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1. Introduction

In this paper we consider the differential equations
(1) L,x + q(t)x =0,
(2 Lx + q(0)f(t, x) =0,

where n>3 is an odd number and L, is the differential operator of the form

(3) [ =1 d 1 d d 1 d -
"7 pa(t) dt p,_y(t) dt  dt pi(t) dt po(t) -

The following conditions are always assumed to hold:

(i) p() (0<i<n) and q(¢) are continuous and positive on the interval
[a, o), and

Smpi(t)dt = for 1<i<n—1l.

(i) f(t, x) is continuous on [a, ©) X R, f(t, x) is nondecreasing in x and
xf(t, x)>0 for x+#0.
We introduce the notation:

x(t)

D(x; p)@) = s

C))

. d . .
Di(x; pose-r pj)() = ﬁ-d—t—]')! Y(x;5 poses Pj-1)@), 1<j<n.

Then the differential operator L, can be rewritten as

Ln = Dn( > Pose-es pn)

The domain 2(L,) of L, is defined to be the set of all functions x: [T, c0)—R
such that DJ(x; po,..., p;) () (0< j<n) exist and are continuous on [T, o).

A nontrivial solution of (1) (or (2)) is called oscillatory if the set of its zeros
is infinite. Otherwise, it is called nonoscillatory. A nontrivial solution x(¢) of
(1) (or (2)) is said to be strongly decreasing if it satisfies
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) (—1Yx(®Di(x; po,..., p) () >0 for 0<j<n-1

for all sufficiently large ¢t. Condition (5) implies that [Di(x; py,..., p;)(£)] (0<
j<n-—1) are decreasing and |DJ(x; po,..., p)(®)| 10 as t1 oo for 1<j<n—1.
One should remark that equation (1) always has strongly decreasing solutions;
see Hartman and Wintner [3].

The oscillatory behavior of even order equations of the form (1) and (2) has
recently been studied by Kusano and Naito [6] and Kreith, Kusano and Naito
[5]. The main purpose of this paper is to adapt their methods and techniques
to establish criteria for all solutions of equations (1) and (2) with n odd to be either
oscillatory or strongly decreasing. Our results generalize those of Lovelady [7]
for odd order equations of the form x + g(f)x=0.

The desired criteria for equations (1) and (2) are obtained in Sections 3 and
5, respectively. Section 4 is devoted to the study of the structure of the solution
space of equation (1). Several preparatory results which are basic in these sec-
tions are summarized in Section 2.

2. Preliminaries

Letiye{l,...,n—1}, 1<k<n-—1, and t, se[a, ©0). We define

©) ,
I, 5 Pigpeves Piy) = S Pa(y— (U, S5 Py _y--» Py, ).
It is easily verified that for 1<k<n-—1
Q) It 85 Dy Pi) = (= OIS, £5 Pis--os Pi)»
® 1t 55 Bisres 2i) = | BT 10, 45 Do 1)
For simplicity we put
Jit, s) = po(DLi(t, 5 Pyseees Pi)» Ji(1) = Ji(t, a).

Ki(t, 5) = p()(t, S5 Pu—15--+» Pn—k)> Ki(t) = Ki(t, a).

LemMmA 1. If xe 2(L,), then the following formula holds for 0<i<k<
n—1andt, se[T,, o):

D¥(x; pos--+» P) (B
(10) = §=i (_l)j_iDj(x; Dos--s pj)(s)Ij—i(s’ t; DPjse++s Di+ 1)

(€)

X s
+ (= 1)kirt gt L (U, t; Proees Dis 1)Pis 1()D*H (X5 Pos...s Prsr) (W)du.
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This lemma is a generalization of Taylor’s formula with remainder en-
countered in calculus. The proof is immediate.

LemMA 2. If xe 2(L,) satisfies x(f)L,x(£)<0 on [t,, o), then there exist
an even number 1 (0<I<n—1) and t, (t,>1,) such that for t>t,,

(1) x()D¥(x; pos---» pj)(t)>0, 0<j<,
12 (—=1)7"'x(®)DI(x; pgs-o» PP >0, 1< j<n.

This lemma generalizes a well-known lemma of Kiguradze and can be proved
similarly.

Consider the n-th order differential equation
(13) Lx + F(t, x) =0,

where n is either odd or even, and F(t, x) is a continuous function on [a, ) X R
such that F(t, x) is nondecreasing in x and xF(t, x)>0 for x#0.

LeMMA 3. Let k, 0<k<n-—1, be fixed. Equation (13) has a nonoscil-
latory solution x(t) satisfying

. . t
it ., DHGS3 P B)() =l () = € R — {0}

if and only if
(14) S‘” Ky_io (O |F(, cJ(D)ldt < 0 for some ceR — {0}.

The proof is found in Kitamura and Kusano [4].
LeMMA 4. If the differential inequality
{L,x + F(t, x)} sgnx < 0

has a nonoscillatory solution which is not strongly decreasing, then so does the
differential equation (13).

For the proof see éanturija [1].

3. Oscillation theorems for equation (1)

As we remarked in Section 1, equation (1) always has nonoscillatory solutions
which are strongly decreasing. So the strongest conclusion we can expect for
oscillation of equation (1) is that all of its nonoscillatory solutions are strongly
decreasing.
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THEOREM 1. Suppose that
a15) Sw Jo (DK, (Da)dt = o for i=2,4,.,n—1.

Then every nonoscillatory solution of equation (1) is strongly decreasing.

Proor. Let x(t) be a nonoscillatory solution of equation (1) which is not
strongly decreasing. We may suppose that x(f) is eventually positive. From
Lemma 2, there exist an even number ! (2</<n—1) and ¢, € [a, o) such that
inequalities (11) and (12) hold for t>¢,.

Suppose I<n—1. From formula (10) with i=I, k=n—1, t=t,, and s>t,
it follows that

DY(x; pos--» P1) (1)
(16) = 2121 (= 17IDI(x; poseees P (- i(S, t15 Pjseves Prat)
0 Ty 45 Pa s P DPAODIK; Py P W)
Using D*(X; Pos-.-» Pn) (4)= —q(u)x(u) and (12), we have
[ P o1t 15 P Pra AWM < DX Posees P01,
which gives in the limit as s— oo

(17) S:” K, ot 1)q()x(D)dt < co.

On the other hand, by integrating D!(x; pg,..., p)(#)>0 (t>1¢,) | times, we
obtain

(18) x(t) = cJ;-4(t, ty) for t>t,,

where ¢ is a positive constant and ¢, >¢, is a suitable constant. Combining (17)
with (18), we get

(19 [ s 10K 100 < o0,
which contradicts (15).

Next, suppose I=n—1. Multiplying both sides of equation (1) by p,(t) and
integrating from ¢, to oo, we see that

(20) [ naxar < .
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From (20) and (18) with [=n—1, we have

[ POt 1)1 < o
or

@ 7 gt 10Kt (0 < o,

which again contradicts (15). Therefore, every nonoscillatory solution of (1)
must be strongly decreasing, and the proof is complete.

Next, we consider the case where the integrals

[0 0K, -9
are convergent for i=2, 4,...,n—3 and n—2. For simplicity we put
(22)  q(n = pm(t)gt Jio1(u, DK, 5(u, Dg(uw)du, i=2,4,..,n=3,
23) 4aes® = 2 | T30, DKo, D

THROREM 2. If all of the second order differential equations

z' v .
(24) (p.- 5 ) +a)z=0, i=24..n—1,

are oscillatory, then every nonoscillatory solution of equation (1) is strongly
decreasing.

ProoF. We assume that x(t) is a positive solution of equation (1) which is
not strongly decreasing. By Lemma 2 there exist an even integer | 2<I<n—1)
and t; (¢, >a) such that (11) and (12) hold for t>¢,.

Let I<n—1. Puttingi=I+1, k=n—1, s>t>t, in (10), we have

D™ (x; Poseres Pra1)(2)

= Y12l (=1)7171DI(x;5 po,..., P -y 4(s, 15 Djseees Pi+2)
+ (=1t Stln—t—z(ua £ Pu=1s+++s P14+ 2)P(W)D"(X; po,..., pn) (Wdu.

Letting s— co in the above, we obtain

(25) —=D"™(x; poy..s Pr41) (1) = St Py 5(U, t; Py 15y Dra2)q(u)x(u)du



396 Kyoko TANAKA
for t>t,. Now putting i=0, k=1-2, t>s=t,; in (10), we have

DO(x; po)(¥)
= Y15 (=1)/DI(x; poserer ) DI (24, t; Djyeves P1)

+ 0 L 5 B POP- @D Poves o) W
= 212 DI(X; Pose-rs P ADI[E, t15 P1seess D))
+ S:‘ I_,(t, u; Piyeves P1—2)Pi— 1(WID*1(x; Pos..vs P1—1) (W)du,
which, in view of (11), yields
(26) D°(x; po)(t) = S: I5(t, u; pyseess Pr-2)P1- 1(W)D'H(X; oy s Pr—1) (W)du

for t>t,. Combining (25) with (26), we have
=D"™(x; Poseres Pra1)(®)

2 St pn(u)ln—l-—z(u9 t; pn—17-"7 pl+2)'
- q(u)po(u) gt I_5(u, v5 pyy.ees P1-2)P1-1(©)D71(x; Pos-..r D1—1) (V)dvdu
= St Do 2(Us 5 Py tseees Prs2)-

u
- q(u)po(u) S: 11 5(U; 05 Prsenes Pr-2)Pi-1(®)D' (x5 Pos--os Py-1) (V)dvdu
for t>t,. Since D""!(x; po,..., p;—1) is increasing, it follows from the above that
—D"(x; Poseees P+ 1) ()
= Dl_l(x; Pos--+s pl—l)(t) St pn(u)In—l—Z(“’ t;Pn—p---, pl+2)'
u
- a@po(®) § Ti-50, 03 Puvers Di-IPi- 1)
o]
= D’_l(-x; Dos---» pl—-l)(t) St pn(u)In—l—Z(ua t; pn-lv--, Pl+2)'

"1(")?0(“)11—1(“, t; P1seees pl—l)du‘
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Let y(f) be given by
y(®) = D"I(X; pose-s P1-1) (1)
Then y()>0 on [¢,, o) and y(¢) satisfies

2N —D"™(x; poserrs Pra)(®) = J’(t)S:D Ji-1(u, DK, 2(u, Hq(u)du

for t>¢,. Noting that

(;;((tt)) ) = Pi+1(OD"1(x; Pos--o» Pra1) ()

we see from (27) that

(izé;)) ) +a®y®) <0, t>1,

Lemma 4 now implies that the equation

has an eventually positive solution. But this contradicts our assumption.
Let I=n—1. An integration of (1) yields

(@) DI b P )@ 2 | pa@NGIE  for 121,
Setting i=0, k=n-3, t>s=t, in (10), we have
D°(x; po) (1)
= 2728 (—1YDI(x; pos--es P (DI (15 t5 Pjseees P1)
(=072 (" s 5 Pasuees POPa2@D™3 Pore Pa-2) ()
= X723 DI(x; Pose-s P UDI[L, 115 Pyseves Py)
+ S:, I 5(t, U3 P1s-ees Pu=3)Pn-20)D""2(x; Pos-.s Pp-2) (W)du.
From this we easily see that
(29) Dx; po)(t) = S: I 3(t, 45 P1se-s Pn=3)Pn—2(W)D"" (X5 Pose.-s Pp-2) (W)du

for z>t,. From (28) and (29) it follows that for t>1t,
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Dn—l(x; Pos--+» pn—l)(t)
> (7 puapo@) " =503 prvves Bues)Pa 2D Poses Py oo
> (7 pia@po(®) | 11500, Prvvs P Pu- AP P Py Yo

= (717 ol 5005 By a- ) ) By 20D Doy N0
Therefore

D"_I(X;Pm--w Pu- 1)(0
= (7 (17 70 s, Ko, 9900 ) o= s0ID™25; Py Pa-2) ()

for t>t,. Integrating this inequality from t; to t, we see that w(f)=D""?(x;
Dos--+> Pu—2)(t)>0 satisfies

(30) w(t) > w(t,) + St Dp—1(u) Sw 4, - 1(v)w(v)dvdu for t>1t,.

Denoting the right side of (30) by y(?), it is easy to see that

(GE9) +amir <o, 121,

Again by Lemma 4 the equation

<;:z;ﬁ)—>/ + gu-1(Dz =0

has an eventually positive solution, contradicting the hypothesis of the theorem.

We show that the conclusion of Theorems 1 and 2 can be strengthened if an
additional condition is placed on g(?).

THEOREM 3. Suppose that all nonoscillatory solutions of equation (1) are
strongly decreasing. Then every nonoscillatory solution x(t) of (1) satisfies

. x() _
(31) lim,_ o Pol) = 0

if and only if

(32) Sw Jo(OK,_ ((Dq(H)dt = co.
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Proor. If (32) does not hold, then by Lemma 3 with k=0 equation (1) has
a nonoscillatory solution x(¢) such that lim,_, , x(¢)/po(f)=const#0. This proves
the “‘only if” part of the theorem.

Let x(f) be a nonoscillatory solution of (1) which does not enjoy property
(31). Then, there exists the limit lim,., , x(t)/po(f)=a € R— {0}, and from Lemma
3 with k=0 we have

[ 160K, et < 0.

This contradiction proves the *‘if” part of the theorem.

COROLLARY 1. Consider the third order equation

33 (o (G *)) +a0x =0,

where p,(t), p,(t) and q(t) are positive continuous functions on [a, o), and

Sw pi(tdt = Sw p,(dt = oo.

Suppose that either (i)
o) t
(34) S (S pl(s)ds) g(Hdt = oo,
or (ii) Sw g(ydt< o and the equation

(35) (i) + (0§ awas)z =0

is oscillatory. Then all nonoscillatory solutions of equation (33) are strongly
decreasing. If in addition

S ) (S P2(s) S pl(a)dads)q(t)dt = o0,

then all nonoscillatory solutions of (33) tend to zero as t— 0.

COROLLARY 2. Consider the equations

(36) <p—%t)—x'>(2'") + q(H)x = 0,

37) (St xem) + aox =0,

where m>1, p(t) and q(t) are positive and continuous on [a, o), and
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S‘” p)dt = .

(I) All nonoscillatory solutions of equation (36) are strongly decreasing if
either (i)

(38) gw (S: (s— a)z'"‘zp(s)ds>q(t)dt = 00,
or (ii)
(39) gw (g' (s—ay2n=3 p(s)ds)q(t)dt < o

and the equation

(40) # + T {ST (S. (a—t)zm—3p(a)da)q(s)ds}z =0

is oscillatory.
If in addition

@1) [°(1. c=921pts)ds ) gty = oo,
then all nonoscillatory solutions tend to zero as t—o0.
(II) All nonoscillatory solutions of equation (37) are strongly decreasing
if either (i) (38) holds and
(42) Sm t2m=1g(f)dt = oo,
or (ii) (39) holds,
43) Sw 2m=2g(H)dt < oo
and the equations (40) and
9 () *+ e ([ -omaoas) =0

are oscillatory.
If in addition

45) Sm (S: (s—a)2m-1 p(s)ds)q(t)dt = 0,

then all nonoscillatory solutions of (37) tend to zero as t—co.
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ExampLE 1. Consider the equation
(46) (*xCmY 4 cttx =0, t>1,

where |A| <1, p and ¢>0 are constants. From Corollary 2 (II) (i) it follows that
all nonoscillatory solutions of (46) tend to zero as t—oo if u>max {4, 0} —2m.
In case p<max {4, 0} —2m, (39) and (43) are satisfied and equations (40) and
(44) become

ct—l+u+ 2m—1

“7 “ DU =)= p=3) G p=2m+ 1) = =0
and

+2m—1
(48) 2"y + et z=0,

(=u=D(=p=2)(-p—2m+1)

respectively. By Corollary 2 (II) (ii) all nonoscillatory solutions of (46) tend to
zero as t— oo if either A—2m—1<p<max {4, 0}—2m or u=1—2m—1 and

49) ¢ > —‘leax {(=A+2m)2m—=1)!, (A= 1)*(= A+ 2m)(— A+2m—1)---(=A+2)}.

Consequently if either u>A—2m—1 or p=A-2m—1 and (49) is satisfied, then
every nonoscillatory solution of (46) tends to zero as t—co.

We conclude this section with a theorem which gives a sufficient condition for
equation (1) to have a nonoscillatory solution which is not strongly decreasing.

THEOREM 4. Suppose there exists an odd integer 1 (1<l<n) such that
the l-th order equation

(50) D!(z; po, P1se-es P15 (1) + K,_(D)q()z(t) = 0
has a nonoscillatory solution z(t) satisfying
(62)) 2()D¥(z; pos P15 PN >0, 0K j< -1,

for all sufficiently large t. Then equation (1) has a nonoscillatory solution
which is not strongly decreasing.

Proor. We may suppose that z(f)>0 on [t,, ). Applying formula (10)
to z(t) with i=0, k=1-2, t>s=t,, we obtain by use of (7) that

DO(z; po) (t) — D°(z; po) (to)

= Y123 (=1)/Di(z; po,.-., Pj)(to) (Lo, 25 Pjse-es P1)
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(=D Lt 5 i PO WD ES P i) W)
= 253 Di(z; pose..r p) (L) (L, to; P1s---s D))
4 01 Dot 03 s Pro P WDES Do o) (Wi,
In view of (51), it follows that
(52)  D(z; po)(t) = D°(z; po)(to)
+ g:o I, 5(t, U3 Piseves Pi-2)P1— 1 (W)D (25 pose s Pr-1) (W)du.

Integrating (50) from ¢ to s (s>t>1,) and letting s— oo, we obtain
(53) D'"!(z; poye-es P1-1)(1) = gt Ky, Dg(w)z(w)du, t= to.

Substituting (53) in (52), we obtain
(54) 200 > D%z po)to)po(®) + || Ji-a(ts Wpi-@) | Koy, wa@)zo)dod
for t>t,.
Now we define a sequence of functions {x,}%-, by
Xo(t) = D%z; po)(to)Po(f)
X () = D23 o) (100Po(0) + | Jicaft, wpi-1 ) | Koo, w0} (0)dvd,
m=20,1,2,....

It is easy to check that {x,}>_, is well-defined as an increasing sequence and
satisfies

DO(z; po) (to)po(t) < x,,(t) < z(1t) for t>t,, m=0,1,2,...
Hence there exists a function x(¢) on [y, c0) such that
lim,,, ., x,,(t) = x() for t>1,
and
D%z; po) (to)po(t) < x(1) < z(t)  for 12> to.
From the Lebesgue convergence theorem it follows that

X(0) = Dz po)(t0)po) + | Jicalt, wpi- 1) | Koo, wg0)x(o)dvd
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for t>t,. Differentiating the above equation, we conclude that x(¢f) is a non-
oscillatory solution with the desired property. This completes the proof.

ExAMPLE 2. Let us consider equation (46). For this equation, (50)
becomes

(55) zMA) + ’(—zmit_“’l‘)T(gtl (u— l)zm"u‘*du>z = 0.

According to Foster and Grimmer [2, Theorem 1], it is seen that equation (55)
has a solution satisfying (51) if and only if the second order equation

t — -2
(56) v+ eyt (], e vt Gy = 0

is nonoscillatory. It is easily verified that equation (56) is nonoscillatory if either
u<i—2m-—1or uy=i—-2m—1 and

(57 c< 7}7 max {22m —3)!2m—1—2), @m—2)!(—A+2)}.

Hence if u<i—2m—1 or u=1—2m—1 and (57) is satisfied, then equation (46)
has a nonoscillatory solution which is not strongly decreasing.

4. Solution space of equation (1)

Let & denote the set of all solutions of equation (1). It is clear that & is
an n-dimensional linear space over the reals. We are interested in the structure

of this solution space & in case every nonoscillatory solution of equation (1) is
strongly decreasing.

THEOREM 5. Suppose all nonoscillatory solutions of equation (1) are
strongly decreasing. Then & has a basis which consists of oscillatory solutions,
and & has an (n—1)-dimensional subspace whose elements are all oscillatory
solutions.

In order to prove this theorem, we need the following two lemmas.
LEMMA 5. Let x(t) be a solution of equation (1). If
(—=1)/D¥(x; pos.es P)(©) >0, 0<j<n—1,
for some c=>a, then
(=1)/Di(x; po,..., p))(t) >0  for a<t<e, 0<j<n-1

PrOOF. Put wu(t)=x(a—t) for a—c<t<0. Define pgt)=pa—t) for
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a—c<t<0,0<j<n. Then,
Di(v; po,...» b))(1) = (=1)/DI(x; pos..., p)(a=1),
so v(t) satisfies
D™(v; Pos-.., P)(t) — gla—t)o(t) =0 for a—c<t<0
and
Di(v; Pgseres P)(@a—c) >0, 0<j<n—-1.
Hence it follows that
Di(v; pose.., Pp(t) >0 for a—c<t<0, 0<j<n-1,
which implies
(=1)/Di(x; po,..., pj)(t) > 0 for a<t<e, 0Lj<n—1.

LEMMA 6. Suppose that all nonoscillatory solutions of equation (1) are
strongly decreasing. If there exists a solution x(t) of equation (1) such that
Di(x; po,..., p;)(t) has at least one zero for some je {0, 1,..., n—1}, then x(t) is
oscillatory.

Proor. Let x(f) be a positive solution of equation (1) such that (5) holds
on [c, o) for some ¢>a. Lemma 5 implies that Di(x; po,..., p;)(£) never vanish
on [a, ¢] for 0< j<n—1. This shows our assertion.

Proor oF THEOREM 5. For je{l,..., n} let z;(f) be a solution of equation
(1) satisfying the initial conditions

D¥1(z;; Poseees Pu-1)(@) = 85, 1 <k <.

Clearly, z,,..., z, form a basis for & and by Lemma 6 they are all oscillatory.
On the other hand, if x espan {z,,..., z,}, then x(a)=0, so that x() is oscillatory.
This implies that span {z,,..., z,} is an (n—1)-dimensional subspace of &, all
elements of which are oscillatory.

5. Nonlinear equations

In this section we study nonlinear equations of the form (2) which are either
weakly superlinear or weakly sublinear in the sense defined below.

DEerFINITION. Equation (2) is called weakly superlinear if

£, 0l _

x| © uniformly for te[a, o).

limlxl_.w
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Equation (2) is called weakly sublinear if

1f(@, x)| =0

]imlxl_.m |x|

uniformly for te[a, o).

THEOREM 6. Suppose that equation (2) is weakly superlinear and
liminf,, , po(£)>0.
If, for some M >0, every nonoscillatory solution of the equation

(58) Lx + Mg(H)x =0

is strongly decreasing, then every nonoscillatory solution of equation (2) is
strongly decreasing.
If in addition

(59 |7 Keei®aO1f( cpo(®)ldt = 0 for every ceR — {0},

then every nonoscillatory solution x(t) of equation (2) satisfies lim,_, ., x(2)/po(t)
=0.

ProoF. Let x(f) be a nonoscillatory solution of equation (2) which is not

strongly decreasing. We may suppose x(¢) is eventually positive. Then we have

(60) . DOC5; o) () =l 5 = o0

In fact, the integer I associated with x(f) by Lemma 2 is not less than 2, and so
there are a positive number N and t,>a such that

D'(x; po, p)() = N for t>t,.

Integrating the above inequality, we find

DO(x; po)(t)>NS p(s)ds  for t>t,,

from which (60) readily follows. Now since lim inf,_, ., po(f)>0, (60) implies that
lim,, , x(f)=00. By the weak superlinearity of equation (2),

lim,_.w( I, x(f)(t)) ) 00

uniformly with respect to ¢’ € [a, ), so that there exists T >t, such that f(¢, x(¢))
>Mx(t) for t>T. From this and (2) we have

Lx(f) + Mg(H)x(t) <0, t>T.

We apply Lemma 4 to conclude that equation (58) has a positive solution which
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is not strongly decreasing. But this is a contradiction. This completes the proof
of the first part of the theorem.

Suppose that (59) holds for every c e R—{0}. If x(f) is a strongly decreasing
solution of equation (2), then |D%x; py)(?)| is decreasing. Hence the limit a=
lim,, , D°(x; po)(¢) exists as a finite value. Lemma 3 with k=0 implies that
o=0. This proves the second part of the theorem.

COROLLARY 3. Suppose that liminf,,  po(t)>0 and f(x) is a continuous
and nondecreasing function on R which satisfies xf(x)>0 for x#0 and

I _

|x]

(61) limy e

If, for some M >0, every nonoscillatory solution x(t) of equation (58) satisfies
lim,_, ., Xx(¢)/po(t) =0, then the same is true of every nonoscillatory solution of the
equation

(62) L,x + q(®)f(x) = 0.

Proor. It suffices to show that (59) holds for every ce R—{0}. Let ¢ be
any nonzero constant. Since lim inf,_ , py(t)>0, there are ¢, >a and >0 such
that |cpo(H)| >0 for t>t,. Defining y=inf|,;5;(If(x)|/|x]), we have y>0 from
(61). Hence

(63) |f(cpo(] = ylepo(®)]  for t>1t,.

Now, from our hypothesis for equation (58) and Lemma 3 with k=0, it follows

(64) M K, (040 lepo0de = co.

(63) and (64) imply that (59) holds for any ¢ € R— {0}.

The following example shows that Theorem 6 becomes false if the divergence
in the definition of weak superlinearity is not uniform with respect to ¢.

ExAMPLE 3. Consider the equation

(65) x’Y + %t‘z(log (e+t712)) xlog(e+t7tx|) =0, t>1.

Here n=3, po()=pa)=ps()=1, py(0)=r"", q)=+1"*(log(e+1 V)" and
f(t, x)=xlog(e+1t"!x|). Itis easy to see that

|/, x)|

limm_,w |x|

= lim, ., log (e+17|x[) = o,
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but that the divergence is not uniform in 1>1. The associated linear equation is

(66) (ex'y + 21 2(log (e+r-172)1x = 0.
By Corollary 1 (ii) all nonoscillatory solutions of equation (66) are strongly
decreasing for sufficiently large M. However equation (65) has a nonoscillatory

solution x(¢)=t/2, which is not strongly decreasing.

Our last theorem contains the result in the case that equation (2) is weakly
sublinear.

THEOREM 7. Suppose that equation (2) is weakly sublinear, and
liminf,_,  po()>0. If, for some m>0, the equation

67) L,x + mg(t)x =0

has a nonoscillatory solution x(t) which does not satisfy lim,_ , x(t)/po(t)=0,
then so does equation (2).

If in addition (59) holds for every ce R— {0}, then equation (2) has a non-
oscillatory solution which is not strongly decreasing.

Proor. First, suppose (59) does not hold for some ce R—{0}. By Lemma
3, equation (2) has a nonoscillatory solution x(tf) such that lim,. x(¢)/po(?)
=a#0.

Next, assume that (59) is satisfied for every ce R—{0}. By the weak sub-
linearity of equation (2) there is «>0 such that |f(z, x)| <m]|x| for |x|>¢a, t>a.
Taking ¢#0 such that |cpy(t)] >« for sufficiently large ¢, we obtain

|f(t, cpo(®))] < mlcpo(?)] for sufficiently large ¢.

Hence from (59) we see that
(68) [ Ku- s0apo(tdt = co.

Let x(f) be a nonoscillatory solution of equation (67) which does not satisfy
lim,_, , x(8)/po(t)=0. Clearly x(f)/po(f) is monotone, so that lim,. . x(£)/po(t)
exists in the extended real line. By (68) Lemma 3 implies that lim,_, ., |x(2)/po(?)|
= o0, therefore x(t) is not strongly decreasing. From our assumption lim,_, ,|x(?)]
=00, so that [f(t, x(1))|<m|x(t)| for sufficiently large t. Thus, for sufficiently
large ¢,

{Lx(1) + q()f (1, x(1))} sgn x(2) < 0.

It follows from Lemma 4 that equation (2) has a nonoscillatory solution which
is not strongly decreasing. The proof is complete.



408

Kyoko TANAKA

ACKNOWLEDGMENT. The author would like to express her sincere thanks

to Professor T. Kusano and Dr. M. Naito for many helpful suggestions and
comments concerning this work.

(1]

[2]
[31
[4]
[51
[61]

(71

References

T. A. Canturija, Some comparison theorems for higher order ordinary differential
equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 749-756.
(Russian)

K. E. Foster and R. C. Grimmer, Nonoscillatory solutions of higher order differential
equations, J. Math. Anal. Appl. 71 (1979), 1-17.

P. Hartman and A. Wintner, Linear differential and difference equations with monotone
solutions, Amer. J. Math. 75 (1953), 731-743.

Y. Kitamura and T. Kusano, Nonlinear oscillation of higher-order functional differential
equations with deviating arguments, J. Math. Anal. Appl, (to appear).

K. Kreith, T. Kusano and M. Naito, Oscillation criteria for weakly superlinear differ-
ential equations of even order, (to appear).

T. Kusano and M. Naito, Oscillation criteria for a general linear ordinary differential
equation, (to appear).

D. L. Lovelady, An asymptotic analysis of an odd order linear differential equation,
Pacific J. Math. 57 (1975), 475-480.

Department of Mathematics,
Faculty of Science,
Hiroshima University





