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1. Introduction

Let U be the unit open ball with center at the origin in the n-dimensional

Euclidean space Rn. It is well known that a non-negative function u harmonic

in U has a non-tangential limit at almost every boundary point of U. Diederich

[4] proved that such a function u has an me (mean continuous) limit at almost

every point of 917; we say that u has an me limit & at ξ e dU if

r l O ' J B ( ξ , r ) f \ U

B(ξ, r) being the open ball with center at ξ and radius r. By the mean value

property of harmonic functions, we can show easily that u has a non-tangential

limit at every point of 9U at which u has an me limit.

Now let / be a function defined on U whose (partial) derivatives of the first

order exist a.e. in U and satisfy

(a) ( |grad/|2(l - \x\)"dx < oo, 0 g α < 1.
Ju

This condition only does not necessarily ensure the existence of non-tangential

limits of/ (see Proposition 2 in Sec. 4). In case n = 2, assuming that / is con-

tinuous in 17, Carleson [2; Theorem 3 in Sec. V] proved the existence of radial

limits of/. Wallin [19; Theorem 1] generalized Carleson's theorem to higher

dimensional case with / defined on the upper half space Ry. and satisfying the

condition analogous to (a):

(b) \ \ \gΐ3,άf\2x^dx1 "dxn < oo, 0 ^ α < 1,

for any bounded open set G cR^. He also proved that if in addition/is harmonic

in R$, then the non-tangential limit of/exists at ξεdR^ except for a set whose

Riesz capacity of order 2 — α is zero ([19; Theorem 3]).

In this paper we are concerned with Beppo Levi functions / of order m

defined on Rn+ which satisfy
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(c) Σ (-( \D*f\'x dXl . dxΛ<cQ
\λ\=mj JO

for any bounded open set GcRj, where l<p<oo, —oo<α<oo and Dλ =

(d/dxj^—tfldxj** for a multi-index λ = (λί,..., λn) with length \λ\=λ1 + -+λn.

In case w = l, the existence of perpendicular boundary limits o f / w a s given by

[11; Theorem 1] as a generalization of [19; Theorem 1]. The existence of

non-tangential limits of/with an additional condition that/ is polyharmonic of

order m in R+ was discussed in [13; Theorem 1] for m = 1 and in [16; Theorem 1]

for general m. Our aim is, therefore, to improve [11; Theorem 1] and [16;

Theorem 1].

We shall show first that if / is a function defined on jR'j and satisfying (c),

then / has me limits at points of dR$ with an exceptional set whose size is well

evaluated by the Bessel capacity. (For the definition and properties of Bessel

capacity, one may refer to [8].) Next we prove, with the aid of a property of

polyharmonic functions given by Edenhofer [5], that if in addition / is polyhar-

monic of order ra + 1 in R^9 then non-tangential limits of/exist. This gives a

generalization of [16; Theorem 1]. We include this theorem here as an example

of application of Theorem 1 although it is a special case of Theorem 2' which will

be proved later in Section 9. We shall also discuss the existence of perpendicular

boundary limits of / in order to obtain an improvement of [11; Theorem 1].

In case n = 2, Gavrilof [7 Theorem 3] showed that given a function / on U
satisfying (a), for ξedU except those in a set whose Riesz capacity of order 2 —α

is zero, there exists a constant cξ satisfying

c* = lim/(ξ + (r cos 0, r sin #)) for almost every θ e (0, π).
r J O

By using [14; Theorem 1], we can generalize this result to the case where /is an

(m, p)-quasi continuous function on JRίJ. (see [10; p. 379]) satisfying (c). In Sec-

tion 6 we shall discuss the fine limits with respect to a suitable capacity for functions

described above.
For such a function / satisfying (c), we shall study in Section 7 when the

equality

holds. Clearly, Holder's inequality implies that/has an me limit £ at ξ at which

the above equality holds. The investigation of this problem can be done in a
way similar to the case of me limits. However q depends on m, p9 α and this
fact complicates the matters. The main difference with the case of me limits is

that we must use a generalization of Sobolev's inequality.

In Section 9 we shall prove the existence of non-tangential limits of poly-
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harmonic functions in a general domain. The proof, different from that of
Theorem 2, will be carried out along the same lines as the proofs of [13; Theorem
1] and [16; Theorem 1]. The essential tool is an integral representation of poly-
harmonic functions of order m by means of their derivatives of order less than m,
which is derived from a result of Edenhofer [5].

2. Preliminaries

Let jRn, n^2, be the rc-dimensional Euclidean space. A point xeRn will
be sometimes written as (V, xn) e jR""1 x Rl. We set

R"0 = {* = (*', xn)

For a point x = (xl5..., xw) and a multi-index λ = (λl,...) λn), we define

xλ =x}i. xί», \λ\ = A ! +-+λn,

Dλ =

Given a function u whose derivatives of order m exist a.e. on an open set G<=:Rn,
the vector valued function defined by

is called the gradient of order m of w ; in particular, D0 = identity and D± will be
written sometimes as D.

Following [3], we shall use the notation BLm(Lfoc(#ϊJ.)) to denote the space

of all functions in L%OC(R+ ) whose (distributional) derivatives of order m are all

in Lfoc(jR![.) Throughout this paper, let l<p<oo. If a function u6Lfoc(Kίj:)
belongs to BLm(Lfoc(R!j.)), then u e BLk(Lfoc(R$)) for any positive integer k<m
(cf. [3; Theoreme 2.1]). For any u eBL^L^^RlJ), there is a function which
is equal to u a.e. on R^ and p-precise1) on any relatively compact open subset of

RΊ_ (or locally p-precise on #£ in the sense of Ohtsuka [17; Chap. IV]). One
can show that any locally ^-precise function u on R$ is absolutely continuous
along almost every (half) line parallel to the coordinate axis and contained in RI,

so that u is partially differentiate a.e. on #!}.. Moreover, for ξeR+, u(ξ + rσ)

is absolutely continuous as a function of r>0 for a.e. σeδJB(0, 1) n R+.

The Bessel capacity of index (/?, p) is denoted by Bβtp. For the definition,

see [6]. Denoting by Cβ the Riesz capacity of order /?, we have the following

relations between these capacities :

1) For the definition of ^-precise functions, see Ziemer [20] and Ohtsuka [17; Chap. IV].
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1) If Bβtp(E) = 0, then Cβp(E) = Q in case p<^2 and Cy(£) = 0 for any y>0

with γ<βp in case p>2.
2) If Cy(E) = 0, then By/ptp(E) = Q in case ^2 and Bβtp(E) = Q for any

with β<y/p in case p<2.
These follow from Fuglede [6] together with [10; Theorems 2.4 and 3.2].

3. Mean continuous limit

We say that a function u on RΊ has an me limit of order q ̂  1 at ξ e R% if
there is a number ft with

lim-U |U(X)-
r I O ? Jβ + (ξ,r )

where £+(£, r) = £(£, r) n #+. In case q = l, u is said to have an me limit 6 as
defined in the introduction.

In Section 7 we shall be concerned with me limits of general order. The
statement of the result in the general case as well as its proof are rather com-
plicated. So we start with the case q = 1 in which the result has a simpler form.

THEOREM 1. Let m be a positive integer, l<p<co and — oo<α<Jp — 1.
Let uεBLMc(R»+y) satisfy

(1) |JDmιι(x', xj\pχ dx'dxn < oo

for any bounded open set G^R^. Then we can find a Borel set E<=:R% such that
£m_α/pίp(£) = 0 and u has an me limit at each point of R%\E.

Before proving this theorem, we prepare several lemmas. Let us begin with
the following lemma.

LEMMA 1. Let K be a Borel measurable function on RnxRn which is
continuous outside the diagonal set {(x9 x); xeRn}. Suppose there are con-
stants β>0 and C>0 such that

\K(x, y)\ ̂  C\x - y\β~n for any x,yeRn.

For a measure μ, we set

= κ(x, y)dμ(y)

at xeR" at which the integral has a meaning. If \ |x° — y\β~nd\μ\(y)<ao and

})̂  (Iμl denoting the total variation of μ), then
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r J O r" Jβ(x°,r)

PROOF. Set

ι/ι(χ) = J 0

 χ(*» 3>)<Wjθ,

l/2(x) = J ^^

Then we have

\U,(x)\dx

( {( \x-yΓ"d\μ\(y )\dx
B(x°,r) (J\x-y\<\χO-x\/2 1

r J β j c °β(jc°,r)

β(jc°,2r)

| χ °- j
B(x°,2r)

- > 0 as r I 0,

where C and C" are constants. On the other hand, in case β^n, since \K(x, y)\
^ const. |x° — y\β~n if |x — ̂ |^|x° — x|/2, we can apply Lebesgue's dominated
convergence theorem to obtain

This holds also in the case β > n, because K is continuous on #" x Rn in this case.
Hence one can show easily

lim-U
r I O r J

Consequently,

limsup^ί |
r i O r jB(x°,r)

^ lim /•-" ί 11/! (x) I dx + lim r"w f | i72(x) - i/t(x°) | dx = 0,
r l O Jfl(jc°,r) r i O Jβ(jc°,r)
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which proves the lemma.

LEMMA 2. Let -l<α<p-l. Let f be a non-negative function in
L\oc(Rn) which vanishes outside some compact set in R" and satisfies

\ f(yY\yn\ady<vo. Then, for a positive integer m the function
JRn

F(x) = \χ-y \m-nf(y)dy, x e Rn

+9
JRn

belongs to BLm(Lp

loc(Rn

+J) and ( \DmF\?x"ndx<co.
JRΪ

PROOF. For ε>0, we set

Kε(χ) = ( |χ |2 + ε)(m-n)/2

and define

FJM = ( κε(x - y)f(y) \ yn \"^dy9 xeR".

Then Fε is infinitely differentiable on #" and, on account of [10; Lemma 3.2 and
its proof], there is a constant c^ >0 independent of ε such that

( |DmF6(x)|^x^Cl( f(yY\yn\*dy.
JRn JRn

Since /e L1^"), F e Lloc(Rn+) and κε*/ is infinitely differentiable on Rn. Let
= (A1,..., λn) be a multi-index with length m. Then

- D*Fε(x)\ ^ c2\ \x*n" - \yH\ "\ \x - y\-»f(y)dy
JRn

500

-o

00

oo

where c2 is a positive constant and

for x = (x', xπ) and y =(/, > n̂). By a property of Poisson integral (cf. [18; Theo-
rem 1, (a) in Chap. Ill and Theorem 1, (c) in Chap. I]), we can find a constant
c3>0 independent of xn and yn such that
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x', xn, yn)"dx' ^

Applying Appendices A.I and A. 3 in [18], we can derive that

1//7 \ pΓoo/foo

= Jo 0-ooK(X"' y

CCC/COD (r \ l / p \p

gc 3 ( Kίx^^jl/ί/.^I^IW dyndxn
Jθ\J-°D IJ J

where Aκ= (°° X(l, jπ) | yn Γ
1/pdjπ< oo. We thus obtain

J-oo

IIP

«
with c4 = c}/p + cj/py4x, which is independent of ε. Now we show that

(2) ( \DλF\px$dx < oo.
JRl

Before proving this fact, we note that F e BLm(LfocCR!}.)), since f°r any « > 0,

belongs to BLm(Lp(Rn)) because of [10; Lemma 3.3] and F — Ga is infinitely

differentiable on βfl/2, where

Qa = {* = (̂  ^n)e^M; \x'\ < a, a'1 < xn < a}.

To prove (2), let φ e C$(Rn+). Then

(DλF(x)φ(x)x*n!
pdx = ( - l)m(F(x)Dλ(φ(x)x*n/

p)dx

= (- 1)- lim \(κβ*f)(x)D\φ(x)x«n^dx
εiO J

ε l O
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« ) i/p
Rn\Dλ(κΛ*f)(x)\>x dx^ \\φ\\p.

^ c*§f(yγ\yn\
ΛdyY/P\\φ\\p.9 1/p + W = 1,

which proves (2). Since (2) is fulfilled for any λ with length m, our lemma is

proved.

The following lemma can be proved in a way similar to [16; Lemma 2].

LEMMA 3. Let fc^2 be an integer, α>0 and ξeR%. If u e J3Lfc(Lfoc(Kϊ))

isfies \ |£- jH f e~"I
JΓU β)

satis

"9 \(x', Q}-

LEMMA 4. Let α, p «πJ m be ίzs /n Theorem 1. Lei/ fee α non-negative

function in Lloc(Rn) which has compact support and satisfies \ f(y)p\yn\
Λdy

)R»
<oo. If we set

PROOF. First we treat the case α>0. Consider the function

v(x) = ( I x - y \m~nf(y)dy, x e .Ri[..

Then by Lemma 2, ι? e BLw(Lfoc(Rΐ)) and \ |/>mί;|/7xίί/x< oo. Therefore, if we
JK"

; ( \ξ- y\m-*/p-n[_\Dmv(y)\y*nf<Ίdy = ool,
J B ( ξ t l ) Π R + )

set

E' =

then £m_α//M,(£') = 0. It suffices to show that EaE'. Suppose £<££', i.e.,
there is ξ E E — E'. Then v(ξ) = oo and hence

(3) limv(ξ 4- rσ) = oo for any σedB(O9 1) n R+
rlO

by the lower semicontinuity of v. On the other hand, the assumption that
implies
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\ξ-y\m~n\Dmv(y)\dy< αo,

which gives by Lemma 3

\ξ-y\1~"\Dυ(y)\dy«x).
)Γ(ξ;l)

Accordingly, setting S = Γ(0, 1) Π dB(0, 1), we have

\ j \ \Dυ(ξ + rσ)\dr\dS(σ) < oo.
Js Uo J

From this it follows that

\Dv(ξ + rσ)\dr < oo for a.e. σeS.
o

Since v(ξ + rσ) is absolutely continuous on (0, oo) for a.e. σeS, lim,.io v(ξ + rσ)
exists and is finite for a.e. σeS. This contradicts (3) and thus our lemma is

proved in case α>0.
In case α^O, the proof can be carried out without the aid of Lemma 2. In

fact, consider the set

E" = = 00} .

Then it is easy to show that EaE" and £m_α/pjp(F') = 0. Now our lemma is
completely proved.

LEMMAS. Let k be a positive integer and β>—i. If u

satisfies \ \Dku\px^dx<co for any bounded open set G^R^9 then
JG

\
J

\pxγ

ndx < oo

for any G described above, where y is a number such that y = β — p if β>p—l

and -l<y<β if β^p-1.

PROOF. We may assume that the derivatives of u of order k—1 are locally

p-precise on R^. Given a bounded open set Gc=β£, we can find a number α>0

such that Gc:{χ = (x1,..., xn); |x j |<α for all i} and \ \Dk,ίu(x', a)\pdx'<co.
J\x'\<a

Holder's inequality gives

y, 01 Λ
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\Dku(x<, OI'PΛJJ" r«''*dty/P' + \Dk_lU(xf, αψ)

for x = (X, xn) withO<xM<α, where εis a number such that ε = β — y — 1 if β^p—
and p—l<ε<βtfβ>p—\, and c l 5 c2 are positive constants. Noting that

f " r&p'lpdt ^ const. xε

n°
JXn

with ε0 = min {0, —εp'/p + l}9 we obtain by Fubini's theorem

which gives easily the required inequality in our lemma.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Take a number q such that q = p if αrgO and l<q
<p/(α+1) if α>0. Then Holder's inequality yields

\Dmu\*dx< oo

for any bounded open set Gc#" From Lemma 5 it follows that \ \Dku\qdx
JG

<oo for any bounded open set Gc:R'± and any integer k with Og/c^m.
Given N > 1, let us consider the existence of me limits of u at points of R$ n

B(0, N). Take φ e C$(Rn) which is equal to 1 on B(0, 2N), and define

v(χ) = u(x)φ(x), x e R**..

Then Σ?=o \ \Dkv\qdx<co. In view of Theorem 5 and its proof in [18; Chap.
JR+

VI], we can find a function w e BLm(Lq(Rn)) which is equal to v a.e. on R$9 vanishes
outside some compact set in Rn and satisfies

\ \Dm
Jβ(0,ΛO

Hence, with the aid of [10; Theorem 3.1] we have the following integral repre-
sentation:

(4) w(x) = }£m

a*Iy«Dλ^dy a e on Λ"

where aλ are constants independent of x. Consider the set

EN = IξeRξi \ \ξ - y\>»-»\Dmw(y)\dy = ool .
( Jfl(O,N) J
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Then Bm-Λ/ptp(EN) = Q on account of Lemma 4. It remains to prove that w (and

hence ύ) has an me limit at each point of Kg n B(09 N)\EN. Let ξ e R% n B(0, N)\
EN. Then

fe - y\n-"\Dmw(y)\dy < oo,

so that Lemma 1 shows that the right-hand side of (4) has an me limit at ξ. This

leads to the fact that n has an me limit at ξ. Hence \J^=ίEN is the required
exceptional set, and we conclude the proof.

4. Non-tangential limit

A function u on R$ is said to have a non-tangential limit at ξ e Rξ if

lim w(x)
χ-*ξ,xeΓ(ξ',a)

exists and is finite for any a > 0.

THEOREM 2. Let m, p and α be as in Theorem 1 . Let u be a function

polyharmonic of order ra + 1 in R+. Suppose u satisfies (1) for any bounded

open set GdR'±. Then there exists a Borel set E with Bm_Λ/pp(E) = Q such that
u has a non-tangential limit at each point of Rζ\E.

PROOF. First we note the following formula:

„(*) = £ Ciχ-*( I x - yVt-ί^uWdy,
i = 0 jB(x,xn/2) \VVJ

where x = (xr, xn)eR^9 c^O^i^m) are constants depending only on n, m and

/, and v denotes the outward normal to dB(x, xΛ/2), i.e.,

This can be proved by the aid of [5; (15)] (cf. [16; (3)]). By Theorem 1, there is

a Borel set E^ cβg such that J5m_α/p>1,(£1) = 0 and u has an me limit at each point

of #8\Eι. We set

E2 = \ ξ E R » 0 ; ( n\ξ- y\m-"\Dmu(y)\dy = ool ,
I jB(ξ,l)Γ\R+ )

E = E! U E2.

Then βm_α/p)p(£2) = 0 by Lemma 4 and thus £m_α//7)p(E) = 0. If ξ e^g\£, then u

has an me limit £ at ξ, so that
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\u(y)-£\dy

+ ΣkI.|χ;,-πί
i=l JB(x,Xnl

^ const. < I x — ξ \~n \ I u(y) — f, \ dy

\ξ-y\*-»
ί=ljB(x,xn/2)

- > 0 as x - >ξ, x = (x',xn)eΓ(ξ;a)9

for any 0>0 on account of Lemma 3, since ζξ£E2 and we can find 6>0 such that
B(x9 xπ/2)c:Γ(£; b) whenever xeΓ(ξ α) and \x-ξ\<l/2. The proof is now
complete.

PROPOSITION 1. Let α<p— 1 and mp>n. Let K be a function on RnxRn

w/πc/7 is continuous outside the diagonal set and satisfies \K(x9 y)\^\x — y\m~"
for all x, yeR". For a non-negative function feLp(Rn\ we set

If \\χ — y\m~nf(y)\yn\~aί/pdyΦcιo9 then u is continuous on R^ and one can find

a set EciRζ with #w_α/p>p(£) = 0 such that u has a non-tangential limit at
every ξ e R%\E.

COROLLARY. Let α, p and u be given as in Theorem 1. // mp>n and u
is continuous on R^9 then there exists EczRζ such that J3m_α/Pjp(£) = 0 and u has
a non-tangential limit at every ξeR$\E.

The corollary follows from the fact that by Proposition 1 , the right-hand side
of (4) is continuous on R^ and has a non-tangential limit at every ξ e Rζ except
those in a set E with JBm_α/p)J,(E) = 0.

REMARK. If mp>n and u e BLm(Lfoc(jR£)), then there is a function which
is continuous on Ry. and equal to u a.e. on R'± (cf. [10; Lemma 2.3 and Proposi-
tion 3.1]).

PROOF OF PROPOSITION 1. Let z = (z', zJeR^ and δ<zJ4. For xeB(z,
δ), we have by Holder's inequality
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^ {( \x - v !''(«-»)IyΛ\- ''»dyY*'\(f(y)>dyY"
(J\χ-y\£δ J U J

g const. z-*/Pδm-n/pί(f(y)pdy\1/P, l/p + l/p' = 1.

Since limx^2\ K(x, y)/(v) I yn \~*/pdy = \ K(x, y)/(>')l yn \~Λ/pdy by
J\x-y\>δ ' J\z-y\>δ

Lebesgue's dominated convergence theorem,

I//7

lim sup |tt(x)-M(z)|^const. z-«lpδm-nlp\()
x +z (J

which implies that u is continuous at z, and hence on R$.

Let α>0 and £e#g. If \\ξ — y\m~nf(y)\yn\~*/pdy<co, then Lebesgue's
J

dominated convergence theorem gives

r
lim \ K(x, y)j (y) \ yn \

χ-+ξ,xeΓ(ξ;a)J\χ-y\>xn/2

If in addition limr 10 rm^-α~M\ f(y)pdy = 0, then

const.
I )\ξ-y\<(a+2)xn

- > 0 as x - >ξ, xeΓ(ξ α),

so that u has a non-tangential limit at ξ. Proposition 1 follows from Lemma 4

and the next lemma.

LEMMA 6. Let β>0 and f be a non-negative function in Lp(Rn\ If we set

E = \x E R" lim sup r^~M \ f(y)pdy > ol ,
I riO Jβ(Λ;,r) J

then Bβtp(E) = Q.

PROOF. If βp^n, then £ is empty and the conclusion is trivial. Let βp<n

and consider

Then Bβ_ „(£') = 0 by [9 Theorem 2. 1] . Jfx&E', then
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/WOT"1 — * const
β(x,s) ) S I'M /ω( JB(x,r)

and the last term tends to zero as r | 0. This implies that Ec:E'. Our lemma

is thus proved.

PROPOSITION 2. Lei m, p and a fee as in Theorem 1. Ifmp^n, then there

is a function ueC<X)(R1ί) which satisfies (I) but does not have a non-tangential

limit at any point of RQ.

PROOF. Let Ej = {(iJ~2,..., /II-ι.Γ2,.Γ1); ίfc = 0, ±1,..., + j3 for 1^/c^
n —1} for each positive integer j. Then Bm p(Ej) = Q and hence we can find a

function ^eC^CR") such that <p/^l on Ej9 = Q outside {(*', xπ) e^Rj 2~x

O"1 +(7 + l)~1)<xn < 2~1((j — I)"1 +7"1)} and satisfies \\Dmφj\p\xn\
adx<2~J, on

account of [10; Theorem 2.3]. It is easy to see that the function u = Σj>

=lφj

satisfies all the conditions in our proposition.

5. Perpendicular and radial limits

In [11], we discussed the existence of perpendicular boundary limits of

locally p-precise functions u on R$ satisfying

\Du \pxΐdx <oo, 0 ̂  α < p - 1.
R +

Here we shall generalize the result obtained in [11].

We say that a function u on JR" is (m, j?)-quasi continuous if given ε>0,
there is an open set Gci Rj such that Bmtp(G)<ε and u is continuous as a function

on #+\G. If M e BLm(Lfoc(R$))9 then we can find an (m, p)-quasi continuous
function on R$ which is equal to u a.e. on R'± (cf. [10; Lemma 2.3]).

THEOREM 3. Let 0^α<p — 1 and let u be an (m, p)-quasi continuous

function in £Lm(Lfoc(R+)) which satisfies (1) for any bounded open set G^R+.

Then there exists a Borel set E<=R% such that Bm_Λ/p)p(E) = Q and limJCn ; 0 u(x'9 xn)
exists and is finite for every x' eR""1 with (x',

PROOF. As in the proof of Theorem 1, we may suppose that u e BLm(Lq(RnJ)
for some q>!9 vanishes outside some compact set in R" and satisfies (4) for a.e.

xeR". Since each term of the right-hand side of (4) is (m, p)-quasi continuous
on RΊ because of [10; Lemma 3.3], it is enough to prove the assertion of the
theorem for a function u for which
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holds on RΊ except for a set E^cRζ. with Bmtp(EM) = Q, where , is a multi-index
with length m and / is a non-negative function with compact support which

satisfies \f(y)p\yn\
Λdy<co.

Let £<2> = £e£3; \ξ-y\m-nf(y)dy = v . Then βm_α/p,p(E<2>) = 0 and for

by Lebesgue's dominated convergence theorem, where x= (£',*„).
Consider the set

Ek = jx = (x', xn)e#"; 2-* g x

for each positive integer k. Here {bk} is chosen so that limfc_> 00^=00 and

Σ*=1M /(};)p};n^>;<00 To evaluate the size of sets £k, it is
}2-k-ι<yn<2-k+2

convenient to use the following capacity: Letting β>Q and G be an open set
in #n, we define

where the infimum is taken over all non-negative functions g G Lp(Rn) such that

0 = 0 outside G and \ | j c — ̂ ""^(^dy^l for all xeA. Let α>0 be a number

such that the support of/ is contained in B(O9 a). If x e Ek, then

f I x _ y \>»-*'p-»i
J2-k-ί<yn<2-k+2

Hence we have by definition

Cm-Λlp,p(Ek; B(0, α)) ̂

In general, denote by A* the projection of a set A to the hyperplane R$. We

set

E = (^ί*))* U £<2> U (Λ ( 0

If ξeR&E, then limJCnioι/(x) = (^-j;)λK-j|-"/ω^ where x =

Thus the following lemma establishes our theorem.
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LEMMA 7. Let β>0. For a set EaR" and α>0, we have

Moreover, Bβ}p(E) = 0 if and only if Cβtp(E n G; G) = 0for any bounded open set

GcR». Consequently, ifBβίp(E) = Q, then'Bβtp(E*)=0. ,

The first part of this lemma can be proved in the same way as [12; Lemma
1]. The second part follows from the property of Bessel kernel and the definition
of capacities.

REMARK. In case α<0, for any compact set £c=JRg with £OT>/,(E) = 0, there

exists a function weC°°(^!f) such that \ JDwtt| |'x;jdx<oo and HmXnlQu(x', xn)
J.R?

does not exist for any x' e R"'1 with (V, 0) e E.

To show this fact, let Ek = {x = (x', xn)eR"; xn = 4'k9 (*', 0)e£} for each
positive integer k. Since Bmtp(Ek) = Q, by [10; Theorem 2.3] we can find φke

C$(R") such that φk^\ on Ek, vanishes outside {x = (xr, xw)e,Rn; 2~2k~l<xn<

2~2k+1} and satisfies ί|Dmφfc|Prfx^22fcα-fc. We have only to take ιι = Σ?=ι Φ*

We next prove the following theorem, which is an improvement of [7;

Theorem 3].

THEOREM 4. Let α, p, m and w ί?e as in Theorem 1. Suppose u is (m, ;?)-

(/was/ continuous on R%. Then there exist Eί9 E2<=Ro such that Cwp_a(£1) = 0

in case mp — a<n, ̂ =0 (ί/?β empty set) in case mp — a^n, βm_a/p}p(E2) = 0 and
to each ξeR^\(Eί U E2), there correspond a number cξ and a set Aξ with the

following properties:
i) βm>p(^) = 0; ii) Aζc:dB(ξ9l);

iii) linvo u(ξ + r(z - ξ)) = cξ for every z e dB(ξ, 1) n R$\Aξ.

PROOF. As in the proof of Theorem 3, we may suppose

for xel^J except possibly in a set E3aR$ with .Bm>p(£3) = 0, where A is a multi-
index with length m and / is a non-negative function with compact support such

that (f(y)p\yn\
Λdy«x). Set

= 00} ,
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Then Bm,<x/pίp(E2) = Q by Lemma 4, Cm/7_α(£1) = 0 if mp-a<n and E1=0 if
mp — α^n.

Let ξeR^Ei U E2) be fixed. For a set £, we denote by E the set of all
points x 6 dB(ξ, 1) such that ξ -h r(x — ξ) e E for some r > 0 with r < 1 . . . . By Lemma

5 in [14], Bmtp(E3) = Q. Since -y\

tends to cξ=((ξ-y)λ\ξ-y\~nf(y)dy as x-+ξ, xeΓ(ξ; α), for any α>0.

For α>0, we can find 6>0 such that B(x, xJ2)c-T(ξ; b) whenever x =
(x', XM) e Γ(ξ a) and \x-ξ\< 1/2. Define the function

( /(x) if xeΓ(ξ b),
</(*) =

[ 0 otherwise.

Then \\ξ — y\mp~"g(y)pdy<co and for any xeΓ(ξ; a),

By [14; Lemma 6], there exists a set £(α)c:aβ(ξ, 1) such that Bmfp(E(aJ) = 0 and

lim f |z(r) - y\m-*g(y)dy = 0
r I O }\z(r)-y\<\z(r)-ξ\/2

for every zeδJ3(ξ, l)\£(fl), where z(r) = { + r(z-ξ). Thus, if ze3JB(ξ, l ) n Λ ϊ \

lim w(ξ + r(z - ξ)) = cξ.
r I O

Now our theorem is proved with Aξ = E3V.(\J<£=ί E(k)).

REMARK!. In case mp — oc^n or p^2, Bm,Λ/ptp(Eί\j E2) = 0. In case
mp — a<n and p<29 we have the following theorem:

THEOREM 47. Lei α, p, m and w be given as in Theorem 4. Then we can
find £<=#8 such that £m_a/p>p(jEΓ) = 0 and to eac/t ξeRζ\E9 there correspond a
number cξ and a set Aξ with the following properties:

i) Aξc:dB(ξ, 1);
ii) BmtJiAξ) = Q for any q, 1 < q < p\

iii) lim r l o u(ξ + r(z - {)) = cξ /or a / / z e 3B«, 1) Π R}\Aξ.

To prove this theorem, replace £t in the proof of Theorem 4 by
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E' = I ξ e R ξ ; Γ ["/-"-«-»( f(yγ\yn\*dyΎl(P~l)*L. = 00}
I J o L JB(ξtr) J r J

and note Bm.Λ/ptp(Ef) = 0 in view of [9 Theorem 2.1]. If ξ 6 Λg\E', then Holder's

inequality gives

( \ξ - y\mq-nf(y)qdy < <χ>
JΓ(ξ a)

for any α>0 and any g, l<q<p. We now apply [14; Lemma 6] and obtain
the desired result in the same way as the proof of the previous theorem.

REMARK 2. In view of the proofs of Theorems 3, 4 and 4', we may take
cξ = limXnlQu(ξ + (O, *„)) in Theorems 4 and 4' if 0^

6. Non-tangential fine limit

We say that a set EcRn is (β, p)-thin at x° eR" if

°, r/2); B(x°, 2))] 1 /^ 1 >- < oo.

In case βp<n, by [15; Appendix] this is equivalent to

Π B(x°, r))]1/ '̂1)-^- < oo,
•o

which is given by Meyers [9] (see also [1]).

LEMMA 8 ([9; Proposition 3.1, (v)]). // {Ek} is a sequence of sets each of
which is (β, p)-thin at x°9 then there is a sequence {rk} of positive numbers such
that WjLi (Ek n B(x°, rfc)) is (β, p)-thin at x°.

THEOREM 5. Let α, p, m and u be as in Theorem 4. Then there exists a
set EdR" such that Bm_Λ/ptp(E) = Q and to each ξεRξ\E, there corresponds a set
Eξ with the following properties:

i) Eξ is (m, p)'thin at ξ\
ii) Hmx_>5fJceΓ(ί;β)^δM(x) exists and is finite for any α>0.

PROOF. As in the proof of Theorem 4, we may suppose that M is a function
of the form

«(*)
Consider the sets



Various Boundary Limits of Beppo Levi Functions 735

= 00} ,

B ( ξ , r )

Then Bw_e/M(£1Ul52) = 0 bY Lemma 4 and [9; Theorem 2.1]. Let ξeRξ\
( E ι \ ) E ) . Since

I f - y\n

forα>0. Let

1
J\x-y\x-y\<Xn/2

Here {fefc} is a sequence of positive numbers such that limk^00 bk=co and

?,[>.' < 00.

If we set F7 = W f c L i £kj, then Fj is seen to be (m, p)-thin at ξ. By Lemma 8, we
can find a sequence {r,-} of positive numbers such that Eξ = \ J J )

= ί ( F j ( ] B ( ξ 9 r,-))

is (m, p)-thin at ξ. One sees readily that

\ξ- y

and obtains the theorem.

REMARK. In case α^O, one may replace Γ(ξ a) by R$ in ii) of the theorem.

7. Mean continuous limits of general order

Let us recall that a function u on R$ is said to have an me limit of order
q ̂  1 at ξ E Rξ if there is a number £ with

lim-U \u(x)-.
riO r Jβ + (|,r)

where B+(ξ, r)=B(ξ9 r)T\R$.

Define p* and p** by

1 1 m
p* p n ' /?** p n
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THEOREM 6. Let m, p, α and u be as in Theorem 1. Then there is
with £m_α/jpjp(E) = 0 such that at each point of Rξ\E, u has an me limit of the
following order q :

i) q = p** if α ̂  0 and mp — α < n;
ii) any q, 1 ̂  q < oo, if α g; 0 and mp — a = n;

iii) g = oo, ϊ/ a ^ 0 and mp — a > n;
iv) g = p*, // a < 0 and mp < n;
v) any g, 1 5̂  g < oo, // a < 0 and mp = n;

vi) g = oo, (f a < 0 and mp > n.

To prove this theorem, we need the next lemma whose proof will be given
in the appendix.

LEMMA 9. Let α, β, p and q be given as follows:

0 < / ? <
p q p n p

where l/p + l/p' = l. For a non-negative function fεLp(Rn), we set

Then there is a positive constant M independent of f such that

\\F\\, ̂  M \\f\\p.

PROOF OF THEOREM 6. We may suppose that u is of the form

where | λ \ = m and fe Lp(Rn) has compact support. Define

\f(y)\pdy
r i O JB(ί,r)

£ =s ^x U E2.

Then 5m_α/pjp(£) = 0 by Lemmas 4 and 6. Let ζ e £g\£ be fixed; As in the proof
of Theorem 1, we set

W ι W = \J\x-y\<\ξ x\l2
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W2W = ί \*~*]λ

af(y)\y*\-Λ/p<iy.
)\x-y\*\ξ-x\/2 \X ~ y\"

Since limx^ξu2(x)=((ξ-y)λ\ξ-y\-nf(y)\yn\-^Pdy (cf. the proof of Lemma 1),

it suffices to prove

(5) lim-U |Wl(x)N* = 0.
riO r JB + ( ξ , r )

In this proof, M denotes a various constant.
Case 1 : α^O and mp — α<;t. In this case we have by Lemma 9

B(ξ,2r)

^ (MrmP-*-"( \f(y)\pdy)P* /P - » 0 as r 4 0,
\ JB(ξ,2r) /

since ξ^E2

Case 2: αg:0 and mp — a = n. For ^, l<g<oo, let ε = pnq~l. If f̂ is so
large that α + ε<p— 1, then we obtain by Lemma 9

as
B(ξ,2r)

Case 3: α^O and mp — a>n. For ^>0, it follows from Holder's in-
equality that

\x-y\<δ

I* -

\y\<δ

= const.

\x-y\<δ

l ' \\f\\

which implies that u is continuous on Rn.
Case 4 : α < 0 and mp < n. Lemma 9 yields

-U iw.wr^g^Mί \Λy)\'\y.\-'dy)
r Jfi + (ξ,r) r \ JB(ξ,2r) /
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\f(y)\pdyY/P - > 0 as r | 0.
B(ξ,2r) /

Case 5: α<0 and mp = n. For q, p<q<co, let β be a number such that

= 1/P — j8/n. Then we have by Lemma 9

MJM« r\
uάχwd*=Mί^Lc* ID'*" y\β~*wyy ι^»i"β/pd>)frfχ

\«/P
μ ) » 0 as r I 0.

B(ξ,2r)

Case 6: α<0 and mp>n. As in Case 3, we have for <5>0

\χ-y\<δ

g M(\xn\ + δ

which implies that u is continuous on Rn.
Thus (5) holds in all cases and our theorem is proved.

8. Remarks

We collect several remarks to Theorem 1 similar remarks to Theorems 2-6
must be made.

REMARK 1. In case — l<α<p — 1, Theorem 1 is the best possible as to
the size of the exceptional sets. In fact, for any E<=:R$ with J5m_α/Pjp(£) = 0, we
can find a function u harmonic in R'± and satisfying (1) with G replaced by R$
such that

lim u(x) = oo whenever ξ e E
x^ξ.xeRΪ

(cf. [16; Theorem 2]).

REMARK 2. Let α<mp — 1 and let u satisfy (1) for any bounded open set
GC#Ϊ.

1) If there is a positive integer k such that kp— l<α<(fc+l)p— 1, then
the same conclusion as Theorem 1 holds.

2) If α = /cp — 1 for some positive integer fc, then there is a set E<=:R$ such
that Bβtp(E)=0 for any /?>0 with jδ<m-α/p and u has an me limit at each point
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This follows from Theorem 1 and Lemma 5.

REMARKS. If α^mp-1, then there is a function ueCaϋ(Rlί) such that
u satisfies (1) with G = R$ and limx_>ξxeRnu(x) = ao for every ξeR^.

For this, consider the function

u(x) = {(log*,)2 + l}*/2exp(-|*l2), * = ( x r , xJeΛϊ,

where 0<ε< 1 — 1 /p. By elementary computations, one sees that

\Dmu(x)\ ^ const, {(log*,)2 + iγε~^2x~mQxp(-\x\2/2)

and thus that u satisfies the required conditions.

9. Extension of Theorem 2 to a general domain

Let Ω be a domain of Rn and denote by dΩ the boundary of Ω. We say that

Ω has the cone property at ξεdΩ if there is a finite (open) cone with vertex at ξ

and contained in Ω. A function u on Ω is said to have a non-tangential limit at

ξ e dΩ if for any finite cone Γ with vertex at ξ such that there is a finite cone

Γ with Γ\{ξ}c:ΓcΩ (Γ denoting the closure of Γ),

lim u(x)
x^>ξ,xeΓ

exists and is finite.
We let p(x) represent the distance of a point x from Rn\Ω.

Our aim is to prove the following theorem.

THEOREM 2'. Let Ω be a domain of Rn, m a positive integer and oί<mp.

Let u be a function which is polyharmonic of order m + 1 .in Ω and satisfies

( \Dmu(x)\»p(x)«dx < oo.
}Ω

Then there exists a Borel set EcdΩ with J3m_α/p>p(£) = 0 such that u has a non-

tangential limit at each ξedΩ\E at which Ω has the cone property.

Our proof below will give another proof of Theorem 2.

PROOF OF THEOREM 2'. Consider the set

E = iξεdΩ; ( \ξ - y\m^-n\Dmu(y)\p(y^P dy = ool.
I J.B(ξ,i)nΩ J

Then 5wl_α/pfJ,(£) = 0. Let ξedΩ\E and Γ, Γ be finite cones with vertex at ξ
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such that Γ\{ξ}c:ΓrcιΩ. Our purpose is to prove that Hmx^ξtXeΓu(x) exists and

is finite.
First we find a constant c> 0 such that for any x e Γ,

B(x, φ - ξ\) c Γ.

Then we have

which together with Lemma 3 gives

oo for i = l ,2, . . . ,m-l.

Next we recall the following formula :

(6) n(χ) = £ c,r-»i |x - ytf-^uWdy
ί=0 Jβ(Λ:,r) \ <7V /

for x e Γ and r<c\x — ξ\. By induction we see that (d/dv^u is of the form

- I'-Ί-1 „. .,
Therefore (6) can be written as

w(x)= Σ <*λr-Λ( (y - x)λ(D*u(y))dy
\λ\£m JB(x,r)

with constants aλ. Replacing u by cu/dxp we obtain by Green's formula,

B(x,r)

(y -
dB(x,r)

- Σ 'aλr-"(' (£-(y - x)*)(D*u(y))dy.
l £ U | £ m jB(xir)\°yj /

Multiplying both sides by rn and integrating them on the interval (0, c | x — ξ |),

we find

3-.
= (n + I)a0(c\x —

j
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Σ aλ(c\x - ξ\Γ»-ι(ClX~ξl dr(
|λ|Sm

Σ aλ(c\x - ξ\

O

B(X,c\x-ξ\)

From this it follows that

\x-ξ\ \Du(x)\ ^C \ξ- yV-^D
i=l }B(x,c\x-ξ\)

with some constant C > 0 independent of x e Γ.

Since \ \ξ — y\ί~"\Du(y)\dy<oo9 there is a line £r\Γ^0 such that

\imx^ζtXeίίu(x) exists and is finite (cf. the proof of Lemma 4). Denote the limit

by a. For x e Γ, let x* e £ be the point with | x* - ξ \ = | x - ξ |, and £x>x* the line

segment between x and x*. For the sake of simplicity we assume that the aperture

of Γ is smaller than 1. Then it is seen that ΰx>x*<=Γ and |x — x*|/2<| y — ξ\ for

x e Γ and y e £x>x*. By the mean value theorem we have

|κ(x)-tι(x*) |^ |x-x* | sup \Du(y)\
yeίx,x*

^2C sup £( \ξ - zy-^DμWldz
yeϋx>x* i=lJB(y,c\y-ξ\)

- > 0 as x - > ξ, x e Γ.

Thus limx_^JceΓt/(x) = α and our theorem is proved.

Appendix

We now prove Lemma 9. We consider an operator T defined for/eLP(R")

as follows :

The required inequality is then expressed as ||Γ/||?^M||/||p. This means that

Tis of (strong) type (p, q). Let us prove this fact. Decompose K(x)==\x\a~n as

, where

K,(x) = K(x) if \x\ ̂ η, =0 if |x| > η,

K*(x) = K(x) if ]x\> η, =0 if \x\£η

and set
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ΓJ(x) = K,(x - y)f(y)\y.\-'i''dy,

The positive number η will be determined later. We shall show that Tlfe Lf(R"),

TxfeL'κ(Rn) and the mapping /-»T/is of weak type (p, q), in the sense that

m{x; |Γ/(x)| > 1} ^ ί for any 1 > 0,
\ A /

where m is the Lebesgue measure and M is a constant independent of /and λ.
In this proof M1? M2,... denote constants independent of x, η and /. Let

t be a number such that Q<t< 1. By using Holder's inequality we have

(7)

If we take t = (n - β)/(npr - β\ then A = (α - π)ίp' + n>β and β = p(α — n)(l - ί) + n
>0. First we show

(8)

We may assume that x = (0, xrt), xn^0. We divide the domain of integration

into three parts, that is, (i) 2|x|^|y|, \x-y\^η, (ii) 2|x|>|j|, yn£xJ29 \x-y\£η,
(iii) 2|x|>|y|, yn>xn/2, \x — y\ ζη. The corresponding integrals are denoted by

/!, I2

 and /3 respectively. We consider polar coordinates (r, 0, ω) in Rn, where
r=|x|, θ is the angle between x and the xπ-axis and ω denotes the other variables
if (r, 0, ω) represents x 6 R". Since | y \ ̂  2| x | implies | x — y \ ̂  | y |/2, we have

o

If yn^xn/2, then |x-^|^|y|. Hence

I2 ^ ( V-^-Mrff |cos
Jo JJs»-ι

In the case (iii) we note that |x — y\^3xn<6yn, and hence we have

73 ^ &( |x -.y\*-β-»dy = M4η
A~'.

J\x-y\£η

Thus the inequality (8) is obtained. From (7) and (8) it follows that

(9) \\TJ\'dx ^ (M
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Next, we show that

(10) |Too/(x)| = I fax - y)f(y)\yjrβl>'dy ^ M6η-»/«\\f\\p

for all x e Rn. By Holder's inequality we have

I fax - y)JW\yn\-β/p'dy ^ {fax - yyf\yn\-βdy}l/P' \\f\\p.

Hence it suffices to show that

(11) x - yY\ynΓ'dy ^ MΊη-P'»l«.

Again we may assume that x = (0, xn), xn^0. We break up the domain of

integration into four parts, that is, (i) 2|x|<;|.y|, \x-y\*zη, (ii) 2|x|>|)>|, yn>xn/2,

\x-y\*η, (iii)2|x|>M, yn^xn/2, \y\£η, \x-y\^η, (iv) 2|x|>|y|, >'n^xπ/2, \y\
>η, \x — y\^η. The integrals on these domains are denoted by /i, Γ2, Γ3 and Γ4

respectively. If 2|x|g|>Ί, then |j;|/2^|x-j;|g3|j;|/2. Hence

In the case (ii) we see that |x — y\β\yn\~β^6β, and hence

Γ2 ^ 6β( \x - y\P'(a~n

}\

For /3 we have

Since | x — y \ ̂  | y \ holds in the case (iv),

\y\>ι

Therefore (11), and then (10) is obtained.
By (9) we have that for any positive number λ and / e LP(R")

2λ} ^ m{x; |ΓJ(x)| > λ} + m{x; IΓ./ωi > A}
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Now we determine η so that the right-hand side of (10) is equal to λ, i.e. η =

(Λfβll/UpM)*" 1- Then T^f^λ in R" and hence m{x; |T00/(x)|>A}=0. There-
fore

for a suitable constant M > 0 independent of λ and /. This shows that the operator
Tis of weak type (p9 q). We take pί and p2 sufficiently close to p so that p± <p
< p2 and for i = 1 and 2

— = — - — ( β - A-) > o,

where pί = pt /(p/ — 1). By the above argument we see that T is of weak type

(Pi9 4i)> ϊ = =^ 2. Hence the Marcinkiewicz interpolation theorem (A. Zygmund
[21; Theorem 1]) shows that Tis of (strong) type (/?, q), which means the conclu-
sion of the lemma.
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