Put d=d(my, my). Then my=mi+d(nAly) and ny=ni—(i
Alyd by (1.7) and (1.7), and O(my)=0'(my)+dmy by Theorem 2.2. So
O(my)ny=0'(my)ny by (1.2). Hence a(my)=0(my)ny=0'(my+d(nA ly))(ny—
(A 1x)d)=0"(my)ny—0'(d)(n A Ly)ny—dmiyny—0'(my) (i Alx)d+ 0'(d)(m A 1x)(i
AlY)d+dmy(i Ay)d=a(my)—0'(d)+d? as desired. Since d(my, my)=—d,
the second formula is obtained by interchanging m, with m.

COROLLARY 5.7. Let (X, my) be an associative M-module spectrum, and
write simply 0=0,,, .. Then the set of associative M-actions on X corresponds
in a one-to-one onto fashion to the subset {f|0(f)+f2=0} of [X, X];.

The following theorem is just the result of H. Toda [10; Th. 6.1, (i)].

THEOREM 5.8. Let X and Y be M-module spectra. Then, for any fe[X,
Y]k’

06(f)) = fa(my)—a(my) f.
In particular, 0 is a differential on [X, Y]4:00=0, if X and Y are associative.

Proor. Together with (5.1), easy calculations lead to the theorem. The
details are the same as H. Toda’s [10; p. 238].

COROLLARY 5.9. M-maps commute with associators, i.e., for any fe[X,

YT¥, fa(my)=a(my)f.

THEOREM 5.10.  Let (X, my) be any M ,-module spectrum, and denote simply
Onymy by 0. Then, in the case of q# +3 mod 9, 0(a(my))=0, but in the case
of g=+3 mod 9, O(a(my))=Fo;(3) A ly.

Proof. By (5.3), 0(mx)0(ny)=0, so we have

O(a(my)) = 0(0(mx)ny) (by (5.2))
= —0%(my)ny (by Theorem 2.3)
= —mya(Myrx)nyx+a(my)myny (by Theorem 5.8)
= —mya(Myrx)ny (by (1.2)) .

Since a(mpyax)=a(my Aly)=a(my) A1y by (5.5), it follows from (5.6) that
mya(myax)hx=0 for g# +3 mod 9 and mya(mysx)ny= ta;(3)Aly for g=+3
mod 9.

§6. (Non-)associativity

LEMMA 6.1. Let p be an odd prime and o,(p) be a generator of the p-
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component of G,,_3. Then, for any finite CW-spectrum X, a;(p) A 1x#0 if and
only if Hu(X; Z,)#0.

PrOOF. Denote simply o,(p) by «. If H.(X; Z,)=0, the order of 1y is
finite and relatively prime to p by [8; Th. 1.5]. Since « is of order p, a A 1y is
trivial.

Next assume that a A 1y=0. Then there is a left inverse m: C(ax) A X—X
of i, A 1x, where i,: S—C(a) is the inclusion. Let ue H°(C(x); Z,) be the class
of the bottom sphere. It is well known that P1u #0 and this generates H2P~2(C(a);
Z,), where P" denotes the reduced power operation for the prime p. Take [
such that H'"2r*2(X; Z,)=0. Then m*: H(X; Z,))-HYC()AX; Z,) is iso-
morphic and (i, A 1x)* is its inverse. So m*(x)=u®x for xe H(X; Z,). Then
m*(P"x)=u®P"x+ Plu®P" !x, while there is an n such that P"x=0. Hence
x=0 and HYX;Z,)=0. Thus A*(X;Z,)=0 and H.(X;Z,)=0 as desired.

REMARK 6.2. By using the squaring operation Sq", Sq*", Sq*" or Sq®"
instead of P", we also obtain the following mod 2 version of the above lemma.

Let X be a non-trivial finite CW-spectrum, and denote the generators of the
2-components of G,, G; and G; by n, v and o, respectively (these are odd mul-
tiples of the Hopf classes). Then

(1) 2-14x%#0, i.e., there is no non-trivial finite M,-module spectrum;

Q HuX;Z)#0en Ay #0ee=v A1y #0&0 A 14 #0.

REMARK. In the above lemma and remark, the finiteness of X is essential.
In fact, the Brown-Peterson spectrum BP at p gives a counterexample for Lemma
6.1 and Remark 6.2 (2), and the spectrum M, A BP gives a counterexample for
Remark 6.2 (1).

THEOREM 6.3. Assume that q= +3 mod 9. Let X be an M module spec-
trum such that the order of 1y is a multiple of 3. Then every M action on X
is not associative.

ProOF. From Lemma 1.4 together with the assumption on 1y, H(X; Z3)
#0. Hence a;(3)A1,#0 by Lemma 6.1. So 6(a(my))#0 by Theorem 5.10
and a(my)#0. Thus my is not associative by Proposition 5.4.

LeEMMA 6.4. Assume that a finite Z,-module G satisfies the following con-
dition.

(6.1) For any prime p, the p-component of G is free over the p-component of Z,,.
Then, for any M-module spectrum X,
[M(G), XT¥ < 6[M(G), XTi-1,
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[X, M(G)T¥ = 0[X, M(G)]i-.

Proor. By Proposition 3.7, it suffices to show the lemma for the case
G=Z, for r such that g=rs and (r, s)=1.

Consider the element 6 e [M,, M,]_, and put §=xd for an integer x with
xs=—1mod r. Then 6(6)= —sl,,, by (3.1) and Proposition 3.5, so 6(6")=1,,.
For any fe[M,, XY and ge[X, M, IM, 0(f6')=f and 6(6'g)=(—1)kg by
Theorem 2.3, and hence the lemma for G=Z, is proved.

In the next section, we shall generalize the above result (Proposition 7.2,
Theorems 7.5 and 7.7).

LeEMMA 6.5. Let G be a finite Z,-module satisfying the condition (6.1),
and G’ be any finite Z;-module. Let (X, my) be associative and f: Z*M(G)—X
be an M -map. In the case of g=+3 mod 9, assume further that H,(C(f))
has no 3-torsion and G' does not contain Z5 as a direct summand. Then, for
any M;map g: Z'M(G')—C(f) with respect to some admissible M -action on
C(f) of Construction 4.2, there exists an admissible and associative M -action
on C(f) such that g is also an M -map.

Proor. Let m. be an admissible M-action on C(f) of Construction 4.2.
By Theorem 5.10, Lemma 6.1 and Proposition 2.5, the associator a(m¢) is an
M-map. By Corollary 5.9, ita(mc)=isa(my)=0, so a(mc)=n%h, for some
ho e [M(G), C(f)]M.; by Theorem 4.5. Since [M(G), M(G)],=0, we have
[M(G), M(G)]¥ =0 by Lemma 6.4, and hence ho=1i,h for some h e [M(G), X]¥, 3
by Theorem 4.5. Again by Lemma 6.4, h=0(h’) for some h’'e[M(G), X, .,
and so +0(i h'n,g)=ihn,g=a(mc)g =ga(mys)=0 by Theorem 2.3, Corollary
5.9 and Proposition 5.5. Hence i;h'n;g is an M-map. Then Theorem 4.5 im-
plies that i h'n,g=i h"n.g for some h"e[M(G), XI¥.,. Put d=(—1)**1i(h’
—h"n, e [C(f), C(f)];. Then 0(d)=i,0(h")n,=a(mc) and d2=0. Define ano-
ther M-action m¢ on C(f) by me=mc+d(nAleyy). Then a(mg)=a(mc)—0(d)
+d? =0 by Theorem 5.6 and mg is associative. By the relations di =0, n,d=0
and dg =0 together with Theorem 2.2, i;, n, and g are again M-maps with res-
pect to mg. Thus mg is the desired M-action on C(f).

Now we are ready to prove the following

THEOREM 6.6. Let X be an M -module spectrum and in the case of g= +3
mod 9 assume that the order of 1y is relatively prime to 3, or equivalently
H,(X) has no 3-torsion. If X satisfies the following two conditions, then X
admits an associative M -action.

(i) #H(X) is relatively prime to $H;_,(X) and to #H;_,(X), where #G
denotes the order of a finite group G.
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(ii) The group H(X) satisfies the condition (6.1).

Proor. Denote simply H(X) by H; and take integers r and s>0 such that
H;=0for i<rand for i>r+s. By a dual consideration of the Postnikov system,
there is a filtration {X,},<,<,+s Of subspectra of X together with maps f:
2¥IM(H)—> X-q (r+1=5k<r+s) such that X,=2"M(H,), X,.,=X, X;,=C(f)
and the inclusion X, <X induces isomorphisms H(X,)~ H(X) for i<k. Since
dimX,=k+1, [X,_3, M(H)]_4+:=0. By the condition (i), [Z~!'M(H,_,)
VM(H,_,), M(H)]=0. So we have

(*) [Xeo1, M(H)] -3, =0 for r+1SksSr+s.

Let my be an M-action on X. By applying Lemma 4.7 to (), we can in-
ductively construct M-actions m, on X (m,,,=my) such that f, is an M-map
and m, is the M-action on C(f,) given by Construction 4.2. We shall prove
the following statements by the induction on k.

(*x), There is an associative and admissible M-action mj on X,=C(f,) such
that f, ., is also an M-map with respect to m;.

Obviously, (**), is valid by Propositions 3.7 and 5.5. Assume that (*x%),_,
is valid. Then, by the condition (ii), all the assumptions of Lemma 6.5 are satisfi-
ed for the case G=H,, (X, my)=(X,_,, Mmix—,), f=fi, G'=H,,, and g=f,,,.
So we obtain (*x),. The theorem is a restatement of (xx),, .

REMARK 6.7. In the above dual Postnikov system {X,} of X, each X,
also admits an associative M-action by (*x),. But it may have no M-action
if the condition (i) does not satisfied. Let p be an odd prime and consider the case
q=p, M=M,. The group [M, M]¥,_, is Z, and its generator o satisfies nai
=o,(p) ([11], [10; §§5-6] and [4; Th. 5.17). Let f: N=X2P"3MV X2, 2M->M
be the map such that fi,=0da and fi,=a, i.e., f=0ap, +ap,, where i’s are the
inclusions and p’s are the projections. Put X=C(f). For this X, the condition
(i) does not hold and X is the (4p— S)-skeleton of the Eilenberg-MacLane spectrum
K(Z,). So X is an M-module spectrum, but X,, ,=M U CZ?P~3M = C()
is not by Lemma 4.7. In this case, fis not an M-map with respect to the canonical
M-action my=my, vV m,, on N, while it is an M-map by a twisted one my +i,p,(n
Alp).

In a similar manner to the above, we can construct an M-module spectrum
having no associative M-action.

ExAMPLE 6.8. Let pbe a prime=5 M=M, and put N=MV M.
Denote by i;e[M, N],, i,€[M, N], the inclusions and by p, €[N, M],,
p2 €[N, M]_, the projections. Define fe [N, N1,,_, by

f=iap, —i,0adp, +iop,: X2P"2N.— N,
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where a e [M, M]¥,_, is the same as in the above remark. Denote by my(0)
the canonical M-action m, VvV X2my on N. Since [N, N],=Z,, generated by
i,0p;, by Lemma 3.1, we have

(1) there are just p distinct M-actions on N, which are written as my(x)=my(0)
+xi,0p (TAly), xeZ,

Since i,, i,, p; and p, are the M-maps with respect to my(0), we see from
Theorem 2.2 that

Q) f:(Z2P2N, my(x))=>(N, my(y)) is an M-map if and only if x=y=—1.

Since my(0) is associative by (5.4) and (5.6), and since [N, N],=Z, generated
by i,p;, it follows from Theorem 5.6 that

(3) a(my(x))=xi,py, and hence only my(0) is associative.

Let X be the mapping cone of f. Then easy calculations show that [ X, X],
=0 and [X, X],=Z, with the generator h satisfying if(h)=i,4(i,p;). So

4 X hasa unique M-action my.

By Corollary 5.9 and (3), a(my)i =ia(my(—1))=—isi,p,. Hence
(5) a(my)=—h#0, i.e., X has no associative M-action.

It is clear that H(X)=Z, for i=0, 2, 2p—1, 2p+1, so
(6) X does not satisfy the condition (i) in Theorem 6.6.

Let V be the mapping cone of a. This is just the spectrum V(1) [10] and
has a unique associative M-action. It is easy to see that X is the mapping cone
of some map g: X" 'V-22V. By H. Toda’s result [10; Th. 3.6] on [V, V],,
g is an M-map (in fact, g= +a'd,). Thus

(7) there is an M-map X—Y such that all the M-actions on X and on Y are
associative but its mapping cone has no associative one.

§7. Hoffman’s decomposition

P. Hoffman [2; Th. A] obtained the direct sum decompositions
[Ma M]k = [M9 M]kM @ 6*[M’ M]kM+1

and the split exact sequence
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[M, M]k-l £ [M, M]k s [M, M]k+1

for M=M,, q# £3 mod 9. We shall generalize these results.
We first consider the following condition for an M-module spectrum (X,

my).
ConNDITION 7.1. There exists an element §(my)e[X, X]_, such that
(i) d(mx)d(my)=0,
(i) 6(8(my))=—1x
and
(i) d(my)a(my)=0.

By Theorems 5.8 and 5.10, we see easily that the condition (iii) can be re-
placed by one of the following.

(i)’  a(my)d(my)=0.

(i)’ a(my)=0if g# +3 mod 9, and a(my)= £ (;(3) A 1x)8(my) = F 8(mx)
(1:(3)Aly) if g= £3 mod 9.

We shall give several examples of (X, my) satisfying Condition 7.1. First,
it is clear by (3.1) and (5.6) that

(7.1) M satisfies Condition 7.1 by putting 6(m)=34.

PROPOSITION 7.2. Let G be a finite Z,-module. Then the Moore spectrum
M(G) satisfies Condition 7.1 if and only if G satisfies (6.1).

PROPOSITION 7.3. Let f: XM —>M be an M-map such that
(7.2) J& = (—1)*sf.

Put X=C(f). Then there exists uniquely an element De[X, X]_, such
that Di;=i,, n;D=(—1)*én;, D*=0 and 6(D)= —1x for any admissible M-
action on X. Furthermore there exists an admissible M-action my on X such
that Da(my)=0. Hence (X, my) satisfies Condition 7.1 for 6(my)=D.

REMARK. According to the discussion in [4; § 3] and a similar one for the
case ¢= +3 mod 9 in the next section, we see that f e [M, MM satisfies (1.2) if
and only if f=hAly+g for he G, and ge[M, M1¥ such that ngie G,_, is
divisible by q. By [2; Th. A], for any g’ e [M, M]¥ of even degree, the ele-
ment g=(g’)? satisfies such a condition.
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LemMA 7.4. Let r and s be divisors of q, and denote by d=(r, s) and
1={r, s} the greatest common divisor and the least common multiple of r and s,
respectively. Then

M, M]_, =Z,, generated by 6, ,=in:M,— XS — XM,
[M,, M, =2, generatedby ¢ =lp:M,— M;— M,
and the relation 0(5, ,)=(q/De, ; holds as M -module spectra.

Proor. Except for the statement on 0, everything is clear, (cf. Lemma
3.1). We seeeasily that 6(5, )=p'A": M,-»M_,—M_ and so 005, ) =(q/r)/(s/d)e,
=(q/De, s

Proor Oor PRroOPOSITION 7.2. We have proved (6.1)=7.1 in the proof of
Lemma 6.4. Assume that M(G) satisfies Condition 7.1, and put G=Z, ®---@Z,,,
so M(G)=M,,v---VM, for rjq. Let i;: M, >M(G) be the inclusion and
p;: M(G)—>M,, be the projection. By the above lemma, [MG, MG]_,= 3 ; A,
and [MG, MG],=3%;xB;s Where 4;;, and B;, are the cyclic groups generated
by id,,,p; and ig,, . p; of order (r;, r,). Then, again by Lemma 7.4, 1),=
2 kiktron Pk € 2 j40(A4;,) implies the congruences gx,/ry,=1mod r, for some
x.. So r, and g/r, are relatively prime. This means that G satisfies (6.1).

Proor oF ProposITION 7.3. By (7.2), there is an element D,e[X, X]_,
such that Dyi,=i;6 and n;Dy=(—1)*dn,. From the exact sequences derived
from the cofibering for X = C(f) together with Lemma 3.1, we see the following
results on [ X, X],:

[X, X1, = ipenf[M, M1is144 for I=-3,-2,1,
[X, X]-1 = {Do} ® ipsnf[M, M1,
X, X]lo={1x}® if*n?[M, My,

and the kernel of i yn}: [M, M1, —[X, X],is O, {f5}, {f} and OforI= -3,
—2, —1 and 0, respectively, where {g} means the subgroup generated by g.

Put D=i gn;, ge[M, M],_,. Thenidgn,=DyD}=D3Dy=(—1)*i,gon,,
and hence dg=(—1)*gd. Applying 0 to this, we have 0(g)d+(—1)¥60(g)= —2g.
So we define

D = Dy+((—1)*/2)i0(g)n,.

0(g9)o+00(g)n,=Dj—ign;=0. We can put O(D)=xly+ig'n;, x€Z, g
€[M, M];,,. Then xi;=0(D)i,=60(Dij)=—i,, and x=—1. Since i(dg' —
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(—D*g'6)n;=—6(D)D+DO(D)=6(D?)=0, we have dg'=(—1)*g’6 mod {f}.
Applying 6 to this, we have —2g’'=0(g")6 +(—1)¥60(g’), so O(D)+1x=—((—1)¥/
2)(i;6(g")n D+ Di0(g")n ;)= —(1/2)(6*(D)D+ DO*(D))=0, because (—1)k*1if
(9')n;=02(D)=Da(my)—a(my)D. Thus D satisfies the desired relations.

Let D’ also satisfy the above relations. Then D'=D+i hn, for some h
e[M, M],. Applying 0 to this, i 0(h)n;=0, so 6(h)=0. From the relation
(D+ishn;)?2=0, we have (—1)*hé+Jh=0 mod {f6} and so 2h=0mod {f}.
Hence ifhn;=0and D'=D. Thus D is unique.

Take an admissible M-action my and put Da(my)=i h'n, for some h’' e [M,
M],,,. Then 0=D2a(my)=i0h'n, and 6h'=0, so h'=(—1)*60(h’). Hence
Da(my)=(—1)*Di 8(h')n;= —DO(ish'n;). Put d=—ish'n; and my=my+d(n
Aly). Then my is also admissible and satisfies Da(my)=0.

We now generalize P. Hoffman’s results at the beginning of this section.

THEOREM 7.5. Let (X, my) be an M-module spectrum satisfying Condition
7.1. Then, for any associative M-module spectrum (Y, my), the sequences

[X, Y-y 25 [X, Y] 25 [X, Y]y,
LY, X)i-1 25 [V, X1 -4 [V, XLty
are split exact and there are the direct sum decompositions:
[X, Y], = [X, YI¥ @ o(my)*[X, Y1¥% 4,
LY, X1, = [Y, XT¥ @ 6(my)«[Y, X1¥ .

Proor. Since Y is associative, we see by Theorem 6.3 that g# +3 mod 9
or that the order of 1y is relatively prime to 3. In the latter case, a;(3) A 1,=0
by Lemma 6.1. Hence Im6c=Kerf by Theorem 5.8 and the condition (iii)”.
In the same way as Lemma 6.4, Kerf<Im 0 and the above sequences are exact.
The desired splittings are given by d(my)* and d(my),, and we have the direct
sum decompositions.

We next consider a non-associative version of the above theorem.

DEFINITION 7.6. Let (X, my) satisfy Condition 7.1, and (Y, my) be arbitra-
ry M-module spectrum. Define

0: [X, Y, — [X, Y]isos
0: LY, X1y — [Y, X141

by the formulas
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0(f) = 0(f)— a(my) fo(my),
0(f) = 0(f)+ (= D*(my) fa(my),
respectively.

Clearly 6=0 if Y is associative. If Y satisfies Condition 7.1, both @
are coincident. For, a(my)fo(my)= % (a,;(3) A 1,)0(my)fo(my)= +(—1)ké(my)
Jo(mx) (2, (3) A 1) = —(—=1)*6(my) fa(my) if g= +3 mod 9.

THEOREM 7.7. Let (X, my) satisfy Condition 7.1. Then, for any M-module
spectrum (Y, my),

Ker@ c Kerf =ImfcImb in [X, Y], andin [Y, X],.
Hence Theorem 7.5 with 0 replaced by 0 holds even if (Y, my) is not associative.

Proor. Since 0(f)=—00(f)é(my) for fe[X, Y], and O(f)=(—1)%0
(6(mx)O(f)) for fel[Y, X],, the theorem is easily derived from the following
algebraic lemma with Y =68(my), or d(my)* up to sign.

LeEMMA. Let 0 and  be endomorphisms (of degree +1 and —1) of a
(graded) abelian group A such that Oy +y0=1, and Yy2=0. Put 0=0y0.
Then Oy +yB=1,, 02=0 and Ker0cKer =ImHcIm6.

Concerning (2.3), we see that Kerd acts on Ker 8 from the both sides:

(7.3) If 8(f)=0 and 0(g)=0, then 0(fg)=0. If B(f)=0 and 6(g)=0, then
0(fg)=0.

ExampLE. Let f=p,,e[M;, M;],, be the element defined by N. Yama-
moto [11] and H. Toda [10; §6]. Then 6(f)=0adfd= a(m,)Bd(m,\)#0 by
[10; Th. 6.4], and so B(B)=0. [M,, M;],, is generated by the elements f,
a26a and o35, and O[M;, M3],;=0. So adps lies in ImO but not in Ima.
Thus we can not, in general, replace the mark < in Theorem 7.7 by the equal
mark =.

By [10; Th. 6.8], BB=06adB5B5 and its B-image is «dBSBS —SadBSp #0.
Thus Ker 8 can not, in general, form a ring by the composition product.

§8. Remark on [M;, M,],

In [4] and [6; § 8], we studied the ring structure of [M,, M ], for g a power
of an odd prime p, in connection with the p-component of the stable homotopy
ring G, of spheres. But only the case g =3 is exceptional, since M5 is not associa-
tive and 0 on [M;, M;], is not a differential. For this case, similar discussions
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can be done by considering 8 instead of 6.
For any aeG, and feG,_,*Z;<=G,_,, define <{a)e[M;, M;], and [f]
€ [M;, M;], by

Cap =a A1y and [B] = (—1)16(if),

where e [M,, S],_; is an extension of f, i.e., Bi=p. Then we have
Coyi = ia, mlay = (—Dkam, O(Kay) = 0;
n[Bli =B, O[] =0,

since 8([B])=(—1)* 1iBia;(3)n=1in,(3) fr=a(m,)[B16, (cf. [4; Lemmas 3.1-
3.2]). Denote by [G,_,*Z;] and {G,) the subgroups generated by those elements
[B] and <&, and also by K, and K, the subgroups [M;, M;], n Ker § and [M,,
MM =[M;, M;],nKerf. Then the following direct sum decompositions
are obtained:

(8'1) [Ma, Ms]k = Kk @ 5*Kk+1 = K_k ® 6*Kk+1’
8.2) Ky = <G @ [G—1*Z3] = G, ® Z3 ® Gy _1*Z3,
(8.3) Ky =<6 ®[H-1]~ G, ®Z3;® Hy,

where H,_,={f e G,_*Z;]o,(3)B is divisible by 3} and [H,_,] is the subgroup
generated by [f] for fe H,_,. The decomposition of [4; Th. 3.5] is also obtain-
ed.

For the composition, the formulas (3.7-3.8) and Proposition 3.8 of [4] also
hold in [M;, M,],, but we must correct Proposition 3.9 of [4] as follows:

Let £€G,_, and ne G,_, be elements of order 3 such that {=<¢, 3, n)
has trivial indeterminacy. Then [E]1[n]=[{]1—(— DY, (3)n[£]0[n]9.

Concerning the formula (1.11) of [4], we obtain the following result: n¢
— (= 1) =(=D*1* i, (3)nond = (— Dkiay (3)nnded for ¢eK, and nek,
and in particular né=(—1)¥'¢n further if one of & and n lies in K,.

The ring structure of [M;, M;], has been determined up to degree 31 by N.
Yamamoto [11] and H. Toda [10; §6]. Applying the results on G, [3; Th. B]
to the decompositions (8.1-8.3), we can continue to compute [M;, M;],. The
following result is proved similarly to the case p=5 [4; Th. 0.1], and we omit
the proof.

THEOREM 8.1. The ring [M;, M3], is multiplicatively generated up to
degree 66 by the following six elements

d=ine [M39 M3]—1: a = [a1(3)]€K4a
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By = [B1eK,;, By = [B.]1eK;,,
e = [g;]€K;y, ¢ =<{p)eKys,

and a Z;-basis for [Ms, M3]y is given in the cited range by the following ele-
ments (a, b=0 or 1 unless otherwise stated):

0, ly; ard®, o~ 16ad®  for 1 =r =16, albdad;

3%(B1)0yB1y0® for 0=r<4, 596(B 1,0y B0t for r=0,1;
0B1)0yByd® for 0=r=2,  0%0(B1)0YBp)0® for 0=r=2;
0%B1y0) BBy  for r=0,1;

5%(By0Y BayoBay0® for r=0,1, 58 (3h)?0* for r=0,1;
596,  5%add, PO

The element é=[¢'] € K54 is decomposable while it is not for the case p=5,
and the element corresponding to f,., for p=5 does not exist. We can also
determine the multiplicative structure in the cited range, but the result is more
complicated than the case p=5 and we omit the detail. For example, we obtain
the following relations which are different from the case p=5.

ea? = i(ﬁ(l)éﬂu)ﬂ(z)é_(5ﬁ(1))2ﬂ(2)),
P = i(“(aﬂu))zéﬁ(z;a—50‘(5ﬁ(1))25ﬁ(2)_(5ﬁ(1))55),
(ﬁﬂ(z) = i((ﬁ(n)‘s)z(ﬁ(zﬂs)z+(5/3(1))2(5ﬂ(2))2)-

The first relation is a restatement of [7; (5.1)], and the last two are induced by
aﬂ(2)¢=(ﬂ(1)5)2ﬂ(1)¢=ia(éﬁ(x))z(éﬁ(z))z- In [M;, M;]s9, there appears new
indecomposable element A, with 6(1,)=0. This is introduced in the proof
of [3; Prop. 17.5], and for the case p=>5 there is no element corresponding to
A(l).
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