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1. Introduction

A multi-partite graph, denoted by Gm(ni9 n2,..., nm), is a graph whose point

set can be partitioned into m subsets Vί9 K2,..., Vm with nί9 n2,..., nm points each,

such that every line joins different subsets. If it contains every line joining dif-

ferent subsets, then it is called a complete m-partite graph and is denoted by

Km(nl9 n2,..., nm). A complete graph Km with m points may be regarded as a

particular type of complete m-partite graph where nί = n2 = - = nm = l. A com-

plete bipartite graph K2(\, c) or a tree with c + 1 points and radius one is called

a claw or a star of degree c.

A claw of degree c being a subgraph of a multi-partite graph will be called

a partite-claw (PC) of degree c if no pair of points lies in the same set of points

of the multi-partite graph.

A graph is called claw-decomposable if it can be decomposed into a union

of line-disjoint claws of the same degree. The problem of claw-decomposability

of a complete graph Km has been raised and solved completely by Yamamoto,

Ikeda, Shige-eda, Ushio and Hamada [4]. The claw-decomposition of a com-

plete graph provides us an optimal balanced file organization scheme of order

two, called HUBFS2, for binary-valued records in a sense such that it has the

least redundancy among all possible balanced binary-valued file organization

schemes of order two having the same parameters, provided the distribution of

records has the property of invariance with respect to the permutation of attri-

butes [3].

An analogous theorem which states a necessary and sufficient condition for

the claw-decomposability of a complete m-partite graph Km(n, n,..., n) where

n 1 = n 2 = = nm = n has been obtained by Ushio, Tazawa and Yamamoto [2].

In this paper, a theorem which states a necessary and sufficient condition

for the decomposability of such a complete m-partite graph Km(n, n,..., n) into

a union of line-disjoint partite-claws of degree c, which will be called a PC-decom-

position theorem of the m-partite graph, will be given. An algorithm for the de-

* ) Research supported in part by the Grant of the Ministry of Education, Science and Culture

of JAPAN.
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composition will also be given. The PC-decomposition of a complete m-partite

graph Km(n, n,..., n) provides us an optimal balanced file organization scheme

of order two for multiple-valued records with m attributes of n values each in a

sense such that it has the least redundancy among all possible balanced schemes

having the same parameters m, n and c, provided all types of records are equally

probable [5].

2. Main theorem

With respect to the PC-decomposability of a complete m-partite graph, we

have the following theorem which will be proved in the subsequent part of this

paper.

THEOREM 2.1. A complete m-partite graph Km(n9 n,..., ή) with m sets

of n points each can be decomposed into a union of line-disjoint \j\n1\c partite-

claws of degree c each if and only if

(i) (^V*2 is an integral multiple of c, and

(ii) m > c + 1 if n is even and m > c +1H γ~ if n is odd.

Note that in a particular case n — 1, Theorem 2.1 turns out to be the theorem

of the claw-decomposability of a complete graph Km given in [4].

3. Proof of the necessity

In a trivial case c = l, the conditions (i) and (ii) are obviously necessary and

sufficient. Thus we consider the case c>2.

Suppose Km(n, n,..., n) is PC-decomposable. Since the number of lines in

Km(n, w,..., ή) must be a multiple of c, (i) is obviously necessary. Let yt be the

number of PC's of degree c whose root points are in the i th point set Vt of Km(n9

π,..., n). Then, the set of all lines incident with Vt can be partitioned into two

sets Xt and X\ with cardinalities ytc and (m-l)n2-yiC9 respectively, by classi-

fying each line according as it belongs to one of the above PC's or not. Since

no pair of lines in X\ belongs to the same PC, we have

Thus we have

n n v > fl2θ* - 1) (2c - m)
( 3 1 } y>—ic(c -1)—

On the other hand, since every line joining V{ and Vj must belong to a PC
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whose root is in either Vt or Vj9 and since no pair of those lines belongs to the same

PC, yt and jy must satisfy

yt + yj > n2

for every pair of i and j (φϊ). Thus we have

(3.2) yt > ^

for all Ϊ except at most one. Applying (3.1) and (3.2) to Σ J P a n d considering

the integrity of yi9 we have

- m) + ( m _ ι } ^ _ f o r e v e n Λ> a n d

ϊcl(cCl)~m) + ( " - ' ) - ^ - forodd*.

and hence we have the condition (ii).

4. Adjacency matrix and PC-decomposability

Before entering the proof of sufficiency of the conditions (i) and (ii) in The-

orem 2.1, some auxiliary theorems will be given in this section.

Suppose an arbitrary direction of adjacency is assigned on every line join-

ing a pair of points of Km(n, n,..., n). The number of possible ways of such as-

signment of direction is, of course, 2^2 '" ' To each way of the assignment,

there corresponds a 0—1 adjacency matrix

(4.1) Af= | |My | |

of order mn composed of m2 submatrices Mu= \\mipjq\\ of order n defined by

1 if υip is adjacent to υJq,

0 otherwise,

where vip is the pth point in the ΐth set Vt and ip denotes the lexicographical

number of vip, i. e., ip = (i — \)n + p. Clearly,

(A, IΎ\ YY) . , zzz 0 YYI -4- ΪY) . — 1

hold for all p, q, i and; (φi)9 i.e., Mu = 0 and Mu + MJt = Gn>rt (iφj), where Gtu

denotes a ί x u matrix whose elements are all unity.

Conversely, if a 0—1 matrix M of order mn satisfies (4.2), it is an adjacency

matrix of Km(n, n,..., ή) subject to a certain way of the assignment of direction.
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THEOREM 4.1. A complete m-partite graph Km(n, n,..., ή) can be de-

composed into a union of line-disjoint PC's of degree c each, if and only if there

exists a way of the assignment of direction to every line in such a manner that

the corresponding adjacency matrix M=\\Mij\\ of order mn satisfies the follow-

ing two conditions:

(a) Every row sum of M is an integral multiple of c, i.e.,

Σ Σ mipJq = aipc.
j=lq=ί

(b) Every partial row sum of M on the submatrix Mtj is bounded uniform-

ly onj by min(α i p, n), i.e., ΣmipJq<m\n(aip, ή).

PROOF. Suppose Km(n, n,..., ή) is PC-decomposable and the direction of

each line of Km(n, n,..., n) is assigned in such a manner that a point correspond-

ing to the root of a PC is adjacent to the other end points corresponding to its

leaves. Let aip be the number of PC's which have the same root point vip. Then,

since there are exactly aipc points adjacent from vip, the condition (a) must hold

for the adjacency matrix M. Moreover, as there are at most min(aip, ri) leaf

points in Vj9 the condition (b) must hold for each submatrix M i y.

Conversely, if (a) and (b) are satisfied by an adjacency matrix M, we can

select aip sets of c ones standing on the ip th row of M in such a way that every

set is composed of c ones selected at most once from the pth row of Mtj. This

selection can be shown possible [1] and is achieved by an algorithm of the con-

struction of 0— 1 matrix of size aip x m (cf. Corollary 1.3 and Theorem 1.1 in [4])

whose row and column sum vectors are (c, c,..., c) and (s1 } s2,..., sm), where
n

Sj= Σ mipjq^min(aiPi
 n)- Since every selected set of c ones corresponds to a

q=l

PC of degree c, Km(n, n,..., n) is PC-decomposable.

Theorem 4.1 shows that if an adjacency matrix M of order mn which satis-

fies the conditions (a) and (b) can be constructed for an appropriately given set
m n

of nonnegative integers aip ( ί = l , 2,..., m; p = l , 2,..., ή) satisfying ]Γ Σ aip

( m\ ' i-i P=I

2 )n2jc, then Km(n, n,..., w) can be decomposed into a union of line-disjoint
PC's of degree c each. To this end, the following theorem is useful in construct-

ing an adjacency matrix M satisfying the conditions (a) and (b), and, consequent-

ly, for the proof of the sufficiency of Theorem 2.1.
T H E O R E M 4.2. Given a set of nonnegative integers a f ' s satisfying

1) an mxm nonnegative integral matrix ^=11x ,̂11 satisfying Σ
n 7 = 1

= c Σ aip> xii = Q a n d Xij + Xji = n2 (iΦ j) can be constructed,
p=ί
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2) an nxm nonnegatiυe integral matrix γ.= \\yipj\\ satisfying

(4.3) Σ yipj = aipc, Σ yipj = *& and

(4.4) 0 < yipJ < min (αίp, n)

can be constructed for every i, and finally,

3) an nxn 0—1 matrix Mfj = \\mipJq\\ satisfying

( 4 5 ) Σ rnipjq = yipj and Σ mipJq = n - yjqΛ
q=\ p=ί

can be constructed for every pair of i and j satisfying l<i<j<m, then Km(n,

n,..., ή) can be decomposed into a union of line-disjoint PC's of degree c each.

PROOF. Consider an m n x m n O - 1 matrix M = | |M f J defined by

ί Mfj for i < j ,

MtJ = 0 f o r / = . / ,

ί G B i l l - M J f . f o r i > j ,

then M is an adjacency matrix of Km(n> n,..., ή). Moreover, since the pth row

sum of the component matrix Mtj is yipJ for every j , M satisfies the conditions

(a) and (b) of Theorem 4.1.

5. Proof of the sufficiency

In a trivial case c = l , the conditions (i) and (ii) are obviously sufficient.

Thus we consider the case c>2.

For a set of parameters m, n and c satisfying the condition (i) of Theorem

2.1, put

fα + 1 for p = 1, 2,..., ίis

(5.1) α ί p =
ί α for p = tt + 1, ίf + 2,..., n,

for every i = l, 2,..., m, where α, d and s are nonnegative integers satisfying

(™)n2lc = w>ια + md + s, 0 < d < n, 0 < s < m,

and ti = d+\ or d according as ie{ l , 2,..., s} or ie{s + l, s + 2,..., m}. Since

Σ Σ αiD==( ? j ^ 2 / ^ * t^ e sufficiency of the remaining condition (ii) imposed on

the parameters in Theorem 2.1 will be proved by showing that the matrices Xy
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Yt and Mfj stated in Theorem 4.2 can be constructed for the particular set of

aip given in (5.1).

5.1. Construction of X

It is sufficient to construct an m x m nonnegative integral matrix

(5.2) X

(5.3)

L Xn Xii

composed of four submatrices Xkι (k, / = 1 , 2) which satisfy

Γii + XL = n\GStS - Is), X22 + X\2 = n\Gm.s^s - Jm_ s),

Xί2 + Xlγ = n 2G s,m_ s,

and

(5.4) [JΓ n X 1 2 ] j m = c(na + d+ l)j5, [X 2 1 X 2 2 ] j w = c(na + d) j w _ 5 ,

where j , denotes a /-vector whose components are all unity and It denotes the

identity matrix of order t.

(a) Case n is even. Let

L 1 2

ι22

then X* satisfies (5.3) and its upper and lower halves of row sum vector are

IXn Arf2]jm = (m — l ) - ^ - j s and {X*\ ^22]Jm = ( m "" l)-^-Jm- s Putx = (

) = s—, and let

= (x, x,..., x) and βτ = (y9 y,..., y). Then since 0 < x < m — s and 0<<y<s, a 0—

1 matrix B of size sx(m — s) which satisfies 5 j m _ s = α, β Γ j s = j8 can be constructed

[1; 4]. Thus X* can be adjusted to X which satisfies (5.4) in addition to (5.3)

after replacing Xf2 and X%λ by X12 = Xf2 + B and Z 2 1 = Z J i " " ^ Γ > respectively,

(b) Case n is odd. Consider

V* V
21 22

n2 - 1 ,.

2 ^m-s.s

n2+
2

n2- 1
m-5,m—s *m—s) •* m—s
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where the form of both Ts and Tm_ s is either

201

0 1 1 0 0

•
0
1

•
• 0 1•

. o. 1
•

1 0

or
0 1 1 0 . . 0

0 1

1 . 1 0

according as s and m — s are odd or even, then X* satisfies (5.3). Put

x = c(na + d + 1) - (in - 1) "* + l + -ί-^i-

or (m — 1)- 4- - c(na + d + 1)

or c(na + d) — (m — I)

2

— c(na + d)

ή2 — I m — s — 1

2 2

according as m<2c or m>2c + l, and let

, x,..., x) for odd s,

x - -y, .., ^ — y , x + -y*---* x + -y) for even 5 and m <2c,

α τ = (

ί x + -y,..., Λ: + -y,..., for even s and w > 2c + 1,
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(y,y,...,y) for odd m-s,

y + -y,..., y + -y, y — -y,...,j — -yj for even m — sand m < 2c ,

(m — J )/2 (/» — s)jl

1 1 1 1 \
j> — -y,...,j — y j + -y,..., j> + -y) for even m — J and m > 2c+ 1,

then, since m>c, it can be shown that a 0—1 matrix B of size sx(m-s) satisfy-

ing Bjm_s = α and Bτ\s = β can be constructed [1; 4]. Put

Λ\2 = Λ ι 2 -f ΰ r — \

for c + 1 + 2 < m <2c, and

χ 1 2 = * * , _ £ for m > 2 c + l ,

Λ2l — Λ2ί -f a

then Jί* can be adjusted to X in order to satisfy (5.4) in addition to (5.3).

5.2. Construction of Γf

For a pair of given integers u{ and u2i let

Uj = (a + l)c - (m - l ) u t ,
(5.5)

v2 = ac — (m — l )w 2 ,

p = 1, 2,..., ί£,
(5.6) _ β

p = ί f + 1 , ^ + 2,. . . ,/ ! ,

Miί. — w2(n — ί;) / = 1, 2,..., m (j Φ i ) ,

for e v e r y / = 1 , 2,..., m, and denote rj = (rn, r / 2,..., r/ w), sf = ( s n , ^ i 2 , . . . ,5 ί m ) , where

fj and Xij are the same given in Section 5.1.

L E M M A 5 . 1 . If a 0 — 1 matrix Zt of size nxm satisfying

(5.8) Z j m = r i am* Zfj. = β|

can 6e constructed for appropriately chosen integers ux and u2 satisfying

(5.9) ι/i -h 1 < min(a + 1, ή) and u2 -f- 1 < min(a, n)
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for every / = 1 , 2,..., ra, then the matrices Yu Y2,..., Ym which satisfy the condi-

tion 2) of Theorem 4.2, can be constructed.

PROOF. Let

Γ V* Ί
* ii I

for /=1,2, . . . , m

and put Y^Yf + Zi, where Y f i ^ G ^ , yί £ = M2C
(

πί2f<,m and G(

h% denotes

an A x m matrix whose elements in the i th column are all zero and others are

all unity. Then, since the upper and lower halves of row sum vector of Yf are

^ π i m = = ( m - l ) w i i ί ί

 a n d Y2iim = ( m -l) w 2Jn-ί i 5 respectively, and the column sum

vector of Yf is Yfτ}n = {uίti^u2{n-ti)}}H\ and since (5.5) and (5.8) hold for

Zb Yι satisfies (4.3), where j ^ f ) denotes an m-vector whose i th component is

zero and others are all unity. Moreover, since each element in the first tt rows

of Yt is at most u x 4-1 and each element in the last n — ti rows of Y x is at most

w 2+ 1, (5.9) shows that Yj satisfies (4.4).

The construction of Y{ is, therefore, reduced to the construction of Zf which

will be seen in the following:

(a) Caseniseven. Put M 1 = - ^ - and M2 = -5- — 1, then uv and u2 satisfy(5.9),
n

since a > -y holds by the condition (ii) of the sufficiency. Since stj takes either

n — d—i or n — d except s£i = 0, and since 0<vι < m — 1, 0<v2<m— 1 hold by

condition (ii), it can be verified easily that a 0—1 matrix Z{ satisfying (5.8) can

be constructed for every i = l, 2,..., m [1 ; 4].

(b) Case n is odd. When n = 1, it is seen easily that the matrix X itself given

in Section 5.1 is an adjacency matrix M satisfying the conditions (a) and (b) in

Theorem 4.1. Thus we consider the case n>3.

Now put r = md + s, and three subcases with respect to r will be examined

separately.

(1°) Case 0<r<mn(i- m~c

 1 Y Putu x = ^-±i-and u 2 = - ^ l , then u t

and M2 satisfy (5.9), since a>—^— can be obtained from the inequality—r—
1 2 I ϊϊin

< 1 2 — a n ( * t n e condition (ii). In this case, s o takes either -y (n —2J — 3),

-y(n — 2d— 1) or -y(n —2ί/-f 1) except 5̂  = 0, and satisfies the inequality 0 < sl7 < n,

since d < — ^ — c a n be derived as follows:

AW 2c 2 2c 2

Moreover, t^ and t;2 satisfy 0 < ι ; 1 < m - l and 0 < ι ; 2 < m - l by the inequality
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<1 and the condition (ii). Thus it can be verified that a 0-1
mn 2c

matrix Zi satisfying (5.8) can be constructed for every i = l , 2,..., m [1; 4].
(2°) Case m n ( l - ^ ^ i ^ ) < r < m n - ^ l . Put Uί = u2 = ~L9 then ut

- _ i 1

and w2 satisfy (5.9), since a>—-=—can be obtained from the inequality r<mn

—2— and the condition (ii). In this case, 0<υ1<m-l and 0 < v 2 < m - 1 hold.

For the case m>2c+l, sί7 takes either ^~-— or nZ> except sfi = 0.

Thus a 0-1 matrix Zt can be constructed for every ΐ = l , 2,..., m [1; 4].
c— 1For the case c+lH 3— <m<2c. For every ί'e {1, 2,..., 5}, su takes either

/ i — 1 fl+1 « + 3 " ^ . i x i r r . i . i j 1

—2—, -—•>— or —2— except su = 0 and the frequency of the third value is

not greater than x + -j = (m — s) — c ~ m + -y, where x is the same given in

Section 5.1(b). It can be verified that a 0-1 matrix Zx can be constructed

[1;4]. For every ί'e{s + l, s + 2,..., m}, su takes either —^—, —^— or
y. I 1 A, Δ

—2~— except 5̂  = 0 and the frequency of the third value is not greater than

It can be verified that a 0—1 matrix Zi can be constructed [1; 4].m — s

(3°) Case mn m^1 <r<mn. Put M l = -^zJ_ and M2 = -^y?-, then uι

and u2 satisfy (5.9), since a> —~— holds by the condition (ii). In this case,

su takes either -y(3n-2rf-3), y ( 3 « - 2 J - l ) or -j(3n-2d+ϊ) except sίf = 0

and satisfies the inequality O^s^ ^n . The latter can be verified by showing

that d >^±.

In the case a> —^—, we have d> —^—, since d = > =

s ^ > .ZLzl. in the case α= - ^ - , we also have d > - ^ + i ,
m m

since we have

, _ r _ 5* _ _ ( w — \)n2 __ «(« — 1) _ s

~~ m m 2c 2 m

^ (\ J_
 C " M _ ^ ( ^ — 0 _ m— 1 _ n — 1 , 2c — m n —

"2~V ) + >

by using condition (ii), s<m — 1 and the fact that m<2c holds in the case (3°).
The inequalities 0<ι; 1<m —1 and 0 < ι ; 2 < ^ ~ l can also be verified easily in
this case. Thus it can be verified that a 0—1 matrix Zf can be constructed [1;
4].
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5.3. Construction of Mfj

(a) Case n is even. In the case n>4, yipJ and n — yjqti takes either -y + 1>

-^ or ^r -1 for every pair of / and j O /)• Thus it can be shown easily from [1

4] that a 0—1 matrix Mfj of order n satisfying (4.5) can be constructed for
every pair of i and j satisfying 1 < i < j < m.

In the case n = 2, a little consideration is needed. When d = 0, the inequality
ac — x>[s/2] holds, where x is the same in Section 5.1(a) and [ί] is the greatest
integer not exceeding t. Thus, we can construct a matrix Yt in a way such that
yi2J=l for j(l<j<s) satisfying j-l = i, i+1,..., i + [s/2]-1 mods for every
ΐe{l, 2,..., s}. When d = l, the inequality αc>[(m-s)/2] holds. Thus, we
can construct a matrix Y; in a way such thaty i 2 j = l for j (s + l < j<m) satisfy-
ing j - l = i, i + 1,..., i + [(m-s)/2]-lmodm-s for every ie {s + 1,..., m}.
Hence, we can exclude the case in which both (yntp yi2j) and (2 — yjlti, 2 — yj2ti)
are either (0, 2) or (2, 0). We can construct Mfj for all i < j .

(b) Case n is odd. In the case 0<r<mn(l— m~ \ yipj takes either

« + l , » + L or » = 1 and π - , Λ i l takes either JL^9 JLlL n »Z* . In

the case m π Λ - m~l \ <r<mn ^γ^~, y ί pj and n-yM takes either " t " 1

or -^=J-. In the case mn - ^ ^ - < r < mn, yipJ takes either -^ΐ^-, -^^~

or - 5 ^ - and n - ^ , , takes either - ^ - , ^ ί or ^ 1 - . In any one of the

above cases, it can be shown easily from [1; 4] that a 0—1 matrix Mfj of order
n satisfying (4.5) can be constructed for every pair i and j satisfying
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