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1. Introduction

Let U be the unit open ball with center at the origin in the n-dimensional
Euclidean space R". It is well known that a non-negative function u harmonic
in U has a non-tangential limit at almost every boundary point of U. Diederich
[4] proved that such a function u has an mc (mean continuous) limit at almost
every point of U ; we say that u has an mc limit £ at e 0U if

lim L

,,S |u(x) — £|dx =0,
rlo 7" JB(&,r)nU

B(¢&, r) being the open ball with center at ¢ and radius r. By the mean value
property of harmonic functions, we can show easily that u has a non-tangential
limit at every point of 0U at which u has an mc limit.

Now let f be a function defined on U whose (partial) derivatives of the first
order exist a.e. in U and satisfy

(@) S lgrad fI2(1 — |x])*dx < ©, O0<a<I.
U

This condition only does not necessarily ensure the existence of non-tangential
limits of f (see Proposition 2 in Sec. 4). In case n=2, assuming that f is con-
tinuous in U, Carleson [2; Theorem 3 in Sec. V] proved the existence of radial
limits of f. Wallin [19; Theorem 1] generalized Carleson’s theorem to higher
dimensional case with f defined on the upper half space R% and satisfying the
condition analogous to (a):

(b) SS |grad f |2 x%dx,---dx, < o0, 0sax<,
G

for any bounded open set G R%. He also proved that if in addition fis harmonic
in R", then the non-tangential limit of f exists at £ € 0R% except for a set whose
Riesz capacity of order 2—a is zero ([19; Theorem 3]).

In this paper we are concerned with Beppo Levi functions f of order m
defined on R% which satisfy
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© IIZ Sg |D*f| P x2dx,---dx, < 0
Al=m G

for any bounded open set GoR%, where 1<p<oo, —ww<a<oo and D*=
(9/0x)*1--+(0/0x,)*~ for a multi-index A=(4,..., 4,) with length |A|=A;+ -+ 4,
In case m=1, the existence of perpendicular boundary limits of f was given by
[11; Theorem 1] as a generalization of [19; Theorem 1]. The existence of
non-tangential limits of f with an additional condition that f is polyharmonic of
order m in R% was discussed in [13; Theorem 1] for m=1 and in [16; Theorem 1]
for general m. Our aim is, therefore, to improve [11; Theorem 1] and [16;
Theorem 1].

We shall show first that if f is a function defined on R% and satisfying (c),
then f has mc limits at points of dR% with an exceptional set whose size is well
evaluated by the Bessel capacity. (For the definition and properties of Bessel
capacity, one may refer to [8].) Next we prove, with the aid of a property of
polyharmonic functions given by Edenhofer [5], that if in addition f is polyhar-
monic of order m+1 in R%, then non-tangential limits of f exist. This gives a
generalization of [16; Theorem 1]. We include this theorem here as an example
of application of Theorem 1 although it is a special case of Theorem 2’ which will
be proved later in Section 9. We shall also discuss the existence of perpendicular
boundary limits of f in order to obtain an improvement of [11; Theorem 1].

In case n=2, Gavrilof [7; Theorem 3] showed that given a function f on U
satisfying (a), for ¢ € U except those in a set whose Riesz capacity of order 2—a
is zero, there exists a constant c, satisfying

C: = lillgl f(E+(rcos 0, rsinf)) for almost every 0€(0, n).

By using [14; Theorem 1], we can generalize this result to the case where f is an
(m, p)-quasi continuous function on R% (see [10; p. 379]) satisfying (c). In Sec-
tion 6 we shall discuss the fine limits with respect to a suitable capacity for functions
described above.

For such a function f satisfying (c), we shall study in Section 7 when the
equality
1

lim =

S fG) = £)idx =0, gq>1,
rio 7" JB(&,r)NRY

holds. Clearly, Holder’s inequality implies that f has an mc limit £ at ¢ at which
the above equality holds. The investigation of this problem can be done in a
way similar to the case of mc limits. However g depends on m, p, « and this
fact complicates the matters. The main difference with the case of mc limits is
that we must use a generalization of Sobolev’s inequality.

In Section 9 we shall prove the existence of non-tangential limits of poly-
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harmonic functions in a general domain. The proof, different from that of
Theorem 2, will be carried out along the same lines as the proofs of [13; Theorem
1] and [16; Theorem 1]. The essential tool is an integral representation of poly-
harmonic functions of order m by means of their derivatives of order less than m,
which is derived from a result of Edenhofer [5].

2. Preliminaries

Let R", n=2, be the n-dimensional Euclidean space. A point xe R" will
be sometimes written as (x’, x,) € R""1 x Rl. We set

1 ={x=(,x)eR"; x,>0},
R = {x = (¥, x,)€R"; x, = 0}.
For a point x=(xy,..., x,) and a multi-index A=(4,..., 4,), we define
x* = xfoxt (A=A o+ A,
D* = (8/0x)* = (0]0x)*+---(0]0x,)*n.

Given a function u whose derivatives of order m exist a.e. on an open set G R”,
the vector valued function defined by

Dmu(x) = (Dlu(x))u.] =m

is called the gradient of order m of u; in particular, D,=identity and D, will be
written sometimes as D.

Following [3], we shall use the notation BL,,(L{,.(R%)) to denote the space
of all functions in Lf,(R%) whose (distributional) derivatives of order m are all
in LY, (R%). Throughout this paper, let 1<p<oo. If a function ue L} (R%)
belongs to BL,(L},.(R%)), then u e BL (LY, (R%)) for any positive integer k<m
(cf. [3; Théoréme 2.1]). For any u e BL,(L},.(R%)), there is a function which
is equal to u a.e. on R% and p-precise!) on any relatively compact open subset of
R% (or locally p-precise on R% in the sense of Ohtsuka [17; Chap. IV]). One
can show that any locally p-precise function u on R% is absolutely continuous
along almost every (half) line parallel to the coordinate axis and contained in R%,
so that u is partially differentiable a.e. on R%. Moreover, for &eR%, u(¢+ro)
is absolutely continuous as a function of r>0 for a.e. 0 € dB(0, 1) n R%.

The Bessel capacity of index (/3, p) is denoted by B, For the definition,
see [6]. Denoting by C, the Riesz capacity of order f, we have the following
relations between these capacities:

1) For the definition of p-precise functions, see Ziemer [20] and Ohtsuka [17; Chap. IV].
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1) If By (E)=0, then C4(E)=0 in case p<2 and C(E)=0 for any y>0
with y<fp in case p>2.

2) If C(E)=0, then B,,, (E)=0 in case p=2 and By (E)=0 for any >0
with f<y/p in case p<2.

These follow from Fuglede [6] together with [10; Theorems 2.4 and 3.2].

3. Mean continuous limit

We say that a function u on R% has an mc limit of order g=1 at £e R} if
there is a number ¢ with

1imig lu(x) — £]2dx = 0,
B+ (&,r)

rio rr

where B, (¢, r)=B(&, r)NR%:. In case g=1, u is said to have an mc limit ¢ as
defined in the introduction.

In Section 7 we shall be concerned with mc limits of general order. The
statement of the result in the general case as well as its proof are rather com-
plicated. So we start with the case g=1 in which the result has a simpler form.

THEOREM 1. Let m be a positive integer, 1<p<oo and —oo<a<p-—1.
Let u e BL, (LY, (RY)) satisfy

) Sg | Du(x’, x,)|P x2dx'dx, < oo

G
for any bounded open set G=R'.. Then we can find a Borel set E< R} such that
Byy—a/p.,(E)=0 and u has an mc limit at each point of R}\E.

Before proving this theorem, we prepare several lemmas. Let us begin with
the following lemma.

LEMMA 1. Let K be a Borel measurable function on R"xR"™ which is
continuous outside the diagonal set {(x, x); xe R"}. Suppose there are con-
stants >0 and C>0 such that

|K(x, y)| £ C|x — y|f="  forany x, yeR"

For a measure u, we set
Uk() = (K »)ducy)

at x e R® at which the integral has a meaning. Ifglxo—ylﬂ‘"dlul(y)<oo and
| 1] ({x°})=0 (|u| denoting the total variation of p), then
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lim LS | Uk(x) — UL(x®)|dx = 0.
B(x%,r)

n
rlo ”

PrOOF. Set

tmm=§ K(x, y)du(y),
0}/2

x=yl<]x—x

Us) = K(x, )du(y).
x0}/2

Ix=ylz|x=

Then we have

1
iy Ul

scmf A |x = ylP=rd| | ()} d

B(x%r) U |x—y|<|x0-x|/2

scf Al |x = yP=rdxddlul ()
B(x%,2r) U |x—y|<|x%=y|

scref o 1x0 - ypdlul )

B(x%,2r)

=C [x0 — y|f=rd | ul ()

I/S
B(x0,2r)

— 0 as r | 0,

where C’ and C” are constants. On the other hand, in case B<n, since |K(x, y)|
<const.|x®—y|f~" if |x—y|=|x°—x]|/2, we can apply Lebesgue’s dominated
convergence theorem to obtain

lim U,(x) = U(x°).

This holds also in the case > n, because K is continuous on R" x R” in this case.
Hence one can show easily

fim LS | U, (%) — UL(x®)|dx = O.
B(x%,r)

rlo rr

Consequently,

lim sup-I;S | UL(x) — UL(x0)|dx
rio r")B:xo,r

< lim r’”g |U,(x)ldx + lim r‘"S Uy (%) — UL(x%)]dx = 0,
B(x%,r) rio B(x%,r)

rlo
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which proves the lemma.

LEMMA 2. Let —l1<a<p—1. Let f be a non-negative function in
L},.(R") which vanishes outside some compact set in R" and satisfies

FO)Plyl2dy<oo. Then, for a positive integer m the function
Rn

F@={ 1x-yPrfouy, xRy,
belongs to BL,(LL,(R?)) and S |D, F |Pxsdx < 0.
RZ
Proor. For £>0, we set
K(x) = (112 + =iz
and define

F@={ xe=nfOlylrdy,  xer

Then F, is infinitely differentiable on R* and, on account of [10; Lemma 3.2 and
its proof], there is a constant ¢, >0 independent of ¢ such that

[ IDFolrdx < fopinldy.
Rn Rn

Since fe LY(R"), F € L},.(R%) and «f is infinitely differentiable on R". Let
A=(A4,..., A,) be a multi-index with length m. Then

| x5/PDH(xcxf) (x) — D*F (x)] < CzSRnlxﬁ”’ = 1y l*"l1x = yI7" f(y)dy

= ‘CZS_wK(xm yn)g(x,’ Xns yn)dym

where ¢, is a positive constant and

_ a/p
K(xm yn) = Il Iygx'ﬁl%;nl') I ’

g(x', X, ¥,) =S [ Xy = Yul ; )2}n/2f(y)|yn|¢/pdy’

re-t {[x" =y 2+ (x, —

for x=(x', x,) and y=()’, y,). By a property of Poisson integral (cf. [18; Theo-
rem 1, (a) in Chap. III and Theorem 1, (c) in Chap. I]), we can find a constant
¢3>0 independent of x, and y, such that
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§g<x: X Y dx’ S csgf(y)plymdy'.

Applying Appendices A.1 and A.3 in [18], we can derive that

San {SwwK(xm yn)g(xls Xy y,,)dy,,}pdx’dxn

lIA

S:(S:K(x"’ Ya) {Sg(x', Xps y,,)"dx’}l/pdyny,jx"

IIA

e (17 K s {{ 707 yrisateay} " ay, Yax,

lIA

ek 10 Inldy,

where AK=S°° K(, y,)|y,|-\/?dy, <. We thus obtain

IIA

1/p 1/p
{ ol @lrxidx} " < DA, + 3 ax{] O 1yaled}

IIA

RV OTAT
with ¢, =c1/?+c}/P Ay, which is independent of &. Now we show that
@) SR”ID‘FI"xf,‘dx < o0.
Before proving this fact, we note that F € BL,,(L{,.(R%)), since for any a>0,
G = | 1x =y o)y

belongs to BL,(LP(R")) because of [10; Lemma 3.3] and F—G, is infinitely
differentiable on Q,/,, where

O, ={x=C,x)eR"; [X'|<a, aal <x,<a}.

To prove (2), let ¢ € C¥(R%). Then

ngF(xyp(x)x:/"dx = (- l)"'gF(x)D‘(<p(x)xz“’)dx
= (= tytim e CODA (x5

= lim SD‘(KE* 1) (x)p(x)x2/Pdx
el0
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. 1/p
<timsup {{ 1D P xiax} Lol
elo RY

< c{{forineas} Cloly, tp1p =1,

which proves (2). Since (2) is fulfilled for any A with length m, our lemma is
proved.

The following lemma can be proved in a way similar to [16; Lemma 2].

LeMMA 3. Let k=2 be an integer, a>0 and £€Rb. If ue BL(L?,(R%))

satisfies g [ €=y |F"|Du(y)|dy< oo, then
r(&;a)

g & — y[=1=0| D, _ u(y)|dy < oo,
r¢;a)

where I'(¢; a)={x=(x', x,) e R*; |(x', 0)—¢|<ax,, |x—&| <1}

LemMA 4. Let o, p and m be as in Theorem 1. Let f be a non-negative
function in L}, (R") which has compact support and satisfies S fO)P|y.l2dy
RII
<o0. If we set

E= {éeRs; Slé —yl™"f(y)dy = oo},

then B,,_,, (E)=0.

Proor. First we treat the case «>0. Consider the function
o) =[x = yImrgG)dy,  xeRs.

Then by Lemma 2, ve BL,(L{,.(R%)) and S |D,v|Pxédx<oo. Therefore, if we
R%:
set

B ={eers; | € = ¥ D) | i "1dy = oof

B(&,1)NRE

then B, _,, (E)=0. It suffices to show that EcE’. Suppose EZE’, i.e.,
there is e E— E’. Then v(£)= o0 and hence

3) li}n w(é + ro) = © for any - 6€0B(0, 1) N R%
rlo

by the lower semicontinuity of v. On the other hand, the assumption that é& E’
implies
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[ e yrDe)ldy < oo,
re;n

which gives by Lemma 3

[ 1e= s 1pupidy < co.
r{;1)

Accordingly, setting S=I'(0, 1) n dB(0, 1), we have

g {Slle(é + ra)ldr}dS(a) < .
S 0
From this it follows that

SIIDU(C +ro)dr <o  for ae. ceS.
0

Since v(¢é+ro) is absolutely continuous on (0, ) for a.e. o €S, lim,, v(é+ro)
exists and is finite for a.e. € S. This contradicts (3) and thus our lemma is
proved in case a>0.

In case « <0, the proof can be carried out without the aid of Lemma 2. In
fact, consider the set

£ = {¢e R {1& = yim 1L f0) 3,171y = oo}

Then it is easy to show that EcE” and B,,_,,, (E")=0. Now our lemma is
completely proved.

LeMMA 5. Let k be a positive integer and > —1. If ue BL(L{,(R%))
satisfies S |Du|PxBdx < oo for any bounded open set G R", then
G

S ID,_u|?x}dx < 0

G

for any G described above, where y is a number such that y=f—p if f>p—1
and —1<y<pif p<p-1.

Proor. We may assume that the derivatives of u of order k—1 are locally
p-precise on R%. Given a bounded open set G<R%, we can find a number a>0
such that G {x=(x,,..., X,); |x;| <a for all i} and S Dy qu(x’y a)|Pdx’ < c0.
Hélder’s inequality gives s

1Dl S ({7 1Dwce, 01" + 1D, e, )
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a a /P’
< oo [* 1Dace, opear{* errad™ 4 1D ue @)

Xn

for x=(x', x,) with 0<x,<a, where ¢ is a number such that e=f—-y—1if f<p—1
and p—1<e<pif B>p—1, and c,, ¢, are positive constants. Noting that

Sa t~¢P'/Pdt < const. x&°
with g,=min {0, —&p’/p+ 1}, we obtain by Fubini’s theorem
(1D e, xpirxidx, < o[ 1D, P ede + 1D, u(x, o},

which gives easily the required inequality in our lemma.
We are now ready to prove Theorem 1.
Proor oF THEOREM 1. Take a number g such that g=p if «<0 and 1<g
<p/(a+1)if a>0. Then Hélder’s inequality yields
g |D,ultdx < o
G

for any bounded open set Ge=R%. From Lemma 5 it follows that S |Dulidx

< oo for any bounded open set G<R% and any integer k with 0<k<m.
Given N> 1, let us consider the existence of mc limits of u at points of R3 N
B(0, N). Take ¢ € C¥(R") which is equal to 1 on B(0, 2N), and define

o(x) = u(x)p(x), x e R%.

Then 2',:‘=0g Dyl?dx<co. In view of Theorem 5 and its proof in [18; Chap.
R

VI], we can find a function w € BL,(L%(R")) which is equal to v a.e. on R%, vanishes
outside some compact set in R" and satisfies

S ID, wX)|?|x,|*dx < .
B(O,N)

Hence, with the aid of [10; Theorem 3.1] we have the following integral repre-
sentation:

©)) w(x) = HT,;malS%:—;}))l—iD‘w(y)dy a.e. on R",

where a; are constants independent of x. Consider the set

Ey = {ieRS; SB(O N)If = yI" " D,w(y)|dy = oo}.
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Then B,,_,,, ,(Ey)=0 on account of Lemma 4. It remains to prove that w (and
hence u) has an mc limit at each point of R} n B(O, N)\Ey. Let ¢ e Rgn B(O, N)\
Ey. Then

Sié — Y "D, ()| dy < <o,

so that Lemma 1 shows that the right-hand side of (4) has an mc limit at £, This
leads to the fact that u has an mc limit at £. Hence \Ug-, Ey is the required
exceptional set, and we conclude the proof.

4. Non-tangential limit

A function u on RZ is said to have a non-tangential limit at £ € R} if

im  u(x)
x—¢, xel(&; a)

exists and is finite for any a>0.

THEOREM 2. Let m, p and o be as in Theorem 1. Let u be a function
polyharmonic of order m+1 in R%. Suppose u satisfies (1) for any bounded
open set GeR!. Then there exists a Borel set E with B,,_,,, (E)=0 such that
u has a non-tangential limit at each point of R3\E.

Proor. First we note the following formula:

uw =Bl px = yi(Ly)utdy,
i=0 B(x,xn/2)

where x=(x', x,) € R%, ¢; (0<i<m) are constants depending only on n, m and
i, and v denotes the outward normal to dB(x, x,/2), i.e.,

Oue Ny s Yi— X Ou
av ) i;l ly — x| a.Vi(y).

This can be proved by the aid of [5; (15)] (cf. [16; (3)]). By Theorem 1, there is
a Borel set E; < R} such that B,,_,,, ,(E;)=0 and u has an mc limit at each point
of RE\E;. We set

E, = {teRs: | € = " 1Dyl dy = oof,

B(&,1)NRY
E=E, UE,.

Then B,,_,,, ,(E;)=0 by Lemma 4 and thus B,,_,,, (E)=0. If { e R§\E, then u
has an mc limit £ at &, so that
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uG) = €1 S leoly (| Ju(y) — £1dy

B(x,xn/

+ 3l gMZJ( &) u|dy

IIA

const. {lx - 5]""§ lu(y) — £4|dy

B($,2]|x=&))

+ B{ je=yIDuldy}
i=1JB(x,xn/2)

—0 as x— ¢ x=(x, x)el(&; a),

for any a >0 on account of Lemma 3, since (& E, and we can find b >0 such that
B(x, x,/2)cT'(¢; b) whenever xel'(¢; a) and |x—¢|<1/2. The proof is now
complete.

ProposITION 1. Let a<p—1and mp>n. Let K bea function on R"x R"
which is continuous outside the diagonal set and satisfies |K(x, y)|<|x—y|™"
for all x, ye R*. For a non-negative function fe LP(R"), we set

u(x) = gK(x, WOy, l-/7dy.

If S]x——y]'"‘"f(y)ly,,l'“/"dy,é 00, then u is continuous on R% and one can find
a set EcRy with B, _,, (E)=0 such that u has a non-tangential limit at
every &€ RA\E.

COROLLARY. Let a, p and u be given as in Theorem 1. If mp>n and u
is continuous on R, then there exists EcR§ such that B,,_,,, ,(E)=0 and u has
a non-tangential limit at every & € RA\E.

The corollary follows from the fact that by Proposition 1, the right-hand side
of (4) is continuous on R* and has a non-tangential limit at every ¢ e R} except
those in a set E with B,,_,/, ,(E)=0.

Remark. If mp>n and ue BL,(L{,(R%)), then there is a function which
is continuous on R% and equal to u a.e. on R% (cf. [10; Lemma 2.3 and Proposi-
tion 3.1]).

ProoF oF ProrposITION 1. Let z=(z’, z,)eR% and 6<z,/4. For xe B(z,
0), we have by Holder’s inequality

[ =y rO)lyaldy
|x=y|=o
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1/p

A

, , 1/p’
{§_ x=pwrepymeral ™ fea)
|x=y| <o
1/p
< const. z,‘,“/P(S'"‘"/P{Sf(y)"dy} s I/p+1/p' =1.

Since lim,..  KGx, 5)f0) 1y rdy =
[x=y|>4

Lebesgue’s dominated convergence theorem,

MK(x, W) ya1=2/?dy by

lz=y

liril_.szup |u(x) — u(z)| < const. z;““’é"“"“’{&f(y)”dy} l/p,
which implies that u is continuous at z, and hence on RZ.
Let a>0 and ¢eRj. If Slé—yl"""f(y)]y,,|‘“/"dy<oo, then Lebesgue’s
dominated convergence theorem gives

lim

g K(x, )W) yal~*2dy = u(®).
x=&,xel(E;a)) |x—y|>xn/2

If in addition lim,mr'"l’““‘"g f(y)Pdy=0, then
st)

B(¢

[ KCx, ) J0)y,l7dy|
|x=y|Sxn/2

< const. {x;’,‘l"“"‘g

forayy”

1é-y|<(a+2)xn

—0 as x— ¢ xel(&;a),

so that u has a non-tangential limit at £. Proposition 1 follows from Lemma 4
and the next lemma.

LemMA 6. Let >0 and f be a non-negative function in LP(R™). If we set
E = {xeR”; lim sup r/’P‘”S fO)yrdy > 0} ,
rio B(x,r)

then By (E)=0.

Proor. If Bp=n, then E is empty and the conclusion is trivial. Let fip<n
and consider

1(=1) gy }
—— = 0.

B = dxern; (e gyan)
0 B(x,r) r

Then B ,(E')=0 by [9; Theorem 2.1]. If x&E', then
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r /(-1 1/(p-1)
Sz {S‘“""S f(y)”dy} TV45 5 const. {r””‘"g f(y)”dy}

r B(x,s) s B(x,r)
and the last term tends to zero as r | 0. This implies that EcE’. Our lemma
is thus proved.

PRrOPOSITION 2. Let m, p and o be as in Theorem 1. If mp<n, then there
is a function u e C®(R") which satisfies (1) but does not have a non-tangential
limit at any point of R}j.

Proor. Let E;={(i;j%...,i,—1j7%J7Y); k=0, £1,..., £j3 for 1=sk<
n—1} for each positive integer j. Then B, ,(E;)=0 and hence we can find a
function ¢;e C§(R") such that ¢;=1 on E;,=0 outside {(x', x,)eR%; 27!
(G '+(+D H<x,<27Y((j—1)"1+ 1)} and satisfies XIDm(pjl"Ix,,l"‘dx<2‘f, on
account of [10; Theorem 2.3]. It is easy to see that the function u=3 %, ¢;
satisfies all the conditions in our proposition.

5. Perpendicular and radial limits

In [11], we discussed the existence of perpendicular boundary limits of
locally p-precise functions u on R% satisfying

g |Du|Px2dx < oo, 0a<p-1.
R%

Here we shall generalize the result obtained in [11].

We say that a function u on R% is (m, p)-quasi continuous if given £>0,
there is an open set G<= R} such that B,, (G)<e and u is continuous as a function
on R2:\G. If ueBL, (L}, (R%)), then we can find an (m, p)-quasi continuous
function on R% which is equal to u a.e. on R% (cf. [10; Lemma 2.3]).

THEOREM 3. Let 0Za<p—1 and let u be an (m, p)-quasi continuous
function in BL, (LY, (R%)) which satisfies (1) for any bounded open set G<R=~.
Then there exists a Borel set Ec Ry such that B,,_,,, (E)=0 and lim,_,,u(x’, x,)
exists and is finite for every x' € R"~! with (x', 0)&E.

ProoF. Asin the proof of Theorem 1, we may suppose that u € BL,,(L4(R"))
for some g > 1, vanishes outside some compact set in R" and satisfies (4) for a.e.
xeR". Since each term of the right-hand side of (4) is (m, p)-quasi continuous
on R% because of [10; Lemma 3.3], it is enough to prove the assertion of the
theorem for a function u for which

u(x) = (=200 1) dy
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holds on R except for a set E() < R% with B, (E(1)=0, where 1 is a multi-index
with length m and f is a non-negative function with compact support which

satisfies S TPy, ledy < .
Let E(2)={éeR5; Slé—yl"""f(y)dy=oo}. Then B
£=(&, 0)e RIE®

(E®)=0 and for

m=—a/p,p

lim L2 f(y)ay - S%f(y)dy

xnd0 Jix=ylzxn/z [X — p [E—y
by Lebesgue’s dominated convergence theorem, where x=(&’, x,,).

Consider the set

E, = {x = (x', x,) eR"; 27k < x, < 27K+1,
[ |x = yI"=nf )y 2 by}
|x=y|<xn/2

for each positive integer k. Here {b,} is chosen so that lim,_. b,=0c0 and

fo’=1bkg f)ryrdy<oo. To evaluate the size of sets E,, it is
2-k—1<y"<2~k+2

convenient to use the following capacity: Letting f>0 and G be an open set

in R", we define
Cs,(A4; G) =inf||g|5, A4 <R",

where the infimum is taken over all non-negative functions g € LP(R") such that
g=0 outside G and Slx—ylf""g(y)dygl for all xe A. Let a>0 be a number
such that the support of f is contained in B(O, a). If x € E,, then

[x — y|m=e/p=r[ f(y)ys/Pldy = bit/».

gz—k—1<yn<2—k+2

Hence we have by definition

Comao(Esi BOO, ) < by fopyidy.

2-k-l<y,<2-k+2

In general, denote by A* the projection of a set A to the hyperplane Ri. We
set

E = (EW)* y E@ y (R (kO Ek)*).
j=1k=j

If (eRH\E, then lim, ou(x)=\((—*E—y|™"f(y)dy, where x=E+(O0, x,).
Thus the following lemma establishes our theorem.
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LeMMA 7. Let >0. For a set EcR" and a>0, we have
Cy, (E*; B(O, a)) < C; (E; B(O, a)).

Moreover, By (E)=0 if and only if C4 (ENG; G)=0 for any bounded open set
G<R". Consequently, if By (E)=0, then B, (E*)=0.

The first part of this lemma can be proved in the same way as [12; Lemma
1]. The second part follows from the property of Bessel kernel and the definition
of capacities.

REMARK. In case «<0, for any compact set Ec Ry with B, (E)=0, there
exists a function u e C*(R) such that S DyulPxidx<oco and lim, o u(x’, x,)

R+
does not exist for any x’ e R*~! with (x’, 0)e E.

To show this fact, let E,={x=(x', x,)eR"; x,=47%, (x’, 0)e E} for each
positive integer k. Since B, ,(E,)=0, by [10; Theorem 2.3] we can find ¢, €
CZ(R") such that ¢, =1 on E,, vanishes outside {x=(x', x,)e R*; 272¢"1<x, <
272k+1} and satisfies SlD,,,(kadegZZ"“"‘. We have only to take u=3Y 2, ¢4.

We next prove the following theorem, which is an improvement of [7;
Theorem 3].

THEOREM 4. Let o, p, m and u be as in Theorem 1. Suppose u is (m, p)-
quasi continuous on R}. Then there exist E,, E, =R} such that C,,,_,(E;)=0
in case mp—o<n, E; =@ (the empty set) in case mp—a2n, B,,_,;, (E;)=0 and
to each ¢ e RE\(E, U E,), there correspond a number c, and a set A; with the
following properties:

i) B, (4 =0; ii) A; < 0B(, 1);
i) lim, qu(¢ + r(z—&) = c, for every zedB(E, 1)N R\A..

PROOF. As in the proof of Theorem 3, we may suppose

u() = [E=22 1)ay

for x € R% except possibly in a set E;< R} with B, ,(E;)=0, where 1 is a multi-
index with length m and f is a non-negative function with compact support such

that { f()eIy,ledy <co. Set
Ey = {¢eRas (12 = v a1y = oof

E, = {éeRs; Slé = yl*rf(ydy = 00}.
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Then B, _,/,, (E;)=0 by Lemma 4, C,,_(E,)=0 if mp—a<n and E,=g¢ if
mp—a=n.

~ Let (e RI\(E, UE,) be fixed. For a set E, we denote by E the set of all
points x € 8B(&, 1) such that &+ r(x — &) € E for some r>0 with r<1. By Lemma

5in [14], B, (E5)=0. Since Slf‘ Y f(y)dy < oo,

[ &= ) ay

lx=ylzxn/z |X = y|"

tends to c§=S(€—-y)’1|€—y|‘"f(y)dy as x—¢, xeI'(¢; a), for any a>0.

For a>0, we can find b>0 such that B(x, x,/2)<TI'(¢; b) whenever x=
(x', x,)e'(¢; a) and |x—¢&|<1/2. Define the function

fx) if xel(; b),

0 otherwise.

g(x) = [

Then Slf—yl"’l""g(y)de<oo and for any x e I'(¢; a),

5 (1;% fay| < |x = pIm"g(y)dy.

lx=yl<xn/2 [X = p lx=y|<lx-¢l/2

By [14; Lemma 6], there exists a set E(a)=0B(¢, 1) such that B,, (E(a))=0 and
lim g

rlo Jiz(rn-yl<|z(r-¢&l/2

for every ze0B(&, 1)\E(a), where z(r)=E&+4+r(z—¢). Thus, if zedB(¢, 1) n R?\
(E; U (UL E(k))), then

|z(r) — yIm"g(y)dy = 0

]i}‘[(} u(€ +r(z = &) =ce.
Now our theorem is proved with 4,=E; U (\UZ, E(k)).

REMARK 1. In case mp—azn or p=2, B,_,,, (E;UE;)=0. In case
mp—oa<n and p<2, we have the following theorem:

THEOREM 4'. Let o, p, m and u be given as in Theorem 4. Then we can
find EcR} such that B,,_,;, (E)=0 and to each { e R}\E, there correspond a
number c; and a set A, with the following properties:

i) A, < 0B, 1);
ii) B, (4) =0 forany q,1<gqg<p;
i) lim, o u(€ + 1z — &) =c, forall zedB(, 1)nRL\A,.

To prove this theorem, replace E, in the proof of Theorem 4 by
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1 /(1)
B ={eers ([l sorivipay [TV L <
0 B(&,r) r

and note B,,_,/, ,(E')=0 in view of [9; Theorem 2.1]. If { € R§\E’, then Holder’s
inequality gives

1= yersoydy < o

r(;a)

for any a>0 and any g, 1<g<p. We now apply [14; Lemma 6] and obtain
the desired result in the same way as the proof of the previous theorem.

REMARK 2. In view of the proofs of Theorems 3, 4 and 4, we may take
ce=lim, o u({+(0, x,)) in Theorems 4 and 4’ if 0Sa<p—1.

6. Non-tangential fine limit

We say that a set EcR" is (B, p)-thin at x° e R” if

1
[ ro7nC B 1 BGxo, MBG, r/2); B, )]0 L < oo,

0

In case fp<n, by [15; Appendix] this is equivalent to

1 o —1y dr

[, 07"y o (E 0 BGxo, 7))o L < oo,
0 r

which is given by Meyers [9] (see also [1]).

LemMa 8 ([9; Proposition 3.1, (V)]). If {E,} is a sequence of sets each of
which is (B, p)-thin at x°, then there is a sequence {r,} of positive numbers such
that \U-{ (E, n B(x°, r})) is (B, p)-thin at x°.

THEOREM 5. Let o, p, m and u be as in Theorem 4. Then there exists a
set Ec Ry such that B,,_,,, (E)=0 and to each { € R{\E, there corresponds a set
E; with the following properties:

i) Egis (m, p)-thin at ¢,

) M.y cerega)e, 4(X) exists and is finite for any a>0.

ProOF. As in the proof of Theorem 4, we may suppose that u is a function
of the form

u() = [E=2 1)ay.

Consider the sets
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E = {eerg; (1e =y s dy = oof,

1(=1) gy

B ={eerg; | [rmmorl  peipateay [V L — o,

Then B,,_,),,(E;UE;)=0 by Lemma 4 and [9; Theorem 2.1]. Let {eRj\
(EyUE,;). Since ¢£E,,

B(&,r)

lim S & =9 2)dy = S(f_—wf(y)dy

x-&,xel(&3a) J[x—y|2xn/2 | X — p|" &=yl

for a>0. Let

Eyy=fx = (¢, )l (@ ); 274 S I = &l < 2744,
{ % = yirnf(dy 2 bpiie).
|x=y|<xn/2
Here {b,} is a sequence of positive numbers such that lim,_,,, b,= o0 and

z [bkzk(n—mp+a)g

k=1

1/(p-1)
Foyivaledy [ < o0,

B(&,27k*2)

If we set F;=\Uj~, E; ;, then F; is seen to be (m, p)-thin at £&. By Lemma 8, we
can find a sequence {r;} of positive numbers such that E.=\U%, (F;n B(, r;))
is (m, p)-thin at £&. One sees readily that

lim u(x) = S—@ — y)if(y)dy

x—>¢&,xel (& \E g 1€ -yl
and obtains the theorem.

REMARK. In case <0, one may replace I'({; a) by R% in ii) of the theorem.

7. Mean continuous limits of general order

Let us recall that a function u on R? is said to have an mc limit of order
g=1 at £ e R if there is a number ¢ with

lim LS lu(x) — £]2dx = 0,
B+(&,r)

rio rr

where B, (&, r)=B(&, r)n R:.
Define p* and p** by
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THEOREM 6. Let m, p, « and u be as in Theorem 1. Then there is EcR}
with B, _,, (E)=0 such that at each point of R§\E, u has an mc limit of the
following order q:

i) q=p** if «a=0and mp—a<n;
i) any q,1 =g < o, if «=0 and mp—a=n;
ii) q = oo, if «a=0 and mp—a> n;
iv) q = p*, if a<0 and mp < n;
V) any q,1 =< q < o, if «<0 and mp = n;
vi) g = oo, if «a<0 and mp> n.

To prove this theorem, we need the next lemma whose proof will be given
in the appendix.

LEMMA 9. Let a, §, p and q be given as follows:
0<p<1, L<a<n, i=i—1_(a—ﬁ,>>o,
p q b h p
where 1/p+1/p'=1. For a non-negative function fe LP(R"), we set
F) = {1 = y1= 1) 1y, 2o dy.

Then there is a positive constant M independent of f such that

IFlly = M|fllp.

PrOOF oF THEOREM 6. We may suppose that u is of the form

ue) = (EZ20 1)y, redy,

where [A|=m and fe LP(R") has compact support. Define
E, = {eeRg; (& = y 11O 1yl rdy = eol,

E; = {eeRg; limsuprmo=e=r| £y >0},
rio B(S,r)
E = El U E»z.

Then B,,_,, ,(E)=0 by Lemmas 4 and 6. Let £ € R§\E be fixed: As in the proof
of Theorem 1, we set

= (x — y)* o
uy(x) = . alng ’
l( ) S|x—y|<|§.—x|/2 Ix — yln f(y)ly l y
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x — y)* _
uz(x) = | &= 2 31y, l-irdy.
2 lx=ylzle-x12 |X = y|” "

Since lim,_,, uz(x)=g(é—y)'1|£—y|"‘f(y) | yal~2/Pdy (cf. the proof of Lemma 1),
it suffices to prove

) lim —Lg lu,(x)|2dx = 0.
B4(&,r)

rlo re

In this proof, M denotes a various constant.
Case 1: «=0and mp—a<n. In this case we have by Lemma 9

AN CTC ™
" JBgn
1 _ _ p**
<5 (0, =y ey ) dx
B(&,2r)
p**/p
<(Mme=en( (fo)pdy) T —0 as rlo,
B(&,2r)

since E£E,.

Case 2: o=0 and mp—a=n. For g, 1<qg<oo, let e=png1. 1If q is so
large that a+¢&<p—1, then we obtain by Lemma 9

a/p
. melax s S(ml 1 pivaay)
B+(§,r) B(&,2r)

" =rt
’ a/p
< <M2‘g If(y)ll’dy) —0 as rlo.
B(&,2r)

Case 3: o=0 and mp—a>n. For 6>0, it follows from Holder’s in-
equality that

g x = " F)] | al=*/rdy
|x=yl<é
“(m=n) o, i/p’
s, = yremiy, ey ),

e - 1/p’
s(§__lypemiy,edy) 51,
Iyl<é

= const. §mP=e=m/p| f]| ,,

which implies that u is continuous on R”.
Case 4: a<0and mp<n. Lemma 9 yields

1 » * 1 —a r*/p
.agh({’r)lux(x)ll’ dx < (Mgg(g,z,,lf(y)lply"' a’y)

,.n r'l
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< (Mz—armp—a—ng ,f(y)|pdy>p‘/p——> 0 as rlo0.

B(&,2r)
Case 5: a<0 and mp=n. For q, p<g<oo, let § be a number such that
1/g=1/p—pB/n. Then we have by Lemma 9

q
ey s E(mo{ s = ypers) yaedy ) ax
T JB.En r B(£,2r)

< (Mzommn( | ppdy)T —0 s rio.

B(&,2r)

Case 6: a<0and mp>n. Asin Case 3, we have for 6>0
[ =yl ey
|x—y|<é

, o, 1/p’
=(f__ _ix— ey ey,
|x=y|<é
< M(Ix,| + &)=/rsemr—mie| £,

which implies that u is continuous on R".
Thus (5) holds in all cases and our theorem is proved.

8. Remarks

We collect several remarks to Theorem 1; similar remarks to Theorems 2-6
must be made.

REMARK 1. In case —1<a<p—1, Theorem 1 is the best possible as to
the size of the exceptional sets. In fact, for any EcRj with B,,_,, ,(E)=0, we
can find a function u harmonic in R? and satisfying (1) with G replaced by R%
such that

lim u(x) = o0 whenever ¢€E

x-bg,‘xeR:
(cf. [16; Theorem 2]).

REMARK 2. Let a<mp—1 and let u satisfy (1) for any bounded open set
GcR:.

1) If there is a positive integer k such that kp—1<a<(k+1)p—1, then
the same conclusion as Theorem 1 holds.

2) If a=kp—1 for some positive integer k, then there is a set E< R} such
that B, ,(E)=0 for any f>0 with f<m—«/p and u has an mc limit at each point
of R3\E.
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This follows from Theorem 1 and Lemma 5.

ReMARk 3. If a=mp—1, then there is a function ue C®(R") such that
u satisfies (1) with G=R% and lim,_,; g u(x)= oo for every ¢ € Rg.

For this, consider the function
u(x) = {(log x,)* + 1}¥2exp (—[x|?),  x=(x', x,)eRY,
where 0<e<1—1/p. By elementary computations, one sees that
|D,u(x)| < const. {(log x,)? + 1}~/ 2x mexp (—|x|?/2)

and thus that u satisfies the required conditions.

9. Extension of Theorem 2 to a general domain

Let Q be a domain of R” and denote by Q2 the boundary of Q. We say that
Q has the cone property at £ € 0Q if there is a finite (open) cone with vertex at &
and contained in Q. A function u on Q is said to have a non-tangential limit at
e 0Q if for any finite cone I' with vertex at ¢ such that there is a finite cone
I’ with T\{¢}=I"" = Q (I denoting the closure of I'),

lim u(x)

x> &, xel

exists and is finite.
We let p(x) represent the distance of a point x from R"\Q.

Our aim is to prove the following theorem.

THEOREM 2'. Let Q be a domain of R", m a positive integer and a<mp.
Let u be a function which is polyharmonic of order m+1 in Q and satisfies

SQIDmu(x)lpp(x)“dx < .

Then there exists a Borel set Ec0Q with B,,_,;, (E)=0 such that u has a non-
tangential limit at each £ € 0Q\E at which Q has the cone property.

Our proof below will give another proof of Theorem 2.

Proor or THEOREM 2'. Consider the set

E ={ceoa; | 1€ = e Dyu(»)]| p()* dy = ool

B(&,1)NQ

Then B,,_,,,(E)=0. Let {€0Q\E and I', I"" be finite cones with vertex at ¢
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such that M'{¢}=I"=Q. Our purpose is to prove that lim,_,. .. u(x) exists and

is finite.
First we find a constant ¢>0 such that for any xe I,

clx =&l = p(x) = |x — ¢,
B(x, c|x — &) = I,

Then we have

f 16yl iDuldy < oo,
which together with Lemma 3 gives
Sr|§ — " DuG)dy < 0 for i=1,2,..,m — 1.
Next we recall the following formula:
© uw= S| 1x =y (F) uody

for xel and r<c|x—¢|. By induction we see that (0/0v)iu is of the form

(ZYuwr =131 % (= x) - 530 (g5 )0)-

Therefore (6) can be written as

u= 3 a5 0Dy

_"l

with constants a;. Replacing u by du/dx;, we obtain by Green’s formula,

S =ar| By

* i sf

1=

gy (7 = DDA TS ()
éB(x,

ll/\

b -n _ D}. d ]

lélllémalr SB(x ,)<6yl(y x) >( u(y)) y
Multiplying both sides by »" and integrating them on the interval (0, c|x—¢&|),
we find

ou

ou (= ey (g
Fr) = (nt Daolelx = &)™ ar| Sy
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-n—1 elx=¢| a i
~ D) 3 aelr = (- 00 )0ray
—_ —n—1 ) — yf — ‘xf_
P D S gl =) (=MD Ty

From this it follows that
[x = &|-|Du(x)| = C;Zl SB( | _mlf = y|=" | Du(y)ldy

with some constant C>0 independent of xeI'.
Since S |E—y|'="|Du(y)ldy<oo, there is a line ¢nI#@g such that
r

lim, , ¢ ., u(x) exists and is finite (cf. the proof of Lemma 4). Denote the limit
by a. For xer, let x* € ¢ be the point with |x*—¢|=|x—¢|, and £, .. the line
segment between x and x*. For the sake of simplicity we assume that the aperture
of I' is smaller than 1. Then it is seen that 4, ..cI and |x—x*|/2<|y—¢| for
xel' and ye 4, ... By the mean value theorem we have

lu(x) — u(x*)| = [x — x*| Sup | Du(y)l

<2C sup S & — 2|7 Du(2)| dz
yelx,x* i=1JB(y,cly—¢&|)

—0 as x— & xel.

Thus lim,_ . ,.ru(x)=a and our theorem is proved.

Appendix

We now prove Lemma 9. We consider an operator T defined for fe LP(R")
as follows:

T5G) = {1 = y1==n () Il #12°dy.

The required inequality is then expressed as |Tf|[,SM |/ f[,. This means that
T is of (strong) type (p, ). Let us prove this fact. Decompose K(x)=|x|*"" as
K, + K, where

K (x) = K(x) if |x| Zn, =0 if |x| >y,
Ko(x) = K(x) if |x]| > n, =0 if |x]=n

and set
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T/ = [KiGx = 0 7 ay,

T f(x) = SKw(x — IOyl ' dy.

The positive number n will be determined later. We shall show that T, fe LP(R"),
T, fe L*(R") and the mapping f— Tf is of weak type (p, q), in the sense that

m{x; |Tf(x)| > i} < (M_“;fL) forany 4> 0,

where m is the Lebesgue measure and M is a constant independent of f and A.
In this proof M, M,,... denote constants independent of x, n and f. Let
t be a number such that 0<t<1. By using Hélder’s inequality we have

@ (imseax < [{{Ki6 = e i)™ (Ko = ypo-o sl dyax.

If we take t=(n—B)/(np’ — ), then A=(a—n)tp’+n>p and B=pla—n)(1—-t)+n
>0. First we show

®) §K1<x — Y |yl Bdy < M gAs.

We may assume that x=(0, x,), x,=0. We divide the domain of integration
into three parts, that is, (i) 2|x| <|yl, [x—y|=n, (D) 2|x|> Y], ya=x,/2, [x—yI =1,
(iii) 2|x|>|yl, ¥a>x4/2, Ix—y|<n. The corresponding integrals are denoted by
I, I, and I; respectively. We consider polar coordinates (r, 6, w) in R", where
r=|x|, 6 is the angle between x and the x,-axis and w denotes the other variables
if (r, 0, w) represents x € R*. Since |y|=2|x| implies |x—y|=|y|/2, we have

I, < 2A_"S(2,”M_ﬁ_1drggsv-—xlcos 01~ dbdw = MyA-".
If y,<x,/2, then |x—y|2=|y|. Hence
I, = ngA-ﬂ—ldrSSsn_JcOs 0|8 d0dw = MnA~".
In the case (iii) we note that |[x —y| <3x,<6y,, and hence we have
Iy = 6ﬂSIx—yl§n[x — yA P ndy = MnA-t.

Thus the inequality (8) is obtained. From (7) and (8) it follows that

) I s1rdx < (ot (K, (opa=o ax( fledy
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< Msnp(A*‘ﬂ)/p’+HS|f|pdy

= Msrll’(“"ﬂ/l")g'flpdy_
Next, we show that

(10 ITwf0] = | (K = SO #i7dy| < Mo g1,

for all xe R". By Holder’s inequality we have

| (&t = 3210 a2 dy | < {(Kax = 90y} 11
Hence it suffices to show that
(11) [Katx = pPIyaltdy < Moo e

Again we may assume that x=(0, x,), x,=20. We break up the domain of
integration into four parts, that is, (i) 2|x|=|yl, |x—y|=n, (i) 2|x|>|y], y,>x,/2,
|x=yl2Zn, (i) 2|x|>{yl, yaSx,/2, [YISn, [x=yl2n0, (V) 2x|>|y], y.Sx./2, |y]
>n, |[x—y|Zn. The integrals on these domains are denoted by I}, I5, I and I}
respectively. If 2|x|<|y|, then |y|/2<|x—y|<3]|y|/2. Hence

Iiéz"'(“)g [P @y, | P dy = Mgnp'@=m=An = Mgr'nla,
I»122n/3

In the case (ii) we see that |[x—y|#|y,|™# £6°, and hence

IIZ < 6ﬁg |x — ylP'(a“”)‘ﬂdy = Mgn—P'"/‘I.
|x=yl2zn
For I5 we have
s aren| ly, [y = Mg
Iylsn

Since | x—y|=]|y| holds in the case (iv),

I, £ S [ylp'a=m|y,|"fdy = M, nP'"/4,
>n

Iyl

Therefore (11), and then (10) is obtained.
By (9) we have that for any positive number A and fe LP(R")

m{x; |Tf(x)| > 24} = m{x; [T, f()| > A} + m{x; |[Tof(y)| > 4}
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< M, {iﬂ}”f_”g}” +mix; [Taf(Ol > 2}

Now we determine # so that the right-hand side of (10) is equal to 4, i.e. n=
(Mgl fl,/7)4/". Then T, f </ in R" and hence m{x; |Tf(x)|>A}=0. There-
fore

mix; | Tf(x)| > 22} < {%}‘

for a suitable constant M >0 independent of 2 and f. This shows that the operator
Tis of weak type (p, q). We take p, and p, sufficiently close to p so that p, <p
<p,and for i=1 and 2

Lol LBy,
qi pi n Di

where p;=p;/(p;—1). By the above argument we see that T is of weak type
(pi» g;), i=1, 2. Hence the Marcinkiewicz interpolation theorem (A. Zygmund
[21; Theorem 17) shows that T'is of (strong) type (p, g), which means the conclu-
sion of the lemma.
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